Skip to main content

Home/ Larvata/ Group items tagged operator

Rss Feed Group items tagged

張 旭

Persisting Data in Workflows: When to Use Caching, Artifacts, and Workspaces - CircleCI - 0 views

  • Repeatability is also important
  • When a CI process isn’t repeatable you’ll find yourself wasting time re-running jobs to get them to go green.
  • Workspaces persist data between jobs in a single Workflow.
  • ...9 more annotations...
  • Caching persists data between the same job in different Workflow builds.
  • Artifacts persist data after a Workflow has finished
  • When a Workspace is declared in a job, one or more files or directories can be added. Each addition creates a new layer in the Workspace filesystem. Downstreams jobs can then use this Workspace for its own needs or add more layers on top.
  • Unlike caching, Workspaces are not shared between runs as they no longer exists once a Workflow is complete.
  • Caching lets you reuse the data from expensive fetch operations from previous jobs.
  • A prime example is package dependency managers such as Yarn, Bundler, or Pip.
  • Caches are global within a project, a cache saved on one branch will be used by others so they should only be used for data that is OK to share across Branches
  • Artifacts are used for longer-term storage of the outputs of your build process.
  • If your project needs to be packaged in some form or fashion, say an Android app where the .apk file is uploaded to Google Play, that’s a great example of an artifact.
  •  
    "CircleCI 2.0 provides a number of different ways to move data into and out of jobs, persist data, and with the introduction of Workspaces, move data between jobs"
張 旭

How To Use Bash's Job Control to Manage Foreground and Background Processes | DigitalOcean - 0 views

  • Most processes that you start on a Linux machine will run in the foreground. The command will begin execution, blocking use of the shell for the duration of the process.
  • By default, processes are started in the foreground. Until the program exits or changes state, you will not be able to interact with the shell.
  • stop the process by sending it a signal
  • ...17 more annotations...
  • Linux terminals are usually configured to send the "SIGINT" signal (typically signal number 2) to current foreground process when the CTRL-C key combination is pressed.
  • Another signal that we can send is the "SIGTSTP" signal (typically signal number 20).
  • A background process is associated with the specific terminal that started it, but does not block access to the shell
  • start a background process by appending an ampersand character ("&") to the end of your commands.
  • type commands at the same time.
  • The [1] represents the command's "job spec" or job number. We can reference this with other job and process control commands, like kill, fg, and bg by preceding the job number with a percentage sign. In this case, we'd reference this job as %1.
  • Once the process is stopped, we can use the bg command to start it again in the background
  • By default, the bg command operates on the most recently stopped process.
  • Whether a process is in the background or in the foreground, it is rather tightly tied with the terminal instance that started it
  • When a terminal closes, it typically sends a SIGHUP signal to all of the processes (foreground, background, or stopped) that are tied to the terminal.
  • a terminal multiplexer
  • start it using the nohup command
  • appending output to ‘nohup.out’
  • pgrep -a
  • The disown command, in its default configuration, removes a job from the jobs queue of a terminal.
  • You can pass the -h flag to the disown process instead in order to mark the process to ignore SIGHUP signals, but to otherwise continue on as a regular job
  • The huponexit shell option controls whether bash will send its child processes the SIGHUP signal when it exits.
張 旭

Modules - Configuration Language - Terraform by HashiCorp - 0 views

  • provider blocks can appear in any module, it is recommended that they be placed only in the root module of a configuration
  • In all cases it is recommended to keep explicit provider configurations only in the root module and pass them (whether implicitly or explicitly) down to descendent modules
  • Provider configurations are used for all operations on associated resources, including destroying remote objects and refreshing state.
  • ...5 more annotations...
  • all resources created for a particular provider configuration must be destroyed before that provider configuration is removed, unless the related resources are re-configured to use a different provider configuration first.
  • a child module automatically inherits default (un-aliased) provider configurations from its parent.
  • recommended in the common case where only a single configuration is needed for each provider across the entire configuration.
  • the providers argument within a module block can be used to define explicitly which provider configs are made available to the child module.
  • Once the providers argument is used in a module block, it overrides all of the default inheritance behavior, so it is necessary to enumerate mappings for all of the required providers.
張 旭

Warnings, Notes, & Tips - 0 views

  • AS3 manages topology records globally in /Common, it is required that records only be managed through AS3, as it will treat the records declaratively.
  • If a record is added outside of AS3, it will be removed if it is not included in the next AS3 declaration for topology records (AS3 completely overwrites non-AS3 topologies when a declaration is submitted).
  • using AS3 to delete a tenant (for example, sending DELETE to the /declare/<TENANT> endpoint) that contains GSLB topologies will completely remove ALL GSLB topologies from the BIG-IP.
  • ...12 more annotations...
  • When posting a large declaration (hundreds of application services in a single declaration), you may experience a 500 error stating that the save sys config operation failed.
  • Even if you have asynchronous mode set to false, after 45 seconds AS3 sets asynchronous mode to true (API swap), and returns an async response.
  • When creating a new tenant using AS3, it must not use the same name as a partition you separately create on the target BIG-IP system.
  • If you use the same name and then post the declaration, AS3 overwrites (or removes) the existing partition completely, including all configuration objects in that partition.
  • use AS3 to create a tenant (which creates a BIG-IP partition), manually adding configuration objects to the partition created by AS3 can have unexpected results
  • When you delete the Tenant using AS3, the system deletes both virtual servers.
  • if a Firewall_Address_List contains zero addresses, a dummy IPv6 address of ::1:5ee:bad:c0de is added in order to maintain a valid Firewall_Address_List. If an address is added to the list, the dummy address is removed.
  • use /mgmt/shared/appsvcs/declare?async=true if you have a particularly large declaration which will take a long time to process.
  • reviewing the Sizing BIG-IP Virtual Editions section (page 7) of Deploying BIG-IP VEs in a Hyper-Converged Infrastructure
  • To test whether your system has AS3 installed or not, use GET with the /mgmt/shared/appsvcs/info URI.
  • You may find it more convenient to put multi-line texts such as iRules into AS3 declarations by first encoding them in Base64.
  • no matter your BIG-IP user account name, audit logs show all messages from admin and not the specific user name.
張 旭

