Skip to main content

Home/ Larvata/ Group items tagged operator

Rss Feed Group items tagged

crazylion lee

Redox - Your Next(Gen) OS - 1 views

shared by crazylion lee on 20 Mar 16 - No Cached
  •  
    "Redox is a Unix-like Operating System written in Rust, aiming to bring the innovations of Rust to a modern microkernel and full set of applications."
張 旭

Active Record Validations - Ruby on Rails Guides - 0 views

  • validates :name, presence: true
  • Validations are used to ensure that only valid data is saved into your database
  • Model-level validations are the best way to ensure that only valid data is saved into your database.
  • ...117 more annotations...
  • native database constraints
  • client-side validations
  • controller-level validations
  • Database constraints and/or stored procedures make the validation mechanisms database-dependent and can make testing and maintenance more difficult
  • Client-side validations can be useful, but are generally unreliable
  • combined with other techniques, client-side validation can be a convenient way to provide users with immediate feedback
  • it's a good idea to keep your controllers skinny
  • model-level validations are the most appropriate in most circumstances.
  • Active Record uses the new_record? instance method to determine whether an object is already in the database or not.
  • Creating and saving a new record will send an SQL INSERT operation to the database. Updating an existing record will send an SQL UPDATE operation instead. Validations are typically run before these commands are sent to the database
  • The bang versions (e.g. save!) raise an exception if the record is invalid.
  • save and update return false
  • create just returns the object
  • skip validations, and will save the object to the database regardless of its validity.
  • be used with caution
  • update_all
  • save also has the ability to skip validations if passed validate: false as argument.
  • save(validate: false)
  • valid? triggers your validations and returns true if no errors
  • After Active Record has performed validations, any errors found can be accessed through the errors.messages instance method
  • By definition, an object is valid if this collection is empty after running validations.
  • validations are not run when using new.
  • invalid? is simply the inverse of valid?.
  • To verify whether or not a particular attribute of an object is valid, you can use errors[:attribute]. I
  • only useful after validations have been run
  • Every time a validation fails, an error message is added to the object's errors collection,
  • All of them accept the :on and :message options, which define when the validation should be run and what message should be added to the errors collection if it fails, respectively.
  • validates that a checkbox on the user interface was checked when a form was submitted.
  • agree to your application's terms of service
  • 'acceptance' does not need to be recorded anywhere in your database (if you don't have a field for it, the helper will just create a virtual attribute).
  • It defaults to "1" and can be easily changed.
  • use this helper when your model has associations with other models and they also need to be validated
  • valid? will be called upon each one of the associated objects.
  • work with all of the association types
  • Don't use validates_associated on both ends of your associations.
    • 張 旭
       
      關聯式的物件驗證,在其中一方啟動就好了!
  • each associated object will contain its own errors collection
  • errors do not bubble up to the calling model
  • when you have two text fields that should receive exactly the same content
  • This validation creates a virtual attribute whose name is the name of the field that has to be confirmed with "_confirmation" appended.
  • To require confirmation, make sure to add a presence check for the confirmation attribute
  • this set can be any enumerable object.
  • The exclusion helper has an option :in that receives the set of values that will not be accepted for the validated attributes.
  • :in option has an alias called :within
  • validates the attributes' values by testing whether they match a given regular expression, which is specified using the :with option.
  • attribute does not match the regular expression by using the :without option.
  • validates that the attributes' values are included in a given set
  • :in option has an alias called :within
  • specify length constraints
  • :minimum
  • :maximum
  • :in (or :within)
  • :is - The attribute length must be equal to the given value.
  • :wrong_length, :too_long, and :too_short options and %{count} as a placeholder for the number corresponding to the length constraint being used.
  • split the value in a different way using the :tokenizer option:
    • 張 旭
       
      自己提供切割算字數的方式
  • validates that your attributes have only numeric values
  • By default, it will match an optional sign followed by an integral or floating point number.
  • set :only_integer to true.
  • allows a trailing newline character.
  • :greater_than
  • :greater_than_or_equal_to
  • :equal_to
  • :less_than
  • :less_than_or_equal_to
  • :odd - Specifies the value must be an odd number if set to true.
  • :even - Specifies the value must be an even number if set to true.
  • validates that the specified attributes are not empty
  • if the value is either nil or a blank string
  • validate associated records whose presence is required, you must specify the :inverse_of option for the association
  • inverse_of
  • an association is present, you'll need to test whether the associated object itself is present, and not the foreign key used to map the association
  • false.blank? is true
  • validate the presence of a boolean field
  • ensure the value will NOT be nil
  • validates that the specified attributes are absent
  • not either nil or a blank string
  • be sure that an association is absent
  • false.present? is false
  • validate the absence of a boolean field you should use validates :field_name, exclusion: { in: [true, false] }.
  • validates that the attribute's value is unique right before the object gets saved
  • a :scope option that you can use to specify other attributes that are used to limit the uniqueness check
  • a :case_sensitive option that you can use to define whether the uniqueness constraint will be case sensitive or not.
  • There is no default error message for validates_with.
  • To implement the validate method, you must have a record parameter defined, which is the record to be validated.
  • the validator will be initialized only once for the whole application life cycle, and not on each validation run, so be careful about using instance variables inside it.
  • passes the record to a separate class for validation
  • use a plain old Ruby object
  • validates attributes against a block
  • The block receives the record, the attribute's name and the attribute's value. You can do anything you like to check for valid data within the block
  • will let validation pass if the attribute's value is blank?, like nil or an empty string
  • the :message option lets you specify the message that will be added to the errors collection when validation fails
  • skips the validation when the value being validated is nil
  • specify when the validation should happen
  • raise ActiveModel::StrictValidationFailed when the object is invalid
  • You can do that by using the :if and :unless options, which can take a symbol, a string, a Proc or an Array.
  • use the :if option when you want to specify when the validation should happen
  • using eval and needs to contain valid Ruby code.
  • Using a Proc object gives you the ability to write an inline condition instead of a separate method
  • have multiple validations use one condition, it can be easily achieved using with_options.
  • implement a validate method which takes a record as an argument and performs the validation on it
  • validates_with method
  • implement a validate_each method which takes three arguments: record, attribute, and value
  • combine standard validations with your own custom validators.
  • :expiration_date_cannot_be_in_the_past,    :discount_cannot_be_greater_than_total_value
  • By default such validations will run every time you call valid?
  • errors[] is used when you want to check the error messages for a specific attribute.
  • Returns an instance of the class ActiveModel::Errors containing all errors.
  • lets you manually add messages that are related to particular attributes
  • using []= setter
  • errors[:base] is an array, you can simply add a string to it and it will be used as an error message.
  • use this method when you want to say that the object is invalid, no matter the values of its attributes.
  • clear all the messages in the errors collection
  • calling errors.clear upon an invalid object won't actually make it valid: the errors collection will now be empty, but the next time you call valid? or any method that tries to save this object to the database, the validations will run again.
  • the total number of error messages for the object.
  • .errors.full_messages.each
  • .field_with_errors
張 旭

