Skip to main content

Home/ Larvata/ Group items tagged script

Rss Feed Group items tagged

張 旭

Boosting your kubectl productivity ♦︎ Learnk8s - 0 views

  • kubectl is your cockpit to control Kubernetes.
  • kubectl is a client for the Kubernetes API
  • Kubernetes API is an HTTP REST API.
  • ...75 more annotations...
  • This API is the real Kubernetes user interface.
  • Kubernetes is fully controlled through this API
  • every Kubernetes operation is exposed as an API endpoint and can be executed by an HTTP request to this endpoint.
  • the main job of kubectl is to carry out HTTP requests to the Kubernetes API
  • Kubernetes maintains an internal state of resources, and all Kubernetes operations are CRUD operations on these resources.
  • Kubernetes is a fully resource-centred system
  • Kubernetes API reference is organised as a list of resource types with their associated operations.
  • This is how kubectl works for all commands that interact with the Kubernetes cluster.
  • kubectl simply makes HTTP requests to the appropriate Kubernetes API endpoints.
  • it's totally possible to control Kubernetes with a tool like curl by manually issuing HTTP requests to the Kubernetes API.
  • Kubernetes consists of a set of independent components that run as separate processes on the nodes of a cluster.
  • components on the master nodes
  • Storage backend: stores resource definitions (usually etcd is used)
  • API server: provides Kubernetes API and manages storage backend
  • Controller manager: ensures resource statuses match specifications
  • Scheduler: schedules Pods to worker nodes
  • component on the worker nodes
  • Kubelet: manages execution of containers on a worker node
  • triggers the ReplicaSet controller, which is a sub-process of the controller manager.
  • the scheduler, who watches for Pod definitions that are not yet scheduled to a worker node.
  • creating and updating resources in the storage backend on the master node.
  • The kubelet of the worker node your ReplicaSet Pods have been scheduled to instructs the configured container runtime (which may be Docker) to download the required container images and run the containers.
  • Kubernetes components (except the API server and the storage backend) work by watching for resource changes in the storage backend and manipulating resources in the storage backend.
  • However, these components do not access the storage backend directly, but only through the Kubernetes API.
    • 張 旭
       