Understanding Nginx HTTP Proxying, Load Balancing, Buffering, and Caching | DigitalOcean - 0 views

  • allow Nginx to pass requests off to backend http servers for further processing
  • Nginx is often set up as a reverse proxy solution to help scale out infrastructure or to pass requests to other servers that are not designed to handle large client loads
  • explore buffering and caching to improve the performance of proxying operations for clients
  • ...48 more annotations...
  • Nginx is built to handle many concurrent connections at the same time.
  • provides you with flexibility in easily adding backend servers or taking them down as needed for maintenance
  • Proxying in Nginx is accomplished by manipulating a request aimed at the Nginx server and passing it to other servers for the actual processing
  • The servers that Nginx proxies requests to are known as upstream servers.
  • Nginx can proxy requests to servers that communicate using the http(s), FastCGI, SCGI, and uwsgi, or memcached protocols through separate sets of directives for each type of proxy
  • When a request matches a location with a proxy_pass directive inside, the request is forwarded to the URL given by the directive
  • For example, when a request for /match/here/please is handled by this block, the request URI will be sent to the example.com server as http://example.com/match/here/please
  • The request coming from Nginx on behalf of a client will look different than a request coming directly from a client
  • Nginx gets rid of any empty headers
  • Nginx, by default, will consider any header that contains underscores as invalid. It will remove these from the proxied request
    • 張 旭
       
      這裡要注意一下,header 欄位名稱有設定底線的,要設定 Nginx 讓它可以通過。
  • The "Host" header is re-written to the value defined by the $proxy_host variable.
  • The upstream should not expect this connection to be persistent
  • Headers with empty values are completely removed from the passed request.
  • if your backend application will be processing non-standard headers, you must make sure that they do not have underscores
  • by default, this will be set to the value of $proxy_host, a variable that will contain the domain name or IP address and port taken directly from the proxy_pass definition
  • This is selected by default as it is the only address Nginx can be sure the upstream server responds to
  • (as it is pulled directly from the connection info)
  • $http_host: Sets the "Host" header to the "Host" header from the client request.
  • The headers sent by the client are always available in Nginx as variables. The variables will start with an $http_ prefix, followed by the header name in lowercase, with any dashes replaced by underscores.
  • preference to: the host name from the request line itself
  • set the "Host" header to the $host variable. It is the most flexible and will usually provide the proxied servers with a "Host" header filled in as accurately as possible
  • sets the "Host" header to the $host variable, which should contain information about the original host being requested
  • This variable takes the value of the original X-Forwarded-For header retrieved from the client and adds the Nginx server's IP address to the end.
  • The upstream directive must be set in the http context of your Nginx configuration.
  • http context
  • Once defined, this name will be available for use within proxy passes as if it were a regular domain name
  • By default, this is just a simple round-robin selection process (each request will be routed to a different host in turn)
  • Specifies that new connections should always be given to the backend that has the least number of active connections.
  • distributes requests to different servers based on the client's IP address.
  • mainly used with memcached proxying
  • As for the hash method, you must provide the key to hash against
  • Server Weight
  • Nginx's buffering and caching capabilities
  • Without buffers, data is sent from the proxied server and immediately begins to be transmitted to the client.
  • With buffers, the Nginx proxy will temporarily store the backend's response and then feed this data to the client
  • Nginx defaults to a buffering design
  • can be set in the http, server, or location contexts.
  • the sizing directives are configured per request, so increasing them beyond your need can affect your performance
  • When buffering is "off" only the buffer defined by the proxy_buffer_size directive will be used
  • A high availability (HA) setup is an infrastructure without a single point of failure, and your load balancers are a part of this configuration.
  • multiple load balancers (one active and one or more passive) behind a static IP address that can be remapped from one server to another.
  • Nginx also provides a way to cache content from backend servers
  • The proxy_cache_path directive must be set in the http context.
  • proxy_cache backcache;
    • 張 旭
       
      這裡的 backcache 是前文設定的 backcache 變數,看起來每個 location 都可以有自己的 cache 目錄。
  • The proxy_cache_bypass directive is set to the $http_cache_control variable. This will contain an indicator as to whether the client is explicitly requesting a fresh, non-cached version of the resource
  • any user-related data should not be cached
  • For private content, you should set the Cache-Control header to "no-cache", "no-store", or "private" depending on the nature of the data
張 旭

Rails Environment Variables · RailsApps - 1 views

  • You can pass local configuration settings to an application using environment variables.
  • Operating systems (Linux, Mac OS X, Windows) provide mechanisms to set local environment variables, as does Heroku and other deployment platforms.
  • In general, you shouldn’t save email account credentials or private API keys to a shared git repository.
  • ...10 more annotations...
  • You could “hardcode” your Gmail username and password into the file but that would expose it to everyone who has access to your git repository.
  • It’s important to learn to use the Unix shell if you’re commited to improving your skills as a developer.
  • The gem reads a config/application.yml file and sets environment variables before anything else is configured in the Rails application.
  • make sure this file is listed in the .gitignore file so it isn’t checked into the git repository
  • Rails provides a config.before_configuration
  • YAML.load(File.open(env_file)).each do |key, value| ENV[key.to_s] = value end if File.exists?(env_file)
  • Heroku is a popular choice for low cost, easily configured Rails application hosting.
  • heroku config:add
  • the dotenv Ruby gem
  • Foreman is a tool for starting and configuring multiple processes in a complex application
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 19.1.1.2 Group Replication - 0 views

  • The replication group is a set of servers that interact with each other through message passing.
  • The communication layer provides a set of guarantees such as atomic message and total order message delivery.
  • a multi-master update everywhere replication protocol
  • ...8 more annotations...
  • a replication group is formed by multiple servers and each server in the group may execute transactions independently
  • Read-only (RO) transactions need no coordination within the group and thus commit immediately
  • any RW transaction the group needs to decide whether it commits or not, thus the commit operation is not a unilateral decision from the originating server
  • when a transaction is ready to commit at the originating server, the server atomically broadcasts the write values (rows changed) and the correspondent write set (unique identifiers of the rows that were updated). Then a global total order is established for that transaction.
  • all servers receive the same set of transactions in the same order
  • The resolution procedure states that the transaction that was ordered first commits on all servers, whereas the transaction ordered second aborts, and thus is rolled back on the originating server and dropped by the other servers in the group. This is in fact a distributed first commit wins rule
  • Group Replication is a shared-nothing replication scheme where each server has its own entire copy of the data
  • MySQL Group Replication protocol
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 19.2.1.2 Configuring an Instance for Group Repli... - 0 views