Bash Reference Manual: Shell Parameter Expansion - 1 views

  • parameter expansion
  • command substitution
  • arithmetic expansion
  • ...16 more annotations...
  • The parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to protect the variable to be expanded from characters immediately following it which could be interpreted as part of the name.
  • When braces are used, the matching ending brace is the first ‘}’ not escaped by a backslash or within a quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter expansion.
  • ${parameter}
  • braces are required
  • If the first character of parameter is an exclamation point (!), and parameter is not a nameref, it introduces a level of variable indirection.
  • ${parameter:-word} If parameter is unset or null, the expansion of word is substituted. Otherwise, the value of parameter is substituted.
  • ${parameter:=word} If parameter is unset or null, the expansion of word is assigned to parameter.
  • ${parameter:?word} If parameter is null or unset, the expansion of word (or a message to that effect if word is not present) is written to the standard error and the shell, if it is not interactive, exits.
  • ${parameter:+word} If parameter is null or unset, nothing is substituted, otherwise the expansion of word is substituted.
  • ${parameter:offset} ${parameter:offset:length}
  • Substring expansion applied to an associative array produces undefined results.
  • ${parameter/pattern/string} The pattern is expanded to produce a pattern just as in filename expansion.
  • If pattern begins with ‘/’, all matches of pattern are replaced with string.
  • Normally only the first match is replaced
  • The ‘^’ operator converts lowercase letters matching pattern to uppercase
  • the ‘,’ operator converts matching uppercase letters to lowercase.
張 旭

Makefiles - Best practices and suggestions | MDN - 0 views

  • hardcoded values - avoid them like the plague
  • For classes of hardware (unix/windows) place your makefile in a subdirectory, unix/Makefile.in
  • Initial make call should always be the workhorse: build, generate, deploy, install, etc.
  • ...6 more annotations...
  • All subsequent make calls must become a NOP unless sources or dependencies change or have been removed.
    • 張 旭
       
      No Operation 或 No Operation Performed 的縮寫,意為無操作
    • 張 旭
  • Do not use directories as a dependency for generated targets, ever.
  • Parallel make: add an explicit timestamp dependency (.done) that make can synchronize threaded calls on to avoid a race condition.
  • Maintain clean targets - makefiles should be able to remove all content that is generated so "make clean" will return the sandbox/directory back to a clean state.
  • Wrapper check/unit tests with a ENABLE_TESTS conditional
張 旭