      很精彩,相互之間都是使用 API call 溝通,良好的微服務行為。
  • double usage of the Kubernetes API for internal components as well as for external users is a fundamental design concept of Kubernetes.
  • All other Kubernetes components and users read, watch, and manipulate the state (i.e. resources) of Kubernetes through the Kubernetes API
  • The storage backend stores the state (i.e. resources) of Kubernetes.
  • command completion is a shell feature that works by the means of a completion script.
  • A completion script is a shell script that defines the completion behaviour for a specific command. Sourcing a completion script enables completion for the corresponding command.
  • kubectl completion zsh
  • /etc/bash_completion.d directory (create it, if it doesn't exist)
  • source <(kubectl completion bash)
  • source <(kubectl completion zsh)
  • autoload -Uz compinit compinit
  • the API reference, which contains the full specifications of all resources.
  • kubectl api-resources
  • displays the resource names in their plural form (e.g. deployments instead of deployment). It also displays the shortname (e.g. deploy) for those resources that have one. Don't worry about these differences. All of these name variants are equivalent for kubectl.
  • .spec
  • custom columns output format comes in. It lets you freely define the columns and the data to display in them. You can choose any field of a resource to be displayed as a separate column in the output
  • kubectl get pods -o custom-columns='NAME:metadata.name,NODE:spec.nodeName'
  • kubectl explain pod.spec.
  • kubectl explain pod.metadata.
  • browse the resource specifications and try it out with any fields you like!
  • JSONPath is a language to extract data from JSON documents (it is similar to XPath for XML).
  • with kubectl explain, only a subset of the JSONPath capabilities is supported
  • Many fields of Kubernetes resources are lists, and this operator allows you to select items of these lists. It is often used with a wildcard as [*] to select all items of the list.
  • kubectl get pods -o custom-columns='NAME:metadata.name,IMAGES:spec.containers[*].image'
  • a Pod may contain more than one container.
  • The availability zones for each node are obtained through the special failure-domain.beta.kubernetes.io/zone label.
  • kubectl get nodes -o yaml kubectl get nodes -o json
  • The default kubeconfig file is ~/.kube/config
  • with multiple clusters, then you have connection parameters for multiple clusters configured in your kubeconfig file.
  • Within a cluster, you can set up multiple namespaces (a namespace is kind of "virtual" clusters within a physical cluster)
  • overwrite the default kubeconfig file with the --kubeconfig option for every kubectl command.
  • Namespace: the namespace to use when connecting to the cluster
  • a one-to-one mapping between clusters and contexts.
  • When kubectl reads a kubeconfig file, it always uses the information from the current context.
  • just change the current context in the kubeconfig file
  • to switch to another namespace in the same cluster, you can change the value of the namespace element of the current context
  • kubectl also provides the --cluster, --user, --namespace, and --context options that allow you to overwrite individual elements and the current context itself, regardless of what is set in the kubeconfig file.
  • for switching between clusters and namespaces is kubectx.
  • kubectl config get-contexts
  • just have to download the shell scripts named kubectl-ctx and kubectl-ns to any directory in your PATH and make them executable (for example, with chmod +x)
  • kubectl proxy
  • kubectl get roles
  • kubectl get pod
  • Kubectl plugins are distributed as simple executable files with a name of the form kubectl-x. The prefix kubectl- is mandatory,
  • To install a plugin, you just have to copy the kubectl-x file to any directory in your PATH and make it executable (for example, with chmod +x)
  • krew itself is a kubectl plugin
  • check out the kubectl-plugins GitHub topic
  • The executable can be of any type, a Bash script, a compiled Go program, a Python script, it really doesn't matter. The only requirement is that it can be directly executed by the operating system.
  • kubectl plugins can be written in any programming or scripting language.
  • you can write more sophisticated plugins with real programming languages, for example, using a Kubernetes client library. If you use Go, you can also use the cli-runtime library, which exists specifically for writing kubectl plugins.
  • a kubeconfig file consists of a set of contexts
  • changing the current context means changing the cluster, if you have only a single context per cluster.
張 旭

1. Introduction · swooletw/laravel-swoole Wiki - 0 views

  • when you run PHP script every time, PHP needs to initialize modules and launch Zend Engine for your running environment. And your PHP script needs to be compiled to OpCodes and then Zend Engine can finally execute them.
  • in traditional PHP lifecycle, it wastes a bunch of time building and destroying resources for your script execution.
  • have a built-in server on top of Swoole, and all the scripts can be kept in memory after the first load
  •  
    "when you run PHP script every time, PHP needs to initialize modules and launch Zend Engine for your running environment. And your PHP script needs to be compiled to OpCodes and then Zend Engine can finally execute them."
張 旭

phusion/baseimage-docker - 1 views

    • 張 旭
       
      原始的 docker 在執行命令時,預設就是將傳入的 COMMAND 當成 PID 1 的程序,執行完畢就結束這個  docker,其他的 daemons 並不會執行,而 baseimage 解決了這個問題。
    • crazylion lee
       