  • store replication metadata in system tables instead of files
  • collect the write set and encode it as a hash using the XXHASH64 hashing algorithm
  • not start operations automatically when the server starts
  • ...10 more annotations...
  • for incoming connections from other members in the group
  • The server listens on this port for member-to-member connections. This port must not be used for user applications at all
  • The loose- prefix used for the group_replication variables above instructs the server to continue to start if the Group Replication plugin has not been loaded at the time the server is started.
  • For example, if each server instance is on a different machine use the IP and port of the machine, such as 10.0.0.1:33061. The recommended port for group_replication_local_address is 33061
  • does not need to list all members in the group
  • The server that starts the group does not make use of this option, since it is the initial server and as such, it is in charge of bootstrapping the group
  • start the bootstrap member first, and let it create the group
  • Creating a group and joining multiple members at the same time is not supported.
  • must only be used on one server instance at any time
  • Disable this option after the first server instance comes online
張 旭

MetalLB, bare metal load-balancer for Kubernetes - 0 views

  • Kubernetes does not offer an implementation of network load-balancers (Services of type LoadBalancer) for bare metal clusters
  • If you’re not running on a supported IaaS platform (GCP, AWS, Azure…), LoadBalancers will remain in the “pending” state indefinitely when created.
  • Bare metal cluster operators are left with two lesser tools to bring user traffic into their clusters, “NodePort” and “externalIPs” services.
張 旭

Introducing Infrastructure as Code | Linode - 0 views

  • Infrastructure as Code (IaC) is a technique for deploying and managing infrastructure using software, configuration files, and automated tools.
  • With the older methods, technicians must configure a device manually, perhaps with the aid of an interactive tool. Information is added to configuration files by hand or through the use of ad-hoc scripts. Configuration wizards and similar utilities are helpful, but they still require hands-on management. A small group of experts owns the expertise, the process is typically poorly defined, and errors are common.
  • The development of the continuous integration and continuous delivery (CI/CD) pipeline made the idea of treating infrastructure as software much more attractive.
  • ...20 more annotations...
  • Infrastructure as Code takes advantage of the software development process, making use of quality assurance and test automation techniques.
  • Consistency/Standardization
  • Each node in the network becomes what is known as a snowflake, with its own unique settings. This leads to a system state that cannot easily be reproduced and is difficult to debug.
  • With standard configuration files and software-based configuration, there is greater consistency between all equipment of the same type. A key IaC concept is idempotence.
  • Idempotence makes it easy to troubleshoot, test, stabilize, and upgrade all the equipment.
  • Infrastructure as Code is central to the culture of DevOps, which is a mix of development and operations
  • edits are always made to the source configuration files, never on the target.
  • A declarative approach describes the final state of a device, but does not mandate how it should get there. The specific IaC tool makes all the procedural decisions. The end state is typically defined through a configuration file, a JSON specification, or a similar encoding.
  • An imperative approach defines specific functions or procedures that must be used to configure the device. It focuses on what must happen, but does not necessarily describe the final state. Imperative techniques typically use scripts for the implementation.
  • With a push configuration, the central server pushes the configuration to the destination device.
  • If a device is mutable, its configuration can be changed while it is active
  • Immutable devices cannot be changed. They must be decommissioned or rebooted and then completely rebuilt.
  • an immutable approach ensures consistency and avoids drift. However, it usually takes more time to remove or rebuild a configuration than it does to change it.
  • System administrators should consider security issues as part of the development process.
  • Ansible is a very popular open source IaC application from Red Hat
  • Ansible is often used in conjunction with Kubernetes and Docker.
  • Linode offers a collection of several Ansible guides for a more comprehensive overview.
  • Pulumi permits the use of a variety of programming languages to deploy and manage infrastructure within a cloud environment.
  • Terraform allows users to provision data center infrastructure using either JSON or Terraform’s own declarative language.
  • Terraform manages resources through the use of providers, which are similar to APIs.
張 旭

Databases and Collections - MongoDB Manual - 0 views

  • MongoDB stores data records as documents (specifically BSON documents) which are gathered together in collections.
  • A database stores one or more collections of documents.
  • In MongoDB, databases hold one or more collections of documents.
  • ...9 more annotations...
  • If a database does not exist, MongoDB creates the database when you first store data for that database.
  • The insertOne() operation creates both the database myNewDB and the collection myNewCollection1 if they do not already exist.
  • MongoDB stores documents in collections.
  • If a collection does not exist, MongoDB creates the collection when you first store data for that collection.
  • MongoDB provides the db.createCollection() method to explicitly create a collection with various options, such as setting the maximum size or the documentation validation rules.
  • By default, a collection does not require its documents to have the same schema;
  • To change the structure of the documents in a collection, such as add new fields, remove existing fields, or change the field values to a new type, update the documents to the new structure.
  • Collections are assigned an immutable UUID.
  • To retrieve the UUID for a collection, run either the listCollections command or the db.getCollectionInfos() method.
張 旭