Template Designer Documentation - Jinja2 Documentation (2.10) - 0 views

  • A Jinja template doesn’t need to have a specific extension
  • A Jinja template is simply a text file
  • tags, which control the logic of the template
  • ...106 more annotations...
  • {% ... %} for Statements
  • {{ ... }} for Expressions to print to the template output
  • use a dot (.) to access attributes of a variable
  • the outer double-curly braces are not part of the variable, but the print statement.
  • If you access variables inside tags don’t put the braces around them.
  • If a variable or attribute does not exist, you will get back an undefined value.
  • the default behavior is to evaluate to an empty string if printed or iterated over, and to fail for every other operation.
  • if an object has an item and attribute with the same name. Additionally, the attr() filter only looks up attributes.
  • Variables can be modified by filters. Filters are separated from the variable by a pipe symbol (|) and may have optional arguments in parentheses.
  • Multiple filters can be chained
  • Tests can be used to test a variable against a common expression.
  • add is plus the name of the test after the variable.
  • to find out if a variable is defined, you can do name is defined, which will then return true or false depending on whether name is defined in the current template context.
  • strip whitespace in templates by hand. If you add a minus sign (-) to the start or end of a block (e.g. a For tag), a comment, or a variable expression, the whitespaces before or after that block will be removed
  • not add whitespace between the tag and the minus sign
  • mark a block raw
  • Template inheritance allows you to build a base “skeleton” template that contains all the common elements of your site and defines blocks that child templates can override.
  • The {% extends %} tag is the key here. It tells the template engine that this template “extends” another template.
  • access templates in subdirectories with a slash
  • can’t define multiple {% block %} tags with the same name in the same template
  • use the special self variable and call the block with that name
  • self.title()
  • super()
  • put the name of the block after the end tag for better readability
  • if the block is replaced by a child template, a variable would appear that was not defined in the block or passed to the context.
  • setting the block to “scoped” by adding the scoped modifier to a block declaration
  • If you have a variable that may include any of the following chars (>, <, &, or ") you SHOULD escape it unless the variable contains well-formed and trusted HTML.
  • Jinja2 functions (macros, super, self.BLOCKNAME) always return template data that is marked as safe.
  • With the default syntax, control structures appear inside {% ... %} blocks.
  • the dictsort filter
  • loop.cycle
  • Unlike in Python, it’s not possible to break or continue in a loop
  • use loops recursively
  • add the recursive modifier to the loop definition and call the loop variable with the new iterable where you want to recurse.
  • The loop variable always refers to the closest (innermost) loop.
  • whether the value changed at all,
  • use it to test if a variable is defined, not empty and not false
  • Macros are comparable with functions in regular programming languages.
  • If a macro name starts with an underscore, it’s not exported and can’t be imported.
  • pass a macro to another macro
  • caller()
  • a single trailing newline is stripped if present
  • other whitespace (spaces, tabs, newlines etc.) is returned unchanged
  • a block tag works in “both” directions. That is, a block tag doesn’t just provide a placeholder to fill - it also defines the content that fills the placeholder in the parent.
  • Python dicts are not ordered
  • caller(user)
  • call(user)
  • This is a simple dialog rendered by using a macro and a call block.
  • Filter sections allow you to apply regular Jinja2 filters on a block of template data.
  • Assignments at top level (outside of blocks, macros or loops) are exported from the template like top level macros and can be imported by other templates.
  • using namespace objects which allow propagating of changes across scopes
  • use block assignments to capture the contents of a block into a variable name.
  • The extends tag can be used to extend one template from another.
  • Blocks are used for inheritance and act as both placeholders and replacements at the same time.
  • The include statement is useful to include a template and return the rendered contents of that file into the current namespace
  • Included templates have access to the variables of the active context by default.
  • putting often used code into macros
  • imports are cached and imported templates don’t have access to the current template variables, just the globals by default.
  • Macros and variables starting with one or more underscores are private and cannot be imported.
  • By default, included templates are passed the current context and imported templates are not.
  • imports are often used just as a module that holds macros.
  • Integers and floating point numbers are created by just writing the number down
  • Everything between two brackets is a list.
  • Tuples are like lists that cannot be modified (“immutable”).
  • A dict in Python is a structure that combines keys and values.
  • // Divide two numbers and return the truncated integer result
  • The special constants true, false, and none are indeed lowercase
  • all Jinja identifiers are lowercase
  • (expr) group an expression.
  • The is and in operators support negation using an infix notation
  • in Perform a sequence / mapping containment test.
  • | Applies a filter.
  • ~ Converts all operands into strings and concatenates them.
  • use inline if expressions.
  • always an attribute is returned and items are not looked up.
  • default(value, default_value=u'', boolean=False)¶ If the value is undefined it will return the passed default value, otherwise the value of the variable
  • dictsort(value, case_sensitive=False, by='key', reverse=False)¶ Sort a dict and yield (key, value) pairs.
  • format(value, *args, **kwargs)¶ Apply python string formatting on an object
  • groupby(value, attribute)¶ Group a sequence of objects by a common attribute.
  • grouping by is stored in the grouper attribute and the list contains all the objects that have this grouper in common.
  • indent(s, width=4, first=False, blank=False, indentfirst=None)¶ Return a copy of the string with each line indented by 4 spaces. The first line and blank lines are not indented by default.
  • join(value, d=u'', attribute=None)¶ Return a string which is the concatenation of the strings in the sequence.
  • map()¶ Applies a filter on a sequence of objects or looks up an attribute.
  • pprint(value, verbose=False)¶ Pretty print a variable. Useful for debugging.
  • reject()¶ Filters a sequence of objects by applying a test to each object, and rejecting the objects with the test succeeding.
  • replace(s, old, new, count=None)¶ Return a copy of the value with all occurrences of a substring replaced with a new one.
  • round(value, precision=0, method='common')¶ Round the number to a given precision
  • even if rounded to 0 precision, a float is returned.
  • select()¶ Filters a sequence of objects by applying a test to each object, and only selecting the objects with the test succeeding.
  • sort(value, reverse=False, case_sensitive=False, attribute=None)¶ Sort an iterable. Per default it sorts ascending, if you pass it true as first argument it will reverse the sorting.
  • striptags(value)¶ Strip SGML/XML tags and replace adjacent whitespace by one space.
  • tojson(value, indent=None)¶ Dumps a structure to JSON so that it’s safe to use in <script> tags.
  • trim(value)¶ Strip leading and trailing whitespace.
  • unique(value, case_sensitive=False, attribute=None)¶ Returns a list of unique items from the the given iterable
  • urlize(value, trim_url_limit=None, nofollow=False, target=None, rel=None)¶ Converts URLs in plain text into clickable links.
  • defined(value)¶ Return true if the variable is defined
  • in(value, seq)¶ Check if value is in seq.
  • mapping(value)¶ Return true if the object is a mapping (dict etc.).
  • number(value)¶ Return true if the variable is a number.
  • sameas(value, other)¶ Check if an object points to the same memory address than another object
  • undefined(value)¶ Like defined() but the other way round.
  • A joiner is passed a string and will return that string every time it’s called, except the first time (in which case it returns an empty string).
  • namespace(...)¶ Creates a new container that allows attribute assignment using the {% set %} tag
  • The with statement makes it possible to create a new inner scope. Variables set within this scope are not visible outside of the scope.
  • activate and deactivate the autoescaping from within the templates
  • With both trim_blocks and lstrip_blocks enabled, you can put block tags on their own lines, and the entire block line will be removed when rendered, preserving the whitespace of the contents
張 旭