      好棒棒
  • docker exec
  • Through SSH
  • ...57 more annotations...
  • docker exec -t -i YOUR-CONTAINER-ID bash -l
  • Login to the container
  • Baseimage-docker only advocates running multiple OS processes inside a single container.
  • Password and challenge-response authentication are disabled by default. Only key authentication is allowed.
  • A tool for running a command as another user
  • The Docker developers advocate the philosophy of running a single logical service per container. A logical service can consist of multiple OS processes.
  • All syslog messages are forwarded to "docker logs".
  • Baseimage-docker advocates running multiple OS processes inside a single container, and a single logical service can consist of multiple OS processes.
  • Baseimage-docker provides tools to encourage running processes as different users
  • sometimes it makes sense to run multiple services in a single container, and sometimes it doesn't.
  • Splitting your logical service into multiple OS processes also makes sense from a security standpoint.
  • using environment variables to pass parameters to containers is very much the "Docker way"
  • Baseimage-docker provides a facility to run a single one-shot command, while solving all of the aforementioned problems
  • the shell script must run the daemon without letting it daemonize/fork it.
  • All executable scripts in /etc/my_init.d, if this directory exists. The scripts are run in lexicographic order.
  • variables will also be passed to all child processes
  • Environment variables on Unix are inherited on a per-process basis
  • there is no good central place for defining environment variables for all applications and services
  • centrally defining environment variables
  • One of the ideas behind Docker is that containers should be stateless, easily restartable, and behave like a black box.
  • a one-shot command in a new container
  • immediately exit after the command exits,
  • However the downside of this approach is that the init system is not started. That is, while invoking COMMAND, important daemons such as cron and syslog are not running. Also, orphaned child processes are not properly reaped, because COMMAND is PID 1.
  • add additional daemons (e.g. your own app) to the image by creating runit entries.
  • Nginx is one such example: it removes all environment variables unless you explicitly instruct it to retain them through the env configuration option.
  • Mechanisms for easily running multiple processes, without violating the Docker philosophy
  • Ubuntu is not designed to be run inside Docker
  • According to the Unix process model, the init process -- PID 1 -- inherits all orphaned child processes and must reap them
  • Syslog-ng seems to be much more stable
  • cron daemon
  • Rotates and compresses logs
  • /sbin/setuser
  • A tool for installing apt packages that automatically cleans up after itself.
  • a single logical service inside a single container
  • A daemon is a program which runs in the background of its system, such as a web server.
  • The shell script must be called run, must be executable, and is to be placed in the directory /etc/service/<NAME>. runsv will switch to the directory and invoke ./run after your container starts.
  • If any script exits with a non-zero exit code, the booting will fail.
  • If your process is started with a shell script, make sure you exec the actual process, otherwise the shell will receive the signal and not your process.
  • any environment variables set with docker run --env or with the ENV command in the Dockerfile, will be picked up by my_init
  • not possible for a child process to change the environment variables of other processes
  • they will not see the environment variables that were originally passed by Docker.
  • We ignore HOME, SHELL, USER and a bunch of other environment variables on purpose, because not ignoring them will break multi-user containers.
  • my_init imports environment variables from the directory /etc/container_environment
  • /etc/container_environment.sh - a dump of the environment variables in Bash format.
  • modify the environment variables in my_init (and therefore the environment variables in all child processes that are spawned after that point in time), by altering the files in /etc/container_environment
  • my_init only activates changes in /etc/container_environment when running startup scripts
  • environment variables don't contain sensitive data, then you can also relax the permissions
  • Syslog messages are forwarded to the console
  • syslog-ng is started separately before the runit supervisor process, and shutdown after runit exits.
  • RUN apt-get update && apt-get upgrade -y -o Dpkg::Options::="--force-confold"
  • /sbin/my_init --skip-startup-files --quiet --
  • By default, no keys are installed, so nobody can login
  • provide a pregenerated, insecure key (PuTTY format)
  • RUN /usr/sbin/enable_insecure_key
  • docker run YOUR_IMAGE /sbin/my_init --enable-insecure-key
  • RUN cat /tmp/your_key.pub >> /root/.ssh/authorized_keys && rm -f /tmp/your_key.pub
  • The default baseimage-docker installs syslog-ng, cron and sshd services during the build process
張 旭

Handling Arguments in Bash Scripts - DEV Community - 0 views

  • positional arguments. They hold the arguments given after your script as it was run on the command line
  • $0: The Script Name
  • $#: Argument Count
  • ...2 more annotations...
  • $?: Most Recent Exit Code
  • When you quote $*, it will output all of the arguments received as one single string, separated by a space1 regardless of how they were quoted going in, but it will quote that string so that it doesn't get split up later.
  •  
    "positional arguments. They hold the arguments given after your script as it was run on the command line"
張 旭