鳥哥的 Linux 私房菜 -- 第零章、計算機概論 - 0 views

  • 但因為 CPU 的運算速度比其他的設備都要來的快,又為了要滿足 FSB 的頻率,因此廠商就在 CPU 內部再進行加速, 於是就有所謂的外頻與倍頻了。
  • 中央處理器 (Central Processing Unit, CPU),CPU 為一個具有特定功能的晶片, 裡頭含有微指令集,如果你想要讓主機進行什麼特異的功能,就得要參考這顆 CPU 是否有相關內建的微指令集才可以。
  • CPU 內又可分為兩個主要的單元,分別是: 算數邏輯單元與控制單元。
  • ...63 more annotations...
  • CPU 讀取的資料都是從主記憶體來的! 主記憶體內的資料則是從輸入單元所傳輸進來!而 CPU 處理完畢的資料也必須要先寫回主記憶體中,最後資料才從主記憶體傳輸到輸出單元。
  • 重點在於 CPU 與主記憶體。 特別要看的是實線部分的傳輸方向,基本上資料都是流經過主記憶體再轉出去的!
  • CPU 實際要處理的資料則完全來自於主記憶體 (不管是程式還是一般文件資料)!這是個很重要的概念喔! 這也是為什麼當你的記憶體不足時,系統的效能就很糟糕!
  • 常見到的兩種主要 CPU 架構, 分別是:精簡指令集 (RISC) 與複雜指令集 (CISC) 系統。
  • 微指令集較為精簡,每個指令的執行時間都很短,完成的動作也很單純,指令的執行效能較佳; 但是若要做複雜的事情,就要由多個指令來完成。
  • CISC在微指令集的每個小指令可以執行一些較低階的硬體操作,指令數目多而且複雜, 每條指令的長度並不相同。因為指令執行較為複雜所以每條指令花費的時間較長, 但每條個別指令可以處理的工作較為豐富。
  • 多媒體微指令集:MMX, SSE, SSE2, SSE3, SSE4, AMD-3DNow! 虛擬化微指令集:Intel-VT, AMD-SVM 省電功能:Intel-SpeedStep, AMD-PowerNow! 64/32位元相容技術:AMD-AMD64, Intel-EM64T
  • 若光以效能來說,目前的個人電腦效能已經夠快了,甚至已經比工作站等級以上的電腦運算速度還要快! 但是工作站電腦強調的是穩定不當機,並且運算過程要完全正確,因此工作站以上等級的電腦在設計時的考量與個人電腦並不相同啦
  • 1 Byte = 8 bits
  • 檔案容量使用的是二進位的方式,所以 1 GBytes 的檔案大小實際上為:1024x1024x1024 Bytes 這麼大! 速度單位則常使用十進位,例如 1GHz 就是 1000x1000x1000 Hz 的意思。
  • CPU的運算速度常使用 MHz 或者是 GHz 之類的單位,這個 Hz 其實就是秒分之一
  • 在網路傳輸方面,由於網路使用的是 bit 為單位,因此網路常使用的單位為 Mbps 是 Mbits per second,亦即是每秒多少 Mbit
  • (1)北橋:負責連結速度較快的CPU、主記憶體與顯示卡界面等元件
  • (2)南橋:負責連接速度較慢的裝置介面, 包括硬碟、USB、網路卡等等
  • CPU內部含有微指令集,不同的微指令集會導致CPU工作效率的優劣
  • 時脈就是CPU每秒鐘可以進行的工作次數。 所以時脈越高表示這顆CPU單位時間內可以作更多的事情。
  • 早期的 CPU 架構主要透過北橋來連結系統最重要的 CPU、主記憶體與顯示卡裝置。因為所有的設備都得掉透過北橋來連結,因此每個設備的工作頻率應該要相同。
  • 前端匯流排 (FSB)
  • 外頻指的是CPU與外部元件進行資料傳輸時的速度
  • 倍頻則是 CPU 內部用來加速工作效能的一個倍數
  • 新的 CPU 設計中, 已經將記憶體控制器整合到 CPU 內部,而連結 CPU 與記憶體、顯示卡的控制器的設計,在Intel部份使用 QPI (Quick Path Interconnect) 與 DMI 技術,而 AMD 部份則使用 Hyper Transport 了,這些技術都可以讓 CPU 直接與主記憶體、顯示卡等設備分別進行溝通,而不需要透過外部的連結晶片了。
  • 如何知道主記憶體能提供的資料量呢?此時還是得要藉由 CPU 內的記憶體控制晶片與主記憶體間的傳輸速度『前端匯流排速度(Front Side Bus, FSB)
  • 主記憶體也是有其工作的時脈,這個時脈限制還是來自於 CPU 內的記憶體控制器所決定的。
  • CPU每次能夠處理的資料量稱為字組大小(word size), 字組大小依據CPU的設計而有32位元與64位元。我們現在所稱的電腦是32或64位元主要是依據這個 CPU解析的字組大小而來的
  • 早期的32位元CPU中,因為CPU每次能夠解析的資料量有限, 因此由主記憶體傳來的資料量就有所限制了。這也導致32位元的CPU最多只能支援最大到4GBytes的記憶體。
  • 在每一個 CPU 內部將重要的暫存器 (register) 分成兩群, 而讓程序分別使用這兩群暫存器。
  • 可以有兩個程序『同時競爭 CPU 的運算單元』,而非透過作業系統的多工切換!
  • 大多發現 HT 雖然可以提昇效能,不過,有些情況下卻可能導致效能降低喔!因為,實際上明明就僅有一個運算單元
  • 個人電腦的主記憶體主要元件為動態隨機存取記憶體(Dynamic Random Access Memory, DRAM), 隨機存取記憶體只有在通電時才能記錄與使用,斷電後資料就消失了。因此我們也稱這種RAM為揮發性記憶體。