Intro to deployment strategies: blue-green, canary, and more - DEV Community - 0 views

  • using a service-oriented architecture and microservices approach, developers can design a code base to be modular.
  • Modern applications are often distributed and cloud-based
  • different release cycles for different components
  • ...20 more annotations...
  • the abstraction of the infrastructure layer, which is now considered code. Deployment of a new application may require the deployment of new infrastructure code as well.
  • "big bang" deployments update whole or large parts of an application in one fell swoop.
  • Big bang deployments required the business to conduct extensive development and testing before release, often associated with the "waterfall model" of large sequential releases.
  • Rollbacks are often costly, time-consuming, or even impossible.
  • In a rolling deployment, an application’s new version gradually replaces the old one.
  • new and old versions will coexist without affecting functionality or user experience.
  • Each container is modified to download the latest image from the app vendor’s site.
  • two identical production environments work in parallel.
  • Once the testing results are successful, application traffic is routed from blue to green.
  • In a blue-green deployment, both systems use the same persistence layer or database back end.
  • You can use the primary database by blue for write operations and use the secondary by green for read operations.
  • Blue-green deployments rely on traffic routing.
  • long TTL values can delay these changes.
  • The main challenge of canary deployment is to devise a way to route some users to the new application.
  • Using an application logic to unlock new features to specific users and groups.
  • With CD, the CI-built code artifact is packaged and always ready to be deployed in one or more environments.
  • Use Build Automation tools to automate environment builds
  • Use configuration management tools
  • Enable automated rollbacks for deployments
  • An application performance monitoring (APM) tool can help your team monitor critical performance metrics including server response times after deployments.
張 旭

Forwarding (DNS and BIND, 4th Edition) - 0 views

  • Forwarders are also useful if you need to shunt name resolution to a particular name server
  • If you designate one or more servers at your site as forwarders, your name servers will send all their off-site queries to the forwarders first.
  • A primary master or slave name server's mode of operation changes slightly when it is configured to use a forwarder.
  • ...2 more annotations...
  • If a resolver requests records that are already in the name server's authoritative data or cached data, the name server answers with that information
  • if the records aren't in its database, the name server sends the query to a forwarder and waits a short period for an answer before resuming normal operation and contacting the remote name servers itself. What the name server is doing differently here is sending a recursive query to the forwarder, expecting it to find the answer.
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 19.1 Group Replication Background - 0 views

  • the component can be removed and the system should continue to operate as expected
  • network partitioning
  • split brain scenarios
  • ...8 more annotations...
  • the ultimate challenge is to fuse the logic of the database and data replication with the logic of having several servers coordinated in a consistent and simple way
  • MySQL Group Replication provides distributed state machine replication with strong coordination between servers.
  • Servers coordinate themselves automatically when they are part of the same group
  • The group can operate in a single-primary mode with automatic primary election, where only one server accepts updates at a time.
  • For a transaction to commit, the majority of the group have to agree on the order of a given transaction in the global sequence of transactions
  • Deciding to commit or abort a transaction is done by each server individually, but all servers make the same decision
  • group communication protocols
  • the Paxos algorithm. It acts as the group communication systems engine.
張 旭

ALB vs ELB | Differences Between an ELB and an ALB on AWS | Sumo Logic - 0 views

  • If you use AWS, you have two load-balancing options: ELB and ALB.
  • An ELB is a software-based load balancer which can be set up and configured in front of a collection of AWS Elastic Compute (EC2) instances.
  • The load balancer serves as a single entry point for consumers of the EC2 instances and distributes incoming traffic across all machines available to receive requests.
  • ...14 more annotations...
  • the ELB also performs a vital role in improving the fault tolerance of the services which it fronts.
  • he Open Systems Interconnection Model, or OSI Model, is a conceptual model which is used to facilitate communications between different computing systems.
  • Layer 1 is the physical layer, and represents the physical medium across which the request is sent.
  • Layer 2 describes the data link layer
  • Layer 3 (the network layer)
  • Layer 7, which serves the application layer.
  • The Classic ELB operates at Layer 4. Layer 4 represents the transport layer, and is controlled by the protocol being used to transmit the request.
  • A network device, of which the Classic ELB is an example, reads the protocol and port of the incoming request, and then routes it to one or more backend servers.
  • the ALB operates at Layer 7. Layer 7 represents the application layer, and as such allows for the redirection of traffic based on the content of the request.
  • Whereas a request to a specific URL backed by a Classic ELB would only enable routing to a particular pool of homogeneous servers, the ALB can route based on the content of the URL, and direct to a specific subgroup of backing servers existing in a heterogeneous collection registered with the load balancer.
  • The Classic ELB is a simple load balancer, is easy to configure
  • As organizations move towards microservice architecture or adopt a container-based infrastructure, the ability to merely map a single address to a specific service becomes more complicated and harder to maintain.
  • the ALB manages routing based on user-defined rules.
  • oute traffic to different services based on either the host or the content of the path contained within that URL.
張 旭

