Skip to main content

Home/ Larvata/ Group items tagged level

Rss Feed Group items tagged

張 旭

DNS Records: an Introduction - 0 views

  • reading from right to left
  • top-level domain, or TLD
  • first-level subdomains plus their TLDs (example.com) are referred to as “domains.”
  • ...37 more annotations...
  • Name servers host a domain’s DNS information in a text file called the zone file
  • Start of Authority (SOA) records
  • You’ll want to specify at least two name servers. That way, if one of them is down, the next one can continue to serve your DNS information.
  • Every domain’s zone file contains the admin’s email address, the name servers, and the DNS records.
  • a zone file, which lists domains and their corresponding IP addresses (and a few other things)
  • TLD nameserver
  • ISPs cache a lot of DNS information after they’ve looked it up the first time
  • Usually caching is a good thing, but it can be a problem if you’ve recently made a change to your DNS information
  • An A record matches up a domain (or subdomain) to an IP address
  • point different subdomains to different IP addresses
  • An AAAA record is just like an A record, but for IPv6 IP addresses.
  • An AXFR record is a type of DNS record used for DNS replication
  • used on a slave DNS server to replicate the zone file from a master DNS server
  • DNS Certification Authority Authorization uses DNS to allow the holder of a domain to specify which certificate authorities are allowed to issue certificates for that domain.
  • A CNAME record or Canonical Name record matches up a domain (or subdomain) to a different domain.
  • You should not use a CNAME record for a domain that gets email, because some mail servers handle mail oddly for domains with CNAME records
  • the target domain for a CNAME record should have a normal A-record resolution
  • a CNAME record does not function the same way as a URL redirect
  • A DKIM record or domain keys identified mail record displays the public key for authenticating messages that have been signed with the DKIM protocol
  • An MX record or mail exchange record sets the mail delivery destination for a domain (or subdomain).
  • Ideally, an MX record should point to a domain that is also the hostname for its server.
  • Your MX records don’t necessarily have to point to your Linode. If you’re using a third-party mail service, like Google Apps, you should use the MX records they provide.
  • Lower numbers have a higher priority
  • NS records or name server records set the nameservers for a domain (or subdomain).
  • You can also set up different nameservers for any of your subdomains.
  • The order of NS records does not matter; DNS requests are sent randomly to the different servers, and if one host fails to respond, another one will be queried.
  • A PTR record or pointer record matches up an IP address to a domain (or subdomain), allowing reverse DNS queries to function.
  • PTR records are usually set with your hosting provider. They are not part of your domain’s zone file.
  • An SOA record or Start of Authority record labels a zone file with the name of the host where it was originally created.
  • The administrative email address is written with a period (.) instead of an at symbol (<@>).
  • The single nameserver mentioned in the SOA record is considered the primary master for the purposes of Dynamic DNS and is the server where zone file changes get made before they are propagated to all other nameservers.
  • An SPF record or Sender Policy Framework record lists the designated mail servers for a domain (or subdomain).
  • An SPF record for your domain tells other receiving mail servers which outgoing server(s) are valid sources of email, so they can reject spoofed email from your domain that has originated from unauthorized servers.
  • Your SPF record will have a domain or subdomain, type (which is TXT, or SPF if your name server supports it), and text (which starts with “v=spf1” and contains the SPF record settings).
  • An SRV record or service record matches up a specific service that runs on your domain (or subdomain) to a target domain.
  • A TXT record or text record provides information about the domain in question to other resources on the Internet.
  • One common use of the TXT record is to create an SPF record on nameservers that don’t natively support SPF.
張 旭

Understanding Nginx Server and Location Block Selection Algorithms | DigitalOcean - 0 views

  • A server block is a subset of Nginx’s configuration that defines a virtual server used to handle requests of a defined type. Administrators often configure multiple server blocks and decide which block should handle which connection based on the requested domain name, port, and IP address.
  • A location block lives within a server block and is used to define how Nginx should handle requests for different resources and URIs for the parent server. The URI space can be subdivided in whatever way the administrator likes using these blocks. It is an extremely flexible model.
  • Nginx logically divides the configurations meant to serve different content into blocks, which live in a hierarchical structure. Each time a client request is made, Nginx begins a process of determining which configuration blocks should be used to handle the request.
  • ...37 more annotations...
  • Nginx is one of the most popular web servers in the world. It can successfully handle high loads with many concurrent client connections, and can easily function as a web server, a mail server, or a reverse proxy server.
  • The main server block directives that Nginx is concerned with during this process are the listen directive, and the server_name directive.
  • The listen directive typically defines which IP address and port that the server block will respond to.
  • 0.0.0.0:8080 if Nginx is being run by a normal, non-root user
  • Nginx translates all “incomplete” listen directives by substituting missing values with their default values so that each block can be evaluated by its IP address and port.
  • In any case, the port must be matched exactly.
  • If there are multiple server blocks with the same level of specificity matching, Nginx then begins to evaluate the server_name directive of each server block.
  • Nginx will only evaluate the server_name directive when it needs to distinguish between server blocks that match