Skip to main content

Home/ Larvata/ Group items tagged amazon

Rss Feed Group items tagged

crazylion lee

AWS IoT Button - 0 views

  •  
    "限量發行的可程式化 Dash Button AWS IoT Button 是一個以 Amazon Dash Button 硬體為基礎的可程式化按鈕。這個簡單的 Wi-Fi 裝置非常容易設定,而且它的設計目的是讓開發人員開始使用 AWS IoT、AWS Lambda、Amazon DynamoDB、Amazon SNS 以及許多其他 Amazon Web Services,不需要撰寫裝置特定的程式碼。"
張 旭

What Is Amazon VPC? - Amazon Virtual Private Cloud - 0 views

  • to allow an instance in your VPC to initiate outbound connections to the internet but prevent unsolicited inbound connections from the internet, you can use a network address translation (NAT) device for IPv4 traffic
  • A NAT device has an Elastic IP address and is connected to the internet through an internet gateway.
  • By default, each instance that you launch into a nondefault subnet has a private IPv4 address, but no public IPv4 address, unless you specifically assign one at launch, or you modify the subnet's public IP address attribute.
  • ...11 more annotations...
  • Amazon VPC is the networking layer for Amazon EC2.
  • A virtual private cloud (VPC) is a virtual network dedicated to your AWS account. It is logically isolated from other virtual networks in the AWS Cloud.
  • Instances can connect to the internet over IPv6 through an internet gateway
  • IPv6 traffic is separate from IPv4 traffic; your route tables must include separate routes for IPv6 traffic.
  • You can optionally connect your VPC to your own corporate data center using an IPsec AWS managed VPN connection, making the AWS Cloud an extension of your data center.
  • A VPN connection consists of a virtual private gateway attached to your VPC and a customer gateway located in your data center.
  • A virtual private gateway is the VPN concentrator on the Amazon side of the VPN connection. A customer gateway is a physical device or software appliance on your side of the VPN connection.
  • AWS PrivateLink is a highly available, scalable technology that enables you to privately connect your VPC to supported AWS services, services hosted by other AWS accounts (VPC endpoint services)
  • Traffic between your VPC and the service does not leave the Amazon network
  • To use AWS PrivateLink, create an interface VPC endpoint for a service in your VPC. This creates an elastic network interface in your subnet with a private IP address that serves as an entry point for traffic destined to the service.
  • create your own AWS PrivateLink-powered service (endpoint service) and enable other AWS customers to access your service.
crazylion lee

Amazon Ion - 0 views

  •  
    "Amazon Ion is a richly-typed, self-describing, hierarchical data serialization format offering interchangeable binary and text representations. The text format (a superset of JSON) is easy to read and author, supporting rapid prototyping. The binary representation is efficient to store, transmit, and skip-scan parse. The rich type system provides unambiguous semantics for long-term preservation of business data which can survive multiple generations of software evolution. Ion was built to solve the rapid development, decoupling, and efficiency challenges faced every day while engineering large-scale, service-oriented architectures. Ion has been addressing these challenges within Amazon for nearly a decade, and we believe others will benefit as well. "
張 旭

NAT Gateways - Amazon Virtual Private Cloud - 0 views

  • a network address translation (NAT) gateway to enable instances in a private subnet to connect to the internet or other AWS services
  • but prevent the internet from initiating a connection with those instances
  • NAT gateways are not supported for IPv6 traffic
  • ...11 more annotations...
  • must specify the public subnet in which the NAT gateway should reside
  • update the route table associated with one or more of your private subnets to point Internet-bound traffic to the NAT gateway.
  • NAT gateway is created in a specific Availability Zone and implemented with redundancy in that zone.
  • ensure that resources use the NAT gateway in the same Availability Zone
  • The main route table sends internet traffic from the instances in the private subnet to the NAT gateway. The NAT gateway sends the traffic to the internet gateway using the NAT gateway’s Elastic IP address as the source IP address
  • A NAT gateway supports 5 Gbps of bandwidth and automatically scales up to 45 Gbps
  • You can associate exactly one Elastic IP address with a NAT gateway
  • A NAT gateway supports the following protocols: TCP, UDP, and ICMP
  • cannot associate a security group with a NAT gateway.
  • create a NAT gateway in the same subnet as your NAT instance, and then replace the existing route in your route table that points to the NAT instance with a route that points to the NAT gateway
  • A NAT gateway cannot send traffic over VPC endpoints, VPN connections, AWS Direct Connect, or VPC peering connections.
張 旭