  • 要啟用雙通道的功能你必須要安插兩支(或四支)主記憶體,這兩支記憶體最好連型號都一模一樣比較好, 這是因為啟動雙通道記憶體功能時,資料是同步寫入/讀出這一對主記憶體中,如此才能夠提升整體的頻寬啊!
  • 第二層快取(L2 cache)整合到CPU內部,因此這個L2記憶體的速度必須要CPU時脈相同。 使用DRAM是無法達到這個時脈速度的,此時就需要靜態隨機存取記憶體(Static Random Access Memory, SRAM)的幫忙了。
  • BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是唯讀記憶體(Read Only Memory, ROM)。
  • BIOS對於個人電腦來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式
  • 由於磁碟盤是圓的,並且透過機器手臂去讀寫資料,磁碟盤要轉動才能夠讓機器手臂讀寫。因此,通常資料寫入當然就是以圓圈轉圈的方式讀寫囉! 所以,當初設計就是在類似磁碟盤同心圓上面切出一個一個的小區塊,這些小區塊整合成一個圓形,讓機器手臂上的讀寫頭去存取。 這個小區塊就是磁碟的最小物理儲存單位,稱之為磁區 (sector),那同一個同心圓的磁區組合成的圓就是所謂的磁軌(track)。 由於磁碟裡面可能會有多個磁碟盤,因此在所有磁碟盤上面的同一個磁軌可以組合成所謂的磁柱 (cylinder)。
  • 原本硬碟的磁區都是設計成 512byte 的容量,但因為近期以來硬碟的容量越來越大,為了減少資料量的拆解,所以新的高容量硬碟已經有 4Kbyte 的磁區設計
  • 拿快閃記憶體去製作成高容量的設備,這些設備的連接界面也是透過 SATA 或 SAS,而且外型還做的跟傳統磁碟一樣
  • 固態硬碟最大的好處是,它沒有馬達不需要轉動,而是透過記憶體直接讀寫的特性,因此除了沒資料延遲且快速之外,還很省電
  • 硬碟主要是利用主軸馬達轉動磁碟盤來存取,因此轉速的快慢會影響到效能
  • 使用作業系統的正常關機方式,才能夠有比較好的硬碟保養啊!因為他會讓硬碟的機械手臂歸回原位啊!
  • I/O位址有點類似每個裝置的門牌號碼,每個裝置都有他自己的位址,一般來說,不能有兩個裝置使用同一個I/O位址, 否則系統就會不曉得該如何運作這兩個裝置了。
  • IRQ就可以想成是各個門牌連接到郵件中心(CPU)的專門路徑囉! 各裝置可以透過IRQ中斷通道來告知CPU該裝置的工作情況,以方便CPU進行工作分配的任務。
  • BIOS為寫入到主機板上某一塊 flash 或 EEPROM 的程式,他可以在開機的時候執行,以載入CMOS當中的參數, 並嘗試呼叫儲存裝置中的開機程式,進一步進入作業系統當中。
  • 電腦都只有記錄0/1而已,甚至記錄的資料都是使用byte/bit等單位來記錄的
  • 常用的英文編碼表為ASCII系統,這個編碼系統中, 每個符號(英文、數字或符號等)都會佔用1bytes的記錄, 因此總共會有28=256種變化
  • 中文字當中的編碼系統早期最常用的就是big5這個編碼表了。 每個中文字會佔用2bytes,理論上最多可以有216=65536,亦即最多可達6萬多個中文字。
  • 國際組織ISO/IEC跳出來制訂了所謂的Unicode編碼系統, 我們常常稱呼的UTF8或萬國碼的編碼
  • CPU其實是具有微指令集的。因此,我們需要CPU幫忙工作時,就得要參考微指令集的內容, 然後撰寫讓CPU讀的懂的指令碼給CPU執行,這樣就能夠讓CPU運作了。
  • 編譯器』來將這些人類能夠寫的程式語言轉譯成為機器能看懂得機器碼
  • 當你需要將運作的資料寫入記憶體中,你就得要自行分配一個記憶體區塊出來讓自己的資料能夠填上去, 所以你還得要瞭解到記憶體的位址是如何定位的,啊!眼淚還是不知不覺的流了下來... 怎麼寫程式這麼麻煩啊!
  • 作業系統(Operating System, OS)其實也是一組程式, 這組程式的重點在於管理電腦的所有活動以及驅動系統中的所有硬體。
  • 作業系統的功能就是讓CPU可以開始判斷邏輯與運算數值、 讓主記憶體可以開始載入/讀出資料與程式碼、讓硬碟可以開始被存取、讓網路卡可以開始傳輸資料、 讓所有周邊可以開始運轉等等。
  • 只有核心有提供的功能,你的電腦系統才能幫你完成!舉例來說,你的核心並不支援TCP/IP的網路協定, 那麼無論你購買了什麼樣的網卡,這個核心都無法提供網路能力的!
  • 核心程式所放置到記憶體當中的區塊是受保護的! 並且開機後就一直常駐在記憶體當中。
  • 作業系統通常會提供一整組的開發介面給工程師來開發軟體! 工程師只要遵守該開發介面那就很容易開發軟體了!
  • 系統呼叫介面(System call interface)
  • 程序管理(Process control)
  • 記憶體管理(Memory management)
  • 檔案系統管理(Filesystem management)
  • 通常核心會提供虛擬記憶體的功能,當記憶體不足時可以提供記憶體置換(swap)的功能
  • 裝置的驅動(Device drivers)
  • 『可載入模組』功能,可以將驅動程式編輯成模組,就不需要重新的編譯核心
  • 驅動程式可以說是作業系統裡面相當重要的一環
  • 作業系統通常會提供一個開發介面給硬體開發商, 讓他們可以根據這個介面設計可以驅動他們硬體的『驅動程式』,如此一來,只要使用者安裝驅動程式後, 自然就可以在他們的作業系統上面驅動這塊顯示卡了。
  •  
    "但因為 CPU 的運算速度比其他的設備都要來的快,又為了要滿足 FSB 的頻率,因此廠商就在 CPU 內部再進行加速, 於是就有所謂的外頻與倍頻了。"
張 旭