How to write excellent Dockerfiles - 0 views

  • minimize image size, build time and number of layers.
  • maximize build cache usage
  • Container should do one thing
    • 張 旭
       
      這個有待商榷,在 baseimage 的 blog 介紹中有詳細的討論。
  • ...25 more annotations...
  • Use COPY and RUN commands in proper order
  • Merge multiple RUN commands into one
  • alpine versions should be enough
  • Use exec inside entrypoint script
  • Prefer COPY over ADD
  • Specify default environment variables, ports and volumes inside Dockerfile
  • problems with zombie processes
  • prepare separate Docker image for each component, and use Docker Compose to easily start multiple containers at the same time
  • Layers are cached and reused
  • Layers are immutable
  • They both makes you cry
  • rely on our base image updates
  • make a cleanup
  • alpine is a very tiny linux distribution, just about 4 MB in size.
  • Your disk will love you :)
  • WORKDIR command changes default directory, where we run our RUN / CMD / ENTRYPOINT commands.
  • CMD is a default command run after creating container without other command specified.
  • put your command inside array
  • entrypoint adds complexity
  • Entrypoint is a script, that will be run instead of command, and receive command as arguments
  • Without it, we would not be able to stop our application grecefully (SIGTERM is swallowed by bash script).
  • Use "exec" inside entrypoint script
  • ADD has some logic for downloading remote files and extracting archives.
  • stick with COPY.
  • ADD
    • 張 旭
       
      不是說要用 COPY 嗎?
張 旭

Introduction to CI/CD with GitLab | GitLab - 0 views

  • deploying code changes at every small iteration, reducing the chance of developing new code based on bugged or failed previous versions
  • based on automating the execution of scripts to minimize the chance of introducing errors while developing applications.
  • For every push to the repository, you can create a set of scripts to build and test your application automatically, decreasing the chance of introducing errors to your app.
  • ...5 more annotations...
  • checked automatically but requires human intervention to manually and strategically trigger the deployment of the changes.
  • instead of deploying your application manually, you set it to be deployed automatically.
  • .gitlab-ci.yml, located in the root path of your repository
  • all the scripts you add to the configuration file are the same as the commands you run on a terminal in your computer.
  • GitLab will detect it and run your scripts with the tool called GitLab Runner, which works similarly to your terminal.
  •  
    "deploying code changes at every small iteration, reducing the chance of developing new code based on bugged or failed previous versions"
張 旭

How to Benchmark Performance of MySQL & MariaDB Using SysBench | Severalnines - 1 views

  • SysBench is a C binary which uses LUA scripts to execute benchmarks
  • support for parallelization in the LUA scripts, multiple queries can be executed in parallel
  • by default, benchmarks which cover most of the cases - OLTP workloads, read-only or read-write, primary key lookups and primary key updates.
  • ...21 more annotations...
  • SysBench is not a tool which you can use to tune configurations of your MySQL servers (unless you prepared LUA scripts with custom workload or your workload happen to be very similar to the benchmark workloads that SysBench comes with)
  • it is great for is to compare performance of different hardware.
  • Every new server acquired should go through a warm-up period during which you will stress it to pinpoint potential hardware defects
  • by executing OLTP workload which overloads the server, or you can also use dedicated benchmarks for CPU, disk and memory.
  • bulk_insert.lua. This test can be used to benchmark the ability of MySQL to perform multi-row inserts.
  • All oltp_* scripts share a common table structure. First two of them (oltp_delete.lua and oltp_insert.lua) execute single DELETE and INSERT statements.
  • oltp_point_select, oltp_update_index and oltp_update_non_index. These will execute a subset of queries - primary key-based selects, index-based updates and non-index-based updates.
  • you can run different workload patterns using the same benchmark.
  • Warmup helps to identify “regular” throughput by executing benchmark for a predefined time, allowing to warm up the cache, buffer pools etc.
  • By default SysBench will attempt to execute queries as fast as possible. To simulate slower traffic this option may be used. You can define here how many transactions should be executed per second.
  • SysBench gives you ability to generate different types of data distribution.
  • decide if SysBench should use prepared statements (as long as they are available in the given datastore - for MySQL it means PS will be enabled by default) or not.
  • sysbench ./sysbench/src/lua/oltp_read_write.lua  help
  • By default, SysBench will attempt to execute queries in explicit transaction. This way the dataset will stay consistent and not affected: SysBench will, for example, execute INSERT and DELETE on the same row, making sure the data set will not grow (impacting your ability to reproduce results).
  • specify error codes from MySQL which SysBench should ignore (and not kill the connection).
  • the two most popular benchmarks - OLTP read only and OLTP read/write.
  • 1 million rows will result in ~240 MB of data. Ten tables, 1000 000 rows each equals to 2.4GB
  • by default, SysBench looks for ‘sbtest’ schema which has to exist before you prepare the data set. You may have to create it manually.
  • pass ‘--histogram’ argument to SysBench
  • ~48GB of data (20 tables, 10 000 000 rows each).
  • if you don’t understand why the performance was like it was, you may draw incorrect conclusions out of the benchmarks.
crazylion lee