VPCs and Subnets - Amazon Virtual Private Cloud - 0 views

  • you must specify a range of IPv4 addresses for the VPC in the form of a Classless Inter-Domain Routing (CIDR) block
  • A VPC spans all the Availability Zones in the region
  • add one or more subnets in each Availability Zone.
  • ...19 more annotations...
  • Each subnet must reside entirely within one Availability Zone and cannot span zones.
  • Availability Zones are distinct locations that are engineered to be isolated from failures in other Availability Zones
  • If a subnet's traffic is routed to an internet gateway, the subnet is known as a public subnet.
  • If a subnet doesn't have a route to the internet gateway, the subnet is known as a private subnet.
  • If a subnet doesn't have a route to the internet gateway, but has its traffic routed to a virtual private gateway for a VPN connection, the subnet is known as a VPN-only subnet.
  • By default, all VPCs and subnets must have IPv4 CIDR blocks—you can't change this behavior.
  • The allowed block size is between a /16 netmask (65,536 IP addresses) and /28 netmask (16 IP addresses).
  • The first four IP addresses and the last IP address in each subnet CIDR block are not available for you to use
  • The allowed block size is between a /28 netmask and /16 netmask
  • The CIDR block must not overlap with any existing CIDR block that's associated with the VPC.
  • Each subnet must be associated with a route table
  • Every subnet that you create is automatically associated with the main route table for the VPC
  • Security groups control inbound and outbound traffic for your instances
  • network ACLs control inbound and outbound traffic for your subnets
  • each subnet must be associated with a network ACL
  • You can create a flow log on your VPC or subnet to capture the traffic that flows to and from the network interfaces in your VPC or subnet.
  • A VPC peering connection enables you to route traffic between the VPCs using private IP addresses
  • you cannot create a VPC peering connection between VPCs that have overlapping CIDR blocks
  • recommend that you create a VPC with a CIDR range large enough for expected future growth, but not one that overlaps with current or expected future subnets anywhere in your corporate or home network, or that overlaps with current or future VPCs
張 旭

Cluster Networking - Kubernetes - 0 views

  • Networking is a central part of Kubernetes, but it can be challenging to understand exactly how it is expected to work
  • Highly-coupled container-to-container communications
  • Pod-to-Pod communications
  • ...57 more annotations...
  • this is the primary focus of this document
    • 張 旭
       