鳥哥的 Linux 私房菜 -- 第一章、Linux是什麼與如何學習 - 0 views

  • Linux就是核心與系統呼叫介面那兩層
  • 核心與硬體的關係非常的強烈
  • Linux提供了一個完整的作業系統當中最底層的硬體控制與資源管理的完整架構, 這個架構是沿襲Unix良好的傳統來的,所以相當的穩定而功能強大
  • ...31 more annotations...
  • Linux的核心是由Linus Torvalds在1991年的時候給他開發出來的, 並且丟到網路上提供大家下載,後來大家覺得這個小東西(Linux Kernel)相當的小而精巧, 所以慢慢的就有相當多的朋友投入這個小東西的研究領域裡面去
  • 1960年代初期麻省理工學院(MIT)發展了所謂的: 『相容分時系統(Compatible Time-Sharing System, CTSS)』, 它可以讓大型主機透過提供數個終端機(terminal)以連線進入主機,來利用主機的資源進行運算工作
  • 為了更加強化大型主機的功能,以讓主機的資源可以提供更多使用者來利用,所以在1965年前後, 由貝爾實驗室(Bell)、麻省理工學院(MIT)及奇異公司(GE, 或稱為通用電器)共同發起了Multics的計畫
  • 以組合語言(Assembler)寫出了一組核心程式,同時包括一些核心工具程式, 以及一個小小的檔案系統。那個系統就是Unix的原型! 當時Thompson將Multics龐大的複雜系統簡化了不少,於是同實驗室的朋友都戲稱這個系統為:Unics。(當時尚未有Unix的名稱)
  • 所有的程式或系統裝置都是檔案
  • 不管建構編輯器還是附屬檔案,所寫的程式只有一個目的,且要有效的完成目標。
  • Dennis Ritchie (註3) 將B語言重新改寫成C語言,再以C語言重新改寫與編譯Unics的核心, 最後正名與發行出Unix的正式版本!
  • 由於Unix是以較高階的C語言寫的,相對於組合語言需要與硬體有密切的配合, 高階的C語言與硬體的相關性就沒有這麼大了!所以,這個改變也使得Unix很容易被移植到不同的機器上面喔!
  • AT&T此時對於Unix是採取較開放的態度,此外,Unix是以高階的C語言寫成的, 理論上是具有可移植性的!亦即只要取得Unix的原始碼,並且針對大型主機的特性加以修訂原有的原始碼(Source Code), 就可能將Unix移植到另一部不同的主機上頭了。
  • 柏克萊大學的Bill Joy (註4)在取得了Unix的核心原始碼後,著手修改成適合自己機器的版本, 並且同時增加了很多工具軟體與編譯程式,最終將它命名為Berkeley Software Distribution (BSD)。
  • 每一家公司自己出的Unix雖然在架構上面大同小異,但是卻真的僅能支援自身的硬體, 所以囉,早先的Unix只能與伺服器(Server)或者是大型工作站(Workstation)劃上等號!
  • AT&T在1979年發行的第七版Unix中,特別提到了 『不可對學生提供原始碼』的嚴格限制!
  • 純種的Unix指的就是System V以及BSD
  • AT&T自家的System V
  • 既然1979年的Unix第七版可以在Intel的x86架構上面進行移植, 那麼是否意味著可以將Unix改寫並移植到x86上面了呢?在這個想法上, 譚寧邦教授於是乎自己動手寫了Minix這個Unix Like的核心程式!
  • 『既然作業系統太複雜,我就先寫可以在Unix上面運行的小程式,這總可以了吧?』
  • 如果能夠寫出一個不錯的編譯器,那不就是大家都需要的軟體了嗎? 因此他便開始撰寫C語言的編譯器,那就是現在相當有名的GNU C Compiler(gcc)!
  • 他還撰寫了更多可以被呼叫的C函式庫(GNU C library),以及可以被使用來操作作業系統的基本介面BASH shell! 這些都在1990年左右完成了!
  • 有鑑於圖形使用者介面(Graphical User Interface, GUI) 的需求日益加重,在1984年由MIT與其他協力廠商首次發表了X Window System ,並且更在1988年成立了非營利性質的XFree86這個組織。所謂的XFree86其實是 X Window System + Free + x86的整合名稱呢!
  • 譚寧邦教授為了教育需要而撰寫的Minix系統! 他在購買了最新的Intel 386的個人電腦後,就立即安裝了Minix這個作業系統。 另外,上個小節當中也談到,Minix這個作業系統是有附上原始碼的, 所以托瓦茲也經由這個原始碼學習到了很多的核心程式設計的設計概念喔!
  • 托瓦茲自己也說:『我始終是個性能癖』^_^。 為了徹底發揮386的效能,於是托瓦茲花了不少時間在測試386機器上! 他的重要測試就是在測試386的多功性能。首先,他寫了三個小程式,一個程式會持續輸出A、一個會持續輸出B, 最後一個會將兩個程式進行切換。他將三個程式同時執行,結果,他看到螢幕上很順利的一直出現ABABAB...... 他知道,他成功了! ^_^
  • 為了讓所有的軟體都可以在Linux上執行,於是托瓦茲開始參考標準的POSIX規範。
  • POSIX是可攜式作業系統介面(Portable Operating System Interface)的縮寫,重點在規範核心與應用程式之間的介面, 這是由美國電器與電子工程師學會(IEEE)所發佈的一項標準喔
  • 因為托瓦茲放置核心的那個FTP網站的目錄為:Linux, 從此,大家便稱這個核心為Linux了。(請注意,此時的Linux就是那個kernel喔! 另外,托瓦茲所丟到該目錄下的第一個核心版本為0.02呢!)
  • Linux其實就是一個作業系統最底層的核心及其提供的核心工具。 他是GNU GPL授權模式,所以,任何人均可取得原始碼與可執行這個核心程式,並且可以修改。
  • Linux參考POSIX設計規範,於是相容於Unix作業系統,故亦可稱之為Unix Like的一種
  • 為了讓使用者能夠接觸到Linux,於是很多的商業公司或非營利團體, 就將Linux Kernel(含tools)與可運行的軟體整合起來,加上自己具有創意的工具程式, 這個工具程式可以讓使用者以光碟/DVD或者透過網路直接安裝/管理Linux系統。 這個『Kernel + Softwares + Tools + 可完整安裝程序』的咚咚,我們稱之為Linux distribution, 一般中文翻譯成可完整安裝套件,或者Linux發佈商套件等。
  • 在1994年終於完成的Linux的核心正式版!version 1.0。 這一版同時還加入了X Window System的支援呢!且於1996年完成了2.0版、2011 年釋出 3.0 版,更於 2015 年 4 月釋出了 4.0 版哩! 發展相當迅速喔!此外,托瓦茲指明了企鵝為Linux的吉祥物。
  • Linux本身就是個最陽春的作業系統,其開發網站設立在http://www.kernel.org,我們亦稱Linux作業系統最底層的資料為『核心(Kernel)』。
  • 常見的 Linux distributions 分類有『商業、社群』分類法,或『RPM、DPKG』分類法
  • 事實上鳥哥認為distributions主要分為兩大系統,一種是使用RPM方式安裝軟體的系統,包括Red Hat, Fedora, SuSE等都是這類; 一種則是使用Debian的dpkg方式安裝軟體的系統,包括Debian, Ubuntu, B2D等等。
張 旭