Kubernetes Components | Kubernetes - 0 views

  • A Kubernetes cluster consists of a set of worker machines, called nodes, that run containerized applications
  • Every cluster has at least one worker node.
  • The control plane manages the worker nodes and the Pods in the cluster.
  • ...29 more annotations...
  • The control plane's components make global decisions about the cluster
  • Control plane components can be run on any machine in the cluster.
  • for simplicity, set up scripts typically start all control plane components on the same machine, and do not run user containers on this machine
  • The API server is the front end for the Kubernetes control plane.
  • kube-apiserver is designed to scale horizontally—that is, it scales by deploying more instances. You can run several instances of kube-apiserver and balance traffic between those instances.
  • Kubernetes cluster uses etcd as its backing store, make sure you have a back up plan for those data.
  • watches for newly created Pods with no assigned node, and selects a node for them to run on.
  • Factors taken into account for scheduling decisions include: individual and collective resource requirements, hardware/software/policy constraints, affinity and anti-affinity specifications, data locality, inter-workload interference, and deadlines.
  • each controller is a separate process, but to reduce complexity, they are all compiled into a single binary and run in a single process.
  • Node controller
  • Job controller
  • Endpoints controller
  • Service Account & Token controllers
  • The cloud controller manager lets you link your cluster into your cloud provider's API, and separates out the components that interact with that cloud platform from components that only interact with your cluster.
  • If you are running Kubernetes on your own premises, or in a learning environment inside your own PC, the cluster does not have a cloud controller manager.
  • An agent that runs on each node in the cluster. It makes sure that containers are running in a Pod.
  • The kubelet takes a set of PodSpecs that are provided through various mechanisms and ensures that the containers described in those PodSpecs are running and healthy.
  • The kubelet doesn't manage containers which were not created by Kubernetes.
  • kube-proxy is a network proxy that runs on each node in your cluster, implementing part of the Kubernetes Service concept.
  • kube-proxy maintains network rules on nodes. These network rules allow network communication to your Pods from network sessions inside or outside of your cluster.
  • kube-proxy uses the operating system packet filtering layer if there is one and it's available.
  • Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and any implementation of the Kubernetes CRI (Container Runtime Interface).
  • Addons use Kubernetes resources (DaemonSet, Deployment, etc) to implement cluster features
  • namespaced resources for addons belong within the kube-system namespace.
  • all Kubernetes clusters should have cluster DNS,
  • Cluster DNS is a DNS server, in addition to the other DNS server(s) in your environment, which serves DNS records for Kubernetes services.
  • Containers started by Kubernetes automatically include this DNS server in their DNS searches.
  • Container Resource Monitoring records generic time-series metrics about containers in a central database, and provides a UI for browsing that data.
  • A cluster-level logging mechanism is responsible for saving container logs to a central log store with search/browsing interface.
張 旭

How Percona XtraBackup Works - 0 views

  • Percona XtraBackup is based on InnoDB‘s crash-recovery functionality.
  • it performs crash recovery on the files to make them a consistent, usable database again
  • InnoDB maintains a redo log, also called the transaction log. This contains a record of every change to InnoDB data.
  • ...14 more annotations...
  • When InnoDB starts, it inspects the data files and the transaction log, and performs two steps. It applies committed transaction log entries to the data files, and it performs an undo operation on any transactions that modified data but did not commit.
  • Percona XtraBackup works by remembering the log sequence number (LSN) when it starts, and then copying away the data files.
  • Percona XtraBackup runs a background process that watches the transaction log files, and copies changes from it.
  • Percona XtraBackup needs to do this continually
  • Percona XtraBackup needs the transaction log records for every change to the data files since it began execution.
  • Percona XtraBackup uses Backup locks where available as a lightweight alternative to FLUSH TABLES WITH READ LOCK.
  • Locking is only done for MyISAM and other non-InnoDB tables after Percona XtraBackup finishes backing up all InnoDB/XtraDB data and logs.
  • xtrabackup tries to avoid backup locks and FLUSH TABLES WITH READ LOCK when the instance contains only InnoDB tables. In this case, xtrabackup obtains binary log coordinates from performance_schema.log_status
  • When backup locks are supported by the server, xtrabackup first copies InnoDB data, runs the LOCK TABLES FOR BACKUP and then copies the MyISAM tables.
  • the STDERR of xtrabackup is not written in any file. You will have to redirect it to a file, e.g., xtrabackup OPTIONS 2> backupout.log
  • During the prepare phase, Percona XtraBackup performs crash recovery against the copied data files, using the copied transaction log file. After this is done, the database is ready to restore and use.
  • the tools enable you to do operations such as streaming and incremental backups with various combinations of copying the data files, copying the log files, and applying the logs to the data.
  • To restore a backup with xtrabackup you can use the --copy-back or --move-back options.
  • you may have to change the files’ ownership to mysql before starting the database server, as they will be owned by the user who created the backup.
  •  
    "Percona XtraBackup is based on InnoDB's crash-recovery functionality."
張 旭

Helm | Template Functions and Pipelines - 0 views

  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • Helm has over 60 available functions. Some of them are defined by the Go template language itself. Most of the others are part of the Sprig template library
  • the "Helm template language" as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • ...10 more annotations...
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • the default function: default DEFAULT_VALUE GIVEN_VALUE
  • all static default values should live in the values.yaml, and should not be repeated using the default command (otherwise they would be redundant).
  • the default command is perfect for computed values, which can not be declared inside values.yaml.
  • When lookup returns an object, it will return a dictionary.
  • The synopsis of the lookup function is lookup apiVersion, kind, namespace, name -> resource or resource list
  • When no object is found, an empty value is returned. This can be used to check for the existence of an object.
  • The lookup function uses Helm's existing Kubernetes connection configuration to query Kubernetes.
  • Helm is not supposed to contact the Kubernetes API Server during a helm template or a helm install|update|delete|rollback --dry-run, so the lookup function will return an empty list (i.e. dict) in such a case.
  • the operators (eq, ne, lt, gt, and, or and so on) are all implemented as functions. In pipelines, operations can be grouped with parentheses ((, and )).
  •  
    "When injecting strings from the .Values object into the template, we ought to quote these strings. "
張 旭