      Cluster Networking 所關注處理的是: Pod 到 Pod 之間的連線
  • Pod-to-Service communications
  • External-to-Service communications
  • Kubernetes is all about sharing machines between applications.
  • sharing machines requires ensuring that two applications do not try to use the same ports.
  • Dynamic port allocation brings a lot of complications to the system
  • Every Pod gets its own IP address
  • do not need to explicitly create links between Pods
  • almost never need to deal with mapping container ports to host ports.
  • Pods can be treated much like VMs or physical hosts from the perspectives of port allocation, naming, service discovery, load balancing, application configuration, and migration.
  • pods on a node can communicate with all pods on all nodes without NAT
  • agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
  • pods in the host network of a node can communicate with all pods on all nodes without NAT
  • If your job previously ran in a VM, your VM had an IP and could talk to other VMs in your project. This is the same basic model.
  • containers within a Pod share their network namespaces - including their IP address
  • containers within a Pod can all reach each other’s ports on localhost
  • containers within a Pod must coordinate port usage
  • “IP-per-pod” model.
  • request ports on the Node itself which forward to your Pod (called host ports), but this is a very niche operation
  • The Pod itself is blind to the existence or non-existence of host ports.
  • AOS is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform.
  • Cisco Application Centric Infrastructure offers an integrated overlay and underlay SDN solution that supports containers, virtual machines, and bare metal servers.
  • AOS Reference Design currently supports Layer-3 connected hosts that eliminate legacy Layer-2 switching problems.
  • The AWS VPC CNI offers integrated AWS Virtual Private Cloud (VPC) networking for Kubernetes clusters.
  • users can apply existing AWS VPC networking and security best practices for building Kubernetes clusters.
  • Using this CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC network.
  • The CNI allocates AWS Elastic Networking Interfaces (ENIs) to each Kubernetes node and using the secondary IP range from each ENI for pods on the node.
  • Big Cloud Fabric is a cloud native networking architecture, designed to run Kubernetes in private cloud/on-premises environments.
  • Cilium is L7/HTTP aware and can enforce network policies on L3-L7 using an identity based security model that is decoupled from network addressing.
  • CNI-Genie is a CNI plugin that enables Kubernetes to simultaneously have access to different implementations of the Kubernetes network model in runtime.
  • CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI plugin.
  • cni-ipvlan-vpc-k8s contains a set of CNI and IPAM plugins to provide a simple, host-local, low latency, high throughput, and compliant networking stack for Kubernetes within Amazon Virtual Private Cloud (VPC) environments by making use of Amazon Elastic Network Interfaces (ENI) and binding AWS-managed IPs into Pods using the Linux kernel’s IPvlan driver in L2 mode.
  • to be straightforward to configure and deploy within a VPC
  • Contiv provides configurable networking
  • Contrail, based on Tungsten Fabric, is a truly open, multi-cloud network virtualization and policy management platform.
  • DANM is a networking solution for telco workloads running in a Kubernetes cluster.
  • Flannel is a very simple overlay network that satisfies the Kubernetes requirements.
  • Any traffic bound for that subnet will be routed directly to the VM by the GCE network fabric.
  • sysctl net.ipv4.ip_forward=1
  • Jaguar provides overlay network using vxlan and Jaguar CNIPlugin provides one IP address per pod.
  • Knitter is a network solution which supports multiple networking in Kubernetes.
  • Kube-OVN is an OVN-based kubernetes network fabric for enterprises.
  • Kube-router provides a Linux LVS/IPVS-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
  • If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you should be able to do something similar to the above GCE setup.
  • Multus is a Multi CNI plugin to support the Multi Networking feature in Kubernetes using CRD based network objects in Kubernetes.
  • NSX-T can provide network virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging application frameworks and architectures that have heterogeneous endpoints and technology stacks.
  • NSX-T Container Plug-in (NCP) provides integration between NSX-T and container orchestrators such as Kubernetes
  • Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
  • OpenVSwitch is a somewhat more mature but also complicated way to build an overlay network
  • OVN is an opensource network virtualization solution developed by the Open vSwitch community.
  • Project Calico is an open source container networking provider and network policy engine.
  • Calico provides a highly scalable networking and network policy solution for connecting Kubernetes pods based on the same IP networking principles as the internet
  • Calico can be deployed without encapsulation or overlays to provide high-performance, high-scale data center networking.
  • Calico can also be run in policy enforcement mode in conjunction with other networking solutions such as Flannel, aka canal, or native GCE, AWS or Azure networking.
  • Romana is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network
  • Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any configuration or extra code to run, and in both cases, the network provides one IP address per pod - as is standard for Kubernetes.
  • The network model is implemented by the container runtime on each node.
crazylion lee

Deep Learning - 0 views

  •  
    "The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. The deep learning textbook can now be pre-ordered on Amazon. Pre-orders should ship on December 16, 2016. For up to date announcements, join our mailing list."
crazylion lee

Introduction to the Personal Software Process(sm) 1, Watts S. Humphrey, eBook - Amazon.com - 0 views

  •  
    "Introduction to the Personal Software Process(sm) 1st Edition, Kindle Edition"
crazylion lee

A Discipline for Software Engineering: Watts S. Humphrey: 9780201546101: Amazon.com: Books - 0 views

  •  
    "A Discipline for Software Engineering 1st Edition"
crazylion lee

Freeze - the ultimate Amazon Glacier file transfer client for Mac - 0 views

  •  
    "Easy access to your archives from a convenient app"
張 旭

Internet Gateways - Amazon Virtual Private Cloud - 0 views

  • to provide a target in your VPC route tables for internet-routable traffic
  • to perform network address translation (NAT) for instances that have been assigned public IPv4 addresses
  • Ensure that instances in your subnet have a globally unique IP address (public IPv4 address, Elastic IP address, or IPv6 address)
  • ...10 more annotations...
  • To use an internet gateway, your subnet's route table must contain a route that directs internet-bound traffic to the internet gateway.
  • If your subnet is associated with a route table that has a route to an internet gateway, it's known as a public subnet.
  • To enable communication over the internet for IPv4, your instance must have a public IPv4 address or an Elastic IP address that's associated with a private IPv4 address on your instance.
  • Your instance is only aware of the private (internal) IP address space defined within the VPC and subnet
  • internet gateway logically provides the one-to-one NAT on behalf of your instance
  • To enable communication over the internet for IPv6, your VPC and subnet must have an associated IPv6 CIDR block, and your instance must be assigned an IPv6 address from the range of the subnet.
  • When you create a subnet, we automatically associate it with the main route table for the VPC.
  • the main route table doesn't contain a route to an internet gateway
  • Each instance that you launch into a VPC is automatically associated with its default security group.
  • a default security group allow no inbound traffic from the internet and allow all outbound traffic to the internet.
張 旭