a1studmuffin/SpaceshipGenerator: A Blender script to procedurally generate 3D spaceships - 0 views

  •  
    "A Blender script to procedurally generate 3D spaceships"
張 旭

153 ☞ Sourcing a shell script in Make - 0 views

  • Make runs its commands in a subshell, so the variables exported by source aren’t available to other commands.
  • Make and Bash have awfully similar syntaces for setting variables
  • Make doesn’t parse quotes
  • ...2 more annotations...
  • needs to run before any target
  • If there’s a target for makefile, and its prerequisites are new, the target will run before anything, because the makefile might change.
crazylion lee

GitHub - koalaman/shellcheck: ShellCheck, a static analysis tool for shell scripts - 0 views

  •  
    "ShellCheck, a static analysis tool for shell scripts http://www.shellcheck.net"
crazylion lee

Hammerspoon - 0 views

  •  
    "This is a tool for powerful automation of OS X. At its core, Hammerspoon is just a bridge between the operating system and a Lua scripting engine. What gives Hammerspoon its power is a set of extensions that expose specific pieces of system functionality, to the user."
張 旭

How To Install and Use Docker: Getting Started | DigitalOcean - 0 views

  • docker as a project offers you the complete set of higher-level tools to carry everything that forms an application across systems and machines - virtual or physical - and brings along loads more of great benefits with it
  • docker daemon: used to manage docker (LXC) containers on the host it runs
  • docker CLI: used to command and communicate with the docker daemon
  • ...20 more annotations...
  • containers: directories containing everything-your-application
  • images: snapshots of containers or base OS (e.g. Ubuntu) images
  • Dockerfiles: scripts automating the building process of images
  • Docker containers are basically directories which can be packed (e.g. tar-archived) like any other, then shared and run across various different machines and platforms (hosts).
  • Linux Containers can be defined as a combination various kernel-level features (i.e. things that Linux-kernel can do) which allow management of applications (and resources they use) contained within their own environment
  • Each container is layered like an onion and each action taken within a container consists of putting another block (which actually translates to a simple change within the file system) on top of the previous one.
  • Each docker container starts from a docker image which forms the base for other applications and layers to come.
  • Docker images constitute the base of docker containers from which everything starts to form
  • a solid, consistent and dependable base with everything that is needed to run the applications
  • As more layers (tools, applications etc.) are added on top of the base, new images can be formed by committing these changes.
  • a Dockerfile for automated image building
  • Dockerfiles are scripts containing a successive series of instructions, directions, and commands which are to be executed to form a new docker image.
  • As you work with a container and continue to perform actions on it (e.g. download and install software, configure files etc.), to have it keep its state, you need to “commit”.
  • Please remember to “commit” all your changes.
  • When you "run" any process using an image, in return, you will have a container.
  • When the process is not actively running, this container will be a non-running container. Nonetheless, all of them will reside on your system until you remove them via rm command.
  • To create a new container, you need to use a base image and specify a command to run.
  • you can not change the command you run after having created a container (hence specifying one during "creation")
  • If you would like to save the progress and changes you made with a container, you can use “commit”
  • turns your container to an image
crazylion lee