Syntax - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write.
  • Terraform's configuration language is based on a more general language called HCL, and HCL's documentation usually uses the word "attribute" instead of "argument."
  • A particular block type may have any number of required labels, or it may require none
  • ...34 more annotations...
  • After the block type keyword and any labels, the block body is delimited by the { and } characters
  • Identifiers can contain letters, digits, underscores (_), and hyphens (-). The first character of an identifier must not be a digit, to avoid ambiguity with literal numbers.
  • The # single-line comment style is the default comment style and should be used in most cases.
  • he idiomatic style is to use the Unix convention
  • Indent two spaces for each nesting level.
  • align their equals signs
  • Use empty lines to separate logical groups of arguments within a block.
  • Use one blank line to separate the arguments from the blocks.
  • "meta-arguments" (as defined by the Terraform language semantics)
  • Avoid separating multiple blocks of the same type with other blocks of a different type, unless the block types are defined by semantics to form a family.
  • Resource names must start with a letter or underscore, and may contain only letters, digits, underscores, and dashes.
  • Each resource is associated with a single resource type, which determines the kind of infrastructure object it manages and what arguments and other attributes the resource supports.
  • Each resource type is implemented by a provider, which is a plugin for Terraform that offers a collection of resource types.
  • By convention, resource type names start with their provider's preferred local name.
  • Most publicly available providers are distributed on the Terraform Registry, which also hosts their documentation.
  • The Terraform language defines several meta-arguments, which can be used with any resource type to change the behavior of resources.
  • use precondition and postcondition blocks to specify assumptions and guarantees about how the resource operates.
  • Some resource types provide a special timeouts nested block argument that allows you to customize how long certain operations are allowed to take before being considered to have failed.
  • Timeouts are handled entirely by the resource type implementation in the provider
  • Most resource types do not support the timeouts block at all.
  • A resource block declares that you want a particular infrastructure object to exist with the given settings.
  • Destroy resources that exist in the state but no longer exist in the configuration.
  • Destroy and re-create resources whose arguments have changed but which cannot be updated in-place due to remote API limitations.
  • Expressions within a Terraform module can access information about resources in the same module, and you can use that information to help configure other resources. Use the <RESOURCE TYPE>.<NAME>.<ATTRIBUTE> syntax to reference a resource attribute in an expression.
  • resources often provide read-only attributes with information obtained from the remote API; this often includes things that can't be known until the resource is created, like the resource's unique random ID.
  • data sources, which are a special type of resource used only for looking up information.
  • some dependencies cannot be recognized implicitly in configuration.
  • local-only resource types exist for generating private keys, issuing self-signed TLS certificates, and even generating random ids.
  • The behavior of local-only resources is the same as all other resources, but their result data exists only within the Terraform state.
  • The count meta-argument accepts a whole number, and creates that many instances of the resource or module.
  • count.index — The distinct index number (starting with 0) corresponding to this instance.
  • the count value must be known before Terraform performs any remote resource actions. This means count can't refer to any resource attributes that aren't known until after a configuration is applied
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • This was fragile, because the resource instances were still identified by their index instead of the string values in the list.
  •  
    "the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write. "
張 旭