The Twelve-Factor App - 0 views

  • A backing service is any service the app consumes over the network as part of its normal operation.
  • A deploy of the twelve-factor app should be able to swap out a local MySQL database with one managed by a third party (such as Amazon RDS) without any changes to the app’s code.
  • only the resource handle in the config needs to change
  • ...2 more annotations...
  • Each distinct backing service is a resource.
  • Resources can be attached to and detached from deploys at will.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

在 EKS 中实现基于 Promtail + Loki + Grafana 容器日志解决方案 - 0 views

  • Grafana大家应该都比较熟悉,它是一款开源的可视化和分析软件,它允许用户查询、可视化、警告和探索监控指标。Grafana主要提供时间序列数据的仪表板解决方案,支持超过数十种数据源(还在陆续添加支持中)
  • Grafana Loki是一组可以组成一个功能齐全的日志堆栈组件,与其它日志系统不同的是,Loki只建立日志标签的索引而不索引原始日志消息,而是为日志数据设置一组标签,这意味着Loki的运营成本更低,效率也能提高几个数量级。
  • Loki整体架构也是由不同的组件来协同完成日志收集、索引、存储等工作
  • ...5 more annotations...
  • 一句话形容下Loki就是like Prometheus, but for logs。
  • Promtail是一个日志收集的代理,它会将本地日志的内容发送到一个Loki实例,它通常部署到需要监视应用程序的每台机器/容器上。Promtail主要是用来发现目标、将标签附加到日志流以及将日志推送到Loki。
  • Loki中的日志带有一组标签名和值,其中只有标签对被索引,这种权衡使得它比完整索引的操作成本更低,但是针对基于内容的查询,需要通过LogQL再单独查询。
  • 和Fluentd相比,Promtail是专门为Loki量身定制的,它可以为运行在同一节点上的Kubernetes Pods做服务发现,从指定文件夹读取日志。
  • 亚马逊云科技也提供了Grafana和Prometheus的托管服务Amazon Managed Service for Grafana(AMG)和Amazon Managed Service for Prometheus(AMP)
crazylion lee

Amazon.com:Creative Selection: Inside Apple's Design Process During the Golde... - 0 views

  •  
    "Creative Selection: Inside Apple's Design Process During the Golden Age of Steve Jobs"
張 旭