Incremental Backup - 0 views

  • xtrabackup supports incremental backups, which means that they can copy only the data that has changed since the last backup.
  • You can perform many incremental backups between each full backup, so you can set up a backup process such as a full backup once a week and an incremental backup every day, or full backups every day and incremental backups every hour.
  • each InnoDB page contains a log sequence number, or LSN. The LSN is the system version number for the entire database. Each page’s LSN shows how recently it was changed.
  • ...18 more annotations...
  • In full backups, two types of operations are performed to make the database consistent: committed transactions are replayed from the log file against the data files, and uncommitted transactions are rolled back.
  • You should use the --apply-log-only option to prevent the rollback phase.
  • An incremental backup copies each page whose LSN is newer than the previous incremental or full backup’s LSN.
  • Incremental backups do not actually compare the data files to the previous backup’s data files.
  • you can use --incremental-lsn to perform an incremental backup without even having the previous backup, if you know its LSN
  • Incremental backups simply read the pages and compare their LSN to the last backup’s LSN.
  • without a full backup to act as a base, the incremental backups are useless.
  • The xtrabackup binary writes a file called xtrabackup_checkpoints into the backup’s target directory. This file contains a line showing the to_lsn, which is the database’s LSN at the end of the backup.
  • from_lsn is the starting LSN of the backup and for incremental it has to be the same as to_lsn (if it is the last checkpoint) of the previous/base backup.
  • If you do not use the --apply-log-only option to prevent the rollback phase, then your incremental backups will be useless.
  • run --prepare as usual, but prevent the rollback phase
  • If you restore it and start MySQL, InnoDB will detect that the rollback phase was not performed, and it will do that in the background, as it usually does for a crash recovery upon start.
  • xtrabackup --prepare --apply-log-only --target-dir=/data/backups/base \ --incremental-dir=/data/backups/inc1
  • The final data is in /data/backups/base, not in the incremental directory.
  • Do not run xtrabackup --prepare with the same incremental backup directory (the value of –incremental-dir) more than once.
  • xtrabackup --prepare --target-dir=/data/backups/base \ --incremental-dir=/data/backups/inc2
  • --apply-log-only should be used when merging all incrementals except the last one.
  • Even if the --apply-log-only was used on the last step, backup would still be consistent but in that case server would perform the rollback phase.
張 旭

Introducing CNAME Flattening: RFC-Compliant CNAMEs at a Domain's Root - 0 views

  • you can now safely use a CNAME record, as opposed to an A record that points to a fixed IP address, as your root record in CloudFlare DNS without triggering a number of edge case error conditions because you’re violating the DNS spec.
  • CNAME Flattening allowed us to use a root domain while still maintaining DNS fault-tolerance across multiple IP addresses.
  • Traditionally, the root record of a domain needed to point to an IP address (known as an A -- for "address" -- Record).
  • ...13 more annotations...
  • WordPlumblr allows its users to use custom domains that point to the WordPlumblr infrastructure
  • A CNAME is an alias. It allows one domain to point to another domain which, eventually if you follow the CNAME chain, will resolve to an A record and IP address.
  • For example, WordPlumblr might have assigned the CNAME 6equj5.wordplumblr.com for Foo.com. Foo.com and the other customers may have all initially resolved, at the end of the CNAME chain, to the same IP address.
  • you usually don't want to address memory directly but, instead, you set up a pointer to a block of memory where you're going to store something. If the operating system needs to move the memory around then it just updates the pointer to point to wherever the chunk of memory has been moved to.
  • CNAMEs work great for subdomains like www.foo.com or blog.foo.com. Unfortunately, they don't work for a naked domain like foo.com itself.
  • the DNS spec enshrined that the root record -- the naked domain without any subdomain -- could not be a CNAME.
  • Technically, the root could be a CNAME but the RFCs state that once a record has a CNAME it can't have any other entries associated with it
  • a way to support a CNAME at the root, but still follow the RFC and return an IP address for any query for the root record.
  • extended our authoritative DNS infrastructure to, in certain cases, act as a kind of DNS resolver.
  • if there's a CNAME at the root, rather than returning that record directly we recurse through the CNAME chain ourselves until we find an A Record.
  • allows the flexibility of having CNAMEs at the root without breaking the DNS specification.
  • We cache the CNAME responses -- respecting the DNS TTLs, just like a recursor should -- which means often we have the answer without having to traverse the chain.
  • CNAME flattening solved email resolution errors for us which was very key.
張 旭

Data Sources - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • Each provider may offer data sources alongside its set of resource types.
  • When distinguishing from data resources, the primary kind of resource (as declared by a resource block) is known as a managed resource.
  • Each data resource is associated with a single data source, which determines the kind of object (or objects) it reads and what query constraint arguments are available.
  • ...4 more annotations...
  • Terraform reads data resources during the planning phase when possible, but announces in the plan when it must defer reading resources until the apply phase to preserve the order of operations.
  • local-only data sources exist for rendering templates, reading local files, and rendering AWS IAM policies.
  • As with managed resources, when count or for_each is present it is important to distinguish the resource itself from the multiple resource instances it creates. Each instance will separately read from its data source with its own variant of the constraint arguments, producing an indexed result.
  • Data instance arguments may refer to computed values, in which case the attributes of the instance itself cannot be resolved until all of its arguments are defined. I
張 旭

Container Runtimes | Kubernetes - 0 views

  • Kubernetes releases before v1.24 included a direct integration with Docker Engine, using a component named dockershim. That special direct integration is no longer part of Kubernetes
  • You need to install a container runtime into each node in the cluster so that Pods can run there.
  • Kubernetes 1.26 requires that you use a runtime that conforms with the Container Runtime Interface (CRI).
  • ...9 more annotations...
  • On Linux, control groups are used to constrain resources that are allocated to processes.
  • Both kubelet and the underlying container runtime need to interface with control groups to enforce resource management for pods and containers and set resources such as cpu/memory requests and limits.
  • When the cgroupfs driver is used, the kubelet and the container runtime directly interface with the cgroup filesystem to configure cgroups.
  • The cgroupfs driver is not recommended when systemd is the init system
  • When systemd is chosen as the init system for a Linux distribution, the init process generates and consumes a root control group (cgroup) and acts as a cgroup manager.
  • Two cgroup managers result in two views of the available and in-use resources in the system.
  • Changing the cgroup driver of a Node that has joined a cluster is a sensitive operation. If the kubelet has created Pods using the semantics of one cgroup driver, changing the container runtime to another cgroup driver can cause errors when trying to re-create the Pod sandbox for such existing Pods. Restarting the kubelet may not solve such errors.
  • The approach to mitigate this instability is to use systemd as the cgroup driver for the kubelet and the container runtime when systemd is the selected init system.
  • Kubernetes 1.26 defaults to using v1 of the CRI API. If a container runtime does not support the v1 API, the kubelet falls back to using the (deprecated) v1alpha2 API instead.
張 旭