Rails Routing from the Outside In - Ruby on Rails Guides - 0 views

  • Resource routing allows you to quickly declare all of the common routes for a given resourceful controller.
  • Rails would dispatch that request to the destroy method on the photos controller with { id: '17' } in params.
  • a resourceful route provides a mapping between HTTP verbs and URLs to controller actions.
  • ...86 more annotations...
  • each action also maps to particular CRUD operations in a database
  • resource :photo and resources :photos creates both singular and plural routes that map to the same controller (PhotosController).
  • One way to avoid deep nesting (as recommended above) is to generate the collection actions scoped under the parent, so as to get a sense of the hierarchy, but to not nest the member actions.
  • to only build routes with the minimal amount of information to uniquely identify the resource
  • The shallow method of the DSL creates a scope inside of which every nesting is shallow
  • These concerns can be used in resources to avoid code duplication and share behavior across routes
  • add a member route, just add a member block into the resource block
  • You can leave out the :on option, this will create the same member route except that the resource id value will be available in params[:photo_id] instead of params[:id].
  • Singular Resources
  • use a singular resource to map /profile (rather than /profile/:id) to the show action
  • Passing a String to get will expect a controller#action format
  • workaround
  • organize groups of controllers under a namespace
  • route /articles (without the prefix /admin) to Admin::ArticlesController
  • route /admin/articles to ArticlesController (without the Admin:: module prefix)
  • Nested routes allow you to capture this relationship in your routing.
  • helpers take an instance of Magazine as the first parameter (magazine_ads_url(@magazine)).
  • Resources should never be nested more than 1 level deep.
  • via the :shallow option
  • a balance between descriptive routes and deep nesting
  • :shallow_path prefixes member paths with the specified parameter
  • Routing Concerns allows you to declare common routes that can be reused inside other resources and routes
  • Rails can also create paths and URLs from an array of parameters.
  • use url_for with a set of objects
  • In helpers like link_to, you can specify just the object in place of the full url_for call
  • insert the action name as the first element of the array
  • This will recognize /photos/1/preview with GET, and route to the preview action of PhotosController, with the resource id value passed in params[:id]. It will also create the preview_photo_url and preview_photo_path helpers.
  • pass :on to a route, eliminating the block:
  • Collection Routes
  • This will enable Rails to recognize paths such as /photos/search with GET, and route to the search action of PhotosController. It will also create the search_photos_url and search_photos_path route helpers.
  • simple routing makes it very easy to map legacy URLs to new Rails actions
  • add an alternate new action using the :on shortcut
  • When you set up a regular route, you supply a series of symbols that Rails maps to parts of an incoming HTTP request.
  • :controller maps to the name of a controller in your application
  • :action maps to the name of an action within that controller
  • optional parameters, denoted by parentheses
  • This route will also route the incoming request of /photos to PhotosController#index, since :action and :id are
  • use a constraint on :controller that matches the namespace you require
  • dynamic segments don't accept dots
  • The params will also include any parameters from the query string
  • :defaults option.
  • set params[:format] to "jpg"
  • cannot override defaults via query parameters
  • specify a name for any route using the :as option
  • create logout_path and logout_url as named helpers in your application.
  • Inside the show action of UsersController, params[:username] will contain the username for the user.
  • should use the get, post, put, patch and delete methods to constrain a route to a particular verb.
  • use the match method with the :via option to match multiple verbs at once
  • Routing both GET and POST requests to a single action has security implications
  • 'GET' in Rails won't check for CSRF token. You should never write to the database from 'GET' requests
  • use the :constraints option to enforce a format for a dynamic segment
  • constraints
  • don't need to use anchors
  • Request-Based Constraints
  • the same name as the hash key and then compare the return value with the hash value.
  • constraint values should match the corresponding Request object method return type
    • 張 旭
       
      應該就是檢查來源的 request, 如果是某個特定的 request 來訪問的,就通過。
  • blacklist
    • 張 旭
       
      這裡有點複雜 ...
  • redirect helper
  • reuse dynamic segments from the match in the path to redirect
  • this redirection is a 301 "Moved Permanently" redirect.
  • root method
  • put the root route at the top of the file
  • The root route only routes GET requests to the action.
  • root inside namespaces and scopes
  • For namespaced controllers you can use the directory notation
  • Only the directory notation is supported
  • use the :constraints option to specify a required format on the implicit id
  • specify a single constraint to apply to a number of routes by using the block
  • non-resourceful routes
  • :id parameter doesn't accept dots
  • :as option lets you override the normal naming for the named route helpers
  • use the :as option to prefix the named route helpers that Rails generates for a rout
  • prevent name collisions
  • prefix routes with a named parameter
  • This will provide you with URLs such as /bob/articles/1 and will allow you to reference the username part of the path as params[:username] in controllers, helpers and views
  • :only option
  • :except option
  • generate only the routes that you actually need can cut down on memory use and speed up the routing process.
  • alter path names
  • http://localhost:3000/rails/info/routes
  • rake routes
  • setting the CONTROLLER environment variable
  • Routes should be included in your testing strategy
  • assert_generates assert_recognizes assert_routing
張 旭

Best practices for writing Dockerfiles | Docker Documentation - 0 views

  • building efficient images
  • Docker builds images automatically by reading the instructions from a Dockerfile -- a text file that contains all commands, in order, needed to build a given image.
  • A Docker image consists of read-only layers each of which represents a Dockerfile instruction.
  • ...47 more annotations...
  • The layers are stacked and each one is a delta of the changes from the previous layer
  • When you run an image and generate a container, you add a new writable layer (the “container layer”) on top of the underlying layers.
  • By “ephemeral,” we mean that the container can be stopped and destroyed, then rebuilt and replaced with an absolute minimum set up and configuration.
  • Inadvertently including files that are not necessary for building an image results in a larger build context and larger image size.
  • To exclude files not relevant to the build (without restructuring your source repository) use a .dockerignore file. This file supports exclusion patterns similar to .gitignore files.
  • minimize image layers by leveraging build cache.
  • if your build contains several layers, you can order them from the less frequently changed (to ensure the build cache is reusable) to the more frequently changed
  • avoid installing extra or unnecessary packages just because they might be “nice to have.”
  • Each container should have only one concern.
  • Decoupling applications into multiple containers makes it easier to scale horizontally and reuse containers
  • Limiting each container to one process is a good rule of thumb, but it is not a hard and fast rule.
  • Use your best judgment to keep containers as clean and modular as possible.
  • do multi-stage builds and only copy the artifacts you need into the final image. This allows you to include tools and debug information in your intermediate build stages without increasing the size of the final image.
  • avoid duplication of packages and make the list much easier to update.
  • When building an image, Docker steps through the instructions in your Dockerfile, executing each in the order specified.
  • the next instruction is compared against all child images derived from that base image to see if one of them was built using the exact same instruction. If not, the cache is invalidated.
  • simply comparing the instruction in the Dockerfile with one of the child images is sufficient.
  • For the ADD and COPY instructions, the contents of the file(s) in the image are examined and a checksum is calculated for each file.
  • If anything has changed in the file(s), such as the contents and metadata, then the cache is invalidated.
  • cache checking does not look at the files in the container to determine a cache match.
  • In that case just the command string itself is used to find a match.
    • 張 旭
       