我做系统架构的一些原则 | 酷 壳 - CoolShell - 0 views

  • 如果不说收益,只是为了技术而技术,而没有任何意义。
  • 有计划和无计划的停机做相应的解决方案
  • 经常不断的 human error
  • ...35 more annotations...
  • 运维又会分成基础运维和应用运维,开发则会分成基础核心开发和业务开发。
  • 基础运维和开发的同学更多的只是关注资源的利用率和性能,而应用运维和业务开发则更多关注的是应用和服务上的东西。
  • 有一些系统已经说不清楚是基础层的还是应用层的了,比如像服务治理上的东西,里面即有底层基础技术,也需要业务的同学来配合,包括 k8s 也样,里面即有底层的如网络这样的技术,也有需要业务配合的 readniess和 liveness 这样的健康检查,以及业务应用需要 configMap 等等 ……
  • 试想一下城市交通的优化,当城市规模到一定程度的时候,整体的性能你是无法通过优化几条路或是几条街区来完成的,你需要对整个城市做整体的功能体的规划才可能达到整体效率的提升
  • 当系统越来越复杂的时候,用户把他们的  PHP,Python, .NET,或 Node.js 的架构完全都迁移到 Java + Go 的架构上来的案例不断的发生。
  • 更为工业化的技术
  • 使用更为成熟更为工业化的技术栈,而不是自己熟悉的技术栈
  • 不要自己发明轮子,更不要魔改
  • 完全没有必要。不重新发明轮子,不魔改,不是因为自己技术不能,而是因为,这个世界早已不是自己干所有事的年代了
  • 好些公司的架构都被技术负责人个人的喜好、擅长和个人经验给绑架了,完全不是从一个客观的角度来进行技术选型
  • 全中国所有的电商平台,几百家银行,三大电信运营商,所有的保险公司,劵商的系统,医院里的系统,电子政府系统,等等,基本都是用 Java 开发的,包括 AWS 的主流语言也是 Java
  • NoSQL 的数据库在 Join 上都表现的太差
  • 为了不做 Join 就开始冗余数据,然而自己又维护不好冗余数据后带来的数据一致性的问题,导致数据上的各种错乱丢失。
  • 永远使用完备支持 ACID 的关系型数据库
  • 性能上的事,总是有解的,手段也是最多的,这个比起架构的完备性和扩展性来说真的不必太过担心。
  • 很多公司的系统既没有服从业界标准,也没有形成自己公司的标准,感觉就像一群乌合之众一样。
  • 最典型的例子就是 HTTP 调用的状态返回码。业内给你的标准是 200表示成功,3xx 跳转,4xx 表示调用端出错,5xx 表示服务端出错,我实在是不明白为什么无论成功和失败大家都喜欢返回 200,然后在 body 里指出是否error
  • Restful API 的规范。我觉得是非常重要的,这里给两个我觉得写得最好的参考:Paypal 和 Microsoft 。
  • 监控系统宁可自己死了也不能干扰实际应用。
  • 一个公司至少一年要有一次软件版本升级的review,然后形成软件版本的统一和一致
  • 架构和软件不是写好就完的,是需要不断修改不断维护的,80%的软件成本都是在维护上。
  • 通过服务发现或服务网关来降低服务依赖所带来的运维复杂度
  • 一定要使用各种软件设计的原则。比如:像SOLID这样的原则(参看《一些软件设计的原则》),IoC/DIP,SOA 或 Spring Cloud 等 架构的最佳实践(参看《SteveY对Amazon和Google平台的吐槽》中的 Service Interface 的那几条军规),分布式系统架构的相关实践(参看:《分布式系统的事务处理》,或微软件的 《Cloud Design Patterns》)……等等
  • 没有自动化测试,没有好的软件文档,没有质量好的代码,没有标准和规范
  • 以前欠下的技术债,都得要还,没打好的地基要重新打,没建配套设施都要建。这些基础设施如果不按照正确科学的方式建立的话,你是不可能有一个好的的系统
  • 与其花大力气迁就技术债务,不如直接还技术债
  • 建设没有技术债的“新城区”,并通过“防腐层 ”的架构模型,不要让技术债侵入“新城区”。
  • 如果有一天你在做技术决定的时候,开始凭自己以往的经验,那么你就已经不可能再成长了。
  • 做任何决定之前,最好花上一点时间,上网查一下相关的资料,技术博客,文章,论文等 ,同时,也看看各个公司,或是各个开源软件他们是怎么做的?然后,比较多种方案的 Pros/Cons,最终形成自己的决定
  • 对于 X-Y 问题,也就是说,用户为了解决 X问题,他觉得用 Y 可以解,于是问我 Y 怎么搞,结果搞到最后,发现原来要解决的 X 问题,这个时候最好的解决方案不是 Y,而是 Z。
  • 我很喜欢追问为什么 ,这种追问,会让客户也跟着来一起重新思考。
  • 激进并不是瞎搞,也不是见新技术就上,而是积极拥抱会改变未来的新技术
  • 不是不喜欢的就不学了,我对区块链和 Rust 我一样学习,我也知道这些技术的优势,但我不会大规模使用它们。
  • 进步永远来自于探索,探索是要付出代价的,但是收益更大。
  • 不敢冒险才是最大的冒险,不敢犯错才是最大的错误,害怕失去会让你失去的更多
crazylion lee

https://states-language.net/spec.html#example - 0 views

  •  
    "This document describes a JSON-based language used to describe state machines declaratively. The state machines thus defined may be executed by software. In this document, the software is referred to as "the interpreter"."
crazylion lee

Cloudcraft - Draw AWS diagrams - 0 views

  •  
    "Visualize your cloud architecture like a pro Create smart AWS diagrams "
1 - 20 of 24 Next ›
Showing 20 items per page