Cluster Networking - Kubernetes - 0 views

  • Networking is a central part of Kubernetes, but it can be challenging to understand exactly how it is expected to work
  • Highly-coupled container-to-container communications
  • Pod-to-Pod communications
  • ...57 more annotations...
  • this is the primary focus of this document
    • 張 旭
       
      Cluster Networking 所關注處理的是: Pod 到 Pod 之間的連線
  • Pod-to-Service communications
  • External-to-Service communications
  • Kubernetes is all about sharing machines between applications.
  • sharing machines requires ensuring that two applications do not try to use the same ports.
  • Dynamic port allocation brings a lot of complications to the system
  • Every Pod gets its own IP address
  • do not need to explicitly create links between Pods
  • almost never need to deal with mapping container ports to host ports.
  • Pods can be treated much like VMs or physical hosts from the perspectives of port allocation, naming, service discovery, load balancing, application configuration, and migration.
  • pods on a node can communicate with all pods on all nodes without NAT
  • agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
  • pods in the host network of a node can communicate with all pods on all nodes without NAT
  • If your job previously ran in a VM, your VM had an IP and could talk to other VMs in your project. This is the same basic model.
  • containers within a Pod share their network namespaces - including their IP address
  • containers within a Pod can all reach each other’s ports on localhost
  • containers within a Pod must coordinate port usage
  • “IP-per-pod” model.
  • request ports on the Node itself which forward to your Pod (called host ports), but this is a very niche operation
  • The Pod itself is blind to the existence or non-existence of host ports.
  • AOS is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform.
  • Cisco Application Centric Infrastructure offers an integrated overlay and underlay SDN solution that supports containers, virtual machines, and bare metal servers.
  • AOS Reference Design currently supports Layer-3 connected hosts that eliminate legacy Layer-2 switching problems.
  • The AWS VPC CNI offers integrated AWS Virtual Private Cloud (VPC) networking for Kubernetes clusters.
  • users can apply existing AWS VPC networking and security best practices for building Kubernetes clusters.
  • Using this CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC network.
  • The CNI allocates AWS Elastic Networking Interfaces (ENIs) to each Kubernetes node and using the secondary IP range from each ENI for pods on the node.
  • Big Cloud Fabric is a cloud native networking architecture, designed to run Kubernetes in private cloud/on-premises environments.
  • Cilium is L7/HTTP aware and can enforce network policies on L3-L7 using an identity based security model that is decoupled from network addressing.
  • CNI-Genie is a CNI plugin that enables Kubernetes to simultaneously have access to different implementations of the Kubernetes network model in runtime.
  • CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI plugin.
  • cni-ipvlan-vpc-k8s contains a set of CNI and IPAM plugins to provide a simple, host-local, low latency, high throughput, and compliant networking stack for Kubernetes within Amazon Virtual Private Cloud (VPC) environments by making use of Amazon Elastic Network Interfaces (ENI) and binding AWS-managed IPs into Pods using the Linux kernel’s IPvlan driver in L2 mode.
  • to be straightforward to configure and deploy within a VPC
  • Contiv provides configurable networking
  • Contrail, based on Tungsten Fabric, is a truly open, multi-cloud network virtualization and policy management platform.
  • DANM is a networking solution for telco workloads running in a Kubernetes cluster.
  • Flannel is a very simple overlay network that satisfies the Kubernetes requirements.
  • Any traffic bound for that subnet will be routed directly to the VM by the GCE network fabric.
  • sysctl net.ipv4.ip_forward=1
  • Jaguar provides overlay network using vxlan and Jaguar CNIPlugin provides one IP address per pod.
  • Knitter is a network solution which supports multiple networking in Kubernetes.
  • Kube-OVN is an OVN-based kubernetes network fabric for enterprises.
  • Kube-router provides a Linux LVS/IPVS-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
  • If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you should be able to do something similar to the above GCE setup.
  • Multus is a Multi CNI plugin to support the Multi Networking feature in Kubernetes using CRD based network objects in Kubernetes.
  • NSX-T can provide network virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging application frameworks and architectures that have heterogeneous endpoints and technology stacks.
  • NSX-T Container Plug-in (NCP) provides integration between NSX-T and container orchestrators such as Kubernetes
  • Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
  • OpenVSwitch is a somewhat more mature but also complicated way to build an overlay network
  • OVN is an opensource network virtualization solution developed by the Open vSwitch community.
  • Project Calico is an open source container networking provider and network policy engine.
  • Calico provides a highly scalable networking and network policy solution for connecting Kubernetes pods based on the same IP networking principles as the internet
  • Calico can be deployed without encapsulation or overlays to provide high-performance, high-scale data center networking.
  • Calico can also be run in policy enforcement mode in conjunction with other networking solutions such as Flannel, aka canal, or native GCE, AWS or Azure networking.
  • Romana is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network
  • Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any configuration or extra code to run, and in both cases, the network provides one IP address per pod - as is standard for Kubernetes.
  • The network model is implemented by the container runtime on each node.
張 旭

Securing NGINX-ingress - cert-manager Documentation - 1 views

  • If using a ClusterIssuer, remember to update the Ingress annotation cert-manager.io/issuer to cert-manager.io/cluster-issuer
  • Certificates resources allow you to specify the details of the certificate you want to request.
  • An Issuer defines how cert-manager will request TLS certificates.
  • ...4 more annotations...
  • cert-manager mainly uses two different custom Kubernetes resources - known as CRDs - to configure and control how it operates, as well as to store state. These resources are Issuers and Certificates.
  • using annotations on the ingress with ingress-shim or directly creating a certificate resource.
  • The secret that is used in the ingress should match the secret defined in the certificate.
  • a typo will result in the ingress-nginx-controller falling back to its self-signed certificate.
  •  
    "If using a ClusterIssuer, remember to update the Ingress annotation cert-manager.io/issuer to cert-manager.io/cluster-issuer"
« First ‹ Previous 61 - 80 of 81 Next ›
Showing 20 items per page