      RUN apt-get 這樣的指令,直接比對指令內容的意思。
  • Whenever possible, use current official repositories as the basis for your images.
  • Using RUN apt-get update && apt-get install -y ensures your Dockerfile installs the latest package versions with no further coding or manual intervention.
  • cache busting
  • Docker executes these commands using the /bin/sh -c interpreter, which only evaluates the exit code of the last operation in the pipe to determine success.
  • set -o pipefail && to ensure that an unexpected error prevents the build from inadvertently succeeding.
  • The CMD instruction should be used to run the software contained by your image, along with any arguments.
  • CMD should almost always be used in the form of CMD [“executable”, “param1”, “param2”…]
  • CMD should rarely be used in the manner of CMD [“param”, “param”] in conjunction with ENTRYPOINT
  • The ENV instruction is also useful for providing required environment variables specific to services you wish to containerize,
  • Each ENV line creates a new intermediate layer, just like RUN commands
  • COPY is preferred
  • COPY only supports the basic copying of local files into the container
  • the best use for ADD is local tar file auto-extraction into the image, as in ADD rootfs.tar.xz /
  • If you have multiple Dockerfile steps that use different files from your context, COPY them individually, rather than all at once.
  • using ADD to fetch packages from remote URLs is strongly discouraged; you should use curl or wget instead
  • The best use for ENTRYPOINT is to set the image’s main command, allowing that image to be run as though it was that command (and then use CMD as the default flags).
  • the image name can double as a reference to the binary as shown in the command
  • The VOLUME instruction should be used to expose any database storage area, configuration storage, or files/folders created by your docker container.
  • use VOLUME for any mutable and/or user-serviceable parts of your image
  • If you absolutely need functionality similar to sudo, such as initializing the daemon as root but running it as non-root), consider using “gosu”.
  • always use absolute paths for your WORKDIR
  • An ONBUILD command executes after the current Dockerfile build completes.
  • Think of the ONBUILD command as an instruction the parent Dockerfile gives to the child Dockerfile
  • A Docker build executes ONBUILD commands before any command in a child Dockerfile.
  • Be careful when putting ADD or COPY in ONBUILD. The “onbuild” image fails catastrophically if the new build’s context is missing the resource being added.
張 旭

Using Infrastructure as Code to Automate VMware Deployments - 1 views

  • Infrastructure as code is at the heart of provisioning for cloud infrastructure marking a significant shift away from monolithic point-and-click management tools.
  • infrastructure as code enables operators to take a programmatic approach to provisioning.
  • provides a single workflow to provision and maintain infrastructure and services from all of your vendors, making it not only easier to switch providers
  • ...5 more annotations...
  • A Terraform Provider is responsible for understanding API interactions between and exposing the resources from a given Infrastructure, Platform, or SaaS offering to Terraform.
  • write a Terraform file that describes the Virtual Machine that you want, apply that file with Terraform and create that VM as you described without ever needing to log into the vSphere dashboard.
  • HashiCorp Configuration Language (HCL)
  • the provider credentials are passed in at the top of the script to connect to the vSphere account.
  • modules— a way to encapsulate infrastructure resources into a reusable format.
  •  
    "revolutionizing"
張 旭

Template Engine - Templates - Packer by HashiCorp - 0 views

  • All strings within templates are processed by a common Packer templating engine, where variables and functions can be used to modify the value of a configuration parameter at runtime.
  • Anything template related happens within double-braces: {{ }}.
  • Functions are specified directly within the braces, such as {{timestamp}}
  • ...8 more annotations...
  • Template variables are prefixed with a period and capitalized, such as {{.Variable}}.
  • Functions perform operations on and within strings
  • the {{timestamp}} function can be used in any string to generate the current timestamp.
  • pwd - The working directory while executing Packer.
  • template_dir - The directory to the template for the build.
  • uuid - Returns a random UUID.
  • user - Specifies a user variable.
  • Template variables are special variables automatically set by Packer at build time.
張 旭

The Twelve-Factor App - 0 views

  • A backing service is any service the app consumes over the network as part of its normal operation.
  • A deploy of the twelve-factor app should be able to swap out a local MySQL database with one managed by a third party (such as Amazon RDS) without any changes to the app’s code.
  • only the resource handle in the config needs to change
  • ...2 more annotations...
  • Each distinct backing service is a resource.
  • Resources can be attached to and detached from deploys at will.
張 旭

The Twelve-Factor App - 0 views

  • they can be started or stopped at a moment’s notice.
  • Processes should strive to minimize startup time
  • Processes shut down gracefully when they receive a SIGTERM signal from the process manager.
  • ...4 more annotations...
  • returning the current job to the work queue
  • all jobs are reentrant, which typically is achieved by wrapping the results in a transaction, or making the operation idempotent
  • Processes should also be robust against sudden death, in the case of a failure in the underlying hardware.
  • a twelve-factor app is architected to handle unexpected, non-graceful terminations
張 旭

The Twelve-Factor App - 0 views

  • Logs are the stream of aggregated, time-ordered events collected from the output streams of all running processes and backing services.
  • Logs have no fixed beginning or end, but flow continuously as long as the app is operating.
  • each running process writes its event stream, unbuffered, to stdout.
  • ...2 more annotations...
  • long-term archival. These archival destinations are not visible to or configurable by the app, and instead are completely managed by the execution environment.
  • Most significantly, the stream can be sent to a log indexing and analysis system such as Splunk, or a general-purpose data warehousing system such as Hadoop/Hive.
« First ‹ Previous 41 - 60 of 81 Next › Last »
Showing 20 items per page