netboot.xyz - 0 views

  •  
    "The DHCP bootloaders will automatically get a network address if you have DHCP on your network while the static bootloaders will prompt you for network information. SHA256 checksums are generated during each build of iPXE and are located here. You can also view the scripts that are embedded into the images here. "
張 旭

Baseimage-docker: A minimal Ubuntu base image modified for Docker-friendliness - 0 views

  • We encourage you to use multiple processes.
  • Baseimage-docker is a special Docker image that is configured for correct use within Docker containers.
  • When your Docker container starts, only the CMD command is run.
  • ...16 more annotations...
  • You're not running them, you're only running your app.
  • You have Ubuntu installed in Docker. The files are there. But that doesn't mean Ubuntu's running as it should.
  • The only processes that will be running inside the container is the CMD command, and all processes that it spawns.
  • A proper Unix system should run all kinds of important system services.
  • Ubuntu is not designed to be run inside Docker
  • When a system is started, the first process in the system is called the init process, with PID 1. The system halts when this processs halts.
  • Runit (written in C) is much lighter weight than supervisord (written in Python).
  • Docker runs fine with multiple processes in a container.
  • Baseimage-docker encourages you to run multiple processes through the use of runit.
  • If your init process is your app, then it'll probably only shut down itself, not all the other processes in the container.
  • a Docker container, which is a locked down environment with e.g. no direct access to many kernel resources.
  • Used for service supervision and management.
  • A custom tool for running a command as another user.
  • add additional daemons (e.g. your own app) to the image by creating runit entries.
  • write a small shell script which runs your daemon, and runit will keep it up and running for you, restarting it when it crashes, etc.
  • the shell script must run the daemon without letting it daemonize/fork it.
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 20.2 Introducing InnoDB Cluster - 0 views

  • A group of MySQL servers can be configured to create a cluster using MySQL Shell
  • The cluster of servers has a single master, called the primary, which acts as the read-write master.
  • Multiple secondary servers are replicas of the master
  • ...6 more annotations...
  • A client application is connected to the primary via MySQL Router
  • MySQL Shell also requires Python 2.7 and above to run cluster provisioning scripts
  • AdminAPI, which enables you to create and administer an InnoDB cluster, using either JavaScript or Python scripting
  • Caches the metadata of the InnoDB cluster and performs high availability routing to the MySQL Server instances which make up the cluster
  • Group Replication mechanism to allow data to be replicated from the primary to the secondaries in the cluster
  • AdminAPI is available as of MySQL Shell 1.0.8.
張 旭

Open source load testing tool review 2020 - 0 views

  • Hey is a simple tool, written in Go, with good performance and the most common features you'll need to run simple static URL tests.
  • Hey supports HTTP/2, which neither Wrk nor Apachebench does
  • Apachebench is very fast, so often you will not need more than one CPU core to generate enough traffic
  • ...16 more annotations...
  • Hey has rate limiting, which can be used to run fixed-rate tests.
  • Vegeta was designed to be run on the command line; it reads from stdin a list of HTTP transactions to generate, and sends results in binary format to stdout,
  • Vegeta is a really strong tool that caters to people who want a tool to test simple, static URLs (perhaps API end points) but also want a bit more functionality.
  • Vegeta can even be used as a Golang library/package if you want to create your own load testing tool.
  • Wrk is so damn fast
  • being fast and measuring correctly is about all that Wrk does
  • k6 is scriptable in plain Javascript
  • k6 is average or better. In some categories (documentation, scripting API, command line UX) it is outstanding.
  • Jmeter is a huge beast compared to most other tools.
  • Siege is a simple tool, similar to e.g. Apachebench in that it has no scripting and is primarily used when you want to hit a single, static URL repeatedly.
  • A good way of testing the testing tools is to not test them on your code, but on some third-party thing that is sure to be very high-performing.
  • use a tool like e.g. top to keep track of Nginx CPU usage while testing. If you see just one process, and see it using close to 100% CPU, it means you could be CPU-bound on the target side.
  • If you see multiple Nginx processes but only one is using a lot of CPU, it means your load testing tool is only talking to that particular worker process.
  • Network delay is also important to take into account as it sets an upper limit on the number of requests per second you can push through.
  • If, say, the Nginx default page requires a transfer of 250 bytes to load, it means that if the servers are connected via a 100 Mbit/s link, the theoretical max RPS rate would be around 100,000,000 divided by 8 (bits per byte) divided by 250 => 100M/2000 = 50,000 RPS. Though that is a very optimistic calculation - protocol overhead will make the actual number a lot lower so in the case above I would start to get worried bandwidth was an issue if I saw I could push through max 30,000 RPS, or something like that.
  • Wrk managed to push through over 50,000 RPS and that made 8 Nginx workers on the target system consume about 600% CPU.
張 旭

Introducing Infrastructure as Code | Linode - 0 views

  • Infrastructure as Code (IaC) is a technique for deploying and managing infrastructure using software, configuration files, and automated tools.
  • With the older methods, technicians must configure a device manually, perhaps with the aid of an interactive tool. Information is added to configuration files by hand or through the use of ad-hoc scripts. Configuration wizards and similar utilities are helpful, but they still require hands-on management. A small group of experts owns the expertise, the process is typically poorly defined, and errors are common.
  • The development of the continuous integration and continuous delivery (CI/CD) pipeline made the idea of treating infrastructure as software much more attractive.
  • ...20 more annotations...
  • Infrastructure as Code takes advantage of the software development process, making use of quality assurance and test automation techniques.
  • Consistency/Standardization
  • Each node in the network becomes what is known as a snowflake, with its own unique settings. This leads to a system state that cannot easily be reproduced and is difficult to debug.
  • With standard configuration files and software-based configuration, there is greater consistency between all equipment of the same type. A key IaC concept is idempotence.
  • Idempotence makes it easy to troubleshoot, test, stabilize, and upgrade all the equipment.
  • Infrastructure as Code is central to the culture of DevOps, which is a mix of development and operations
  • edits are always made to the source configuration files, never on the target.
  • A declarative approach describes the final state of a device, but does not mandate how it should get there. The specific IaC tool makes all the procedural decisions. The end state is typically defined through a configuration file, a JSON specification, or a similar encoding.
  • An imperative approach defines specific functions or procedures that must be used to configure the device. It focuses on what must happen, but does not necessarily describe the final state. Imperative techniques typically use scripts for the implementation.
  • With a push configuration, the central server pushes the configuration to the destination device.
  • If a device is mutable, its configuration can be changed while it is active
  • Immutable devices cannot be changed. They must be decommissioned or rebooted and then completely rebuilt.
  • an immutable approach ensures consistency and avoids drift. However, it usually takes more time to remove or rebuild a configuration than it does to change it.
  • System administrators should consider security issues as part of the development process.
  • Ansible is a very popular open source IaC application from Red Hat
  • Ansible is often used in conjunction with Kubernetes and Docker.
  • Linode offers a collection of several Ansible guides for a more comprehensive overview.
  • Pulumi permits the use of a variety of programming languages to deploy and manage infrastructure within a cloud environment.
  • Terraform allows users to provision data center infrastructure using either JSON or Terraform’s own declarative language.
  • Terraform manages resources through the use of providers, which are similar to APIs.
張 旭

Run your CI/CD jobs in Docker containers | GitLab - 0 views

  • If you run Docker on your local machine, you can run tests in the container, rather than testing on a dedicated CI/CD server.
  • Run other services, like MySQL, in containers. Do this by specifying services in your .gitlab-ci.yml file.
  • By default, the executor pulls images from Docker Hub
  • ...10 more annotations...
  • Maps must contain at least the name option, which is the same image name as used for the string setting.
  • When a CI job runs in a Docker container, the before_script, script, and after_script commands run in the /builds/<project-path>/ directory. Your image may have a different default WORKDIR defined. To move to your WORKDIR, save the WORKDIR as an environment variable so you can reference it in the container during the job’s runtime.
  • The runner starts a Docker container using the defined entrypoint. The default from Dockerfile that may be overridden in the .gitlab-ci.yml file.
  • attaches itself to a running container.
  • sends the script to the container’s shell stdin and receives the output.
  • To override the entrypoint of a Docker image, define an empty entrypoint in the .gitlab-ci.yml file, so the runner does not start a useless shell layer. However, that does not work for all Docker versions. For Docker 17.06 and later, the entrypoint can be set to an empty value. For Docker 17.03 and earlier, the entrypoint can be set to /bin/sh -c, /bin/bash -c, or an equivalent shell available in the image.
  • The runner expects that the image has no entrypoint or that the entrypoint is prepared to start a shell command.
  • entrypoint: [""]
  • entrypoint: ["/bin/sh", "-c"]
  • A DOCKER_AUTH_CONFIG CI/CD variable
  •  
    "If you run Docker on your local machine, you can run tests in the container, rather than testing on a dedicated CI/CD server. "
張 旭

phusion/passenger-docker: Docker base images for Ruby, Python, Node.js and Meteor web apps - 0 views

  • Ubuntu 20.04 LTS as base system
  • 2.7.5 is configured as the default.
  • Python 3.8
  • ...23 more annotations...
  • A build system, git, and development headers for many popular libraries, so that the most popular Ruby, Python and Node.js native extensions can be compiled without problems.
  • Nginx 1.18. Disabled by default
  • production-grade features, such as process monitoring, administration and status inspection.
  • Redis 5.0. Not installed by default.
  • The image has an app user with UID 9999 and home directory /home/app. Your application is supposed to run as this user.
  • running applications without root privileges is good security practice.
  • Your application should be placed inside /home/app.
  • COPY --chown=app:app
  • Passenger works like a mod_ruby, mod_nodejs, etc. It changes Nginx into an application server and runs your app from Nginx.
  • placing a .conf file in the directory /etc/nginx/sites-enabled
  • The best way to configure Nginx is by adding .conf files to /etc/nginx/main.d and /etc/nginx/conf.d
  • files in conf.d are included in the Nginx configuration's http context.
  • any environment variables you set with docker run -e, Docker linking and /etc/container_environment, won't reach Nginx.
  • To preserve these variables, place an Nginx config file ending with *.conf in the directory /etc/nginx/main.d, in which you tell Nginx to preserve these variables.
  • By default, Phusion Passenger sets all of the following environment variables to the value production
  • Setting these environment variables yourself (e.g. using docker run -e RAILS_ENV=...) will not have any effect, because Phusion Passenger overrides all of these environment variables.
  • PASSENGER_APP_ENV environment variable
  • passenger-docker autogenerates an Nginx configuration file (/etc/nginx/conf.d/00_app_env.conf) during container boot.
  • The configuration file is in /etc/redis/redis.conf. Modify it as you see fit, but make sure daemonize no is set.
  • You can add additional daemons to the image by creating runit entries.
  • The shell script must be called run, must be executable
  • the shell script must run the daemon without letting it daemonize/fork it.
  • We use RVM to install and to manage Ruby interpreters.
snow9816

CentOS 出現 connect: Network is unreachable 解決方法 | IT達人 - 0 views

  • /etc/sysconfig/network-scripts/ifcfg-eth0
  • service network restart
1 - 20 of 42 Next › Last »
Showing 20 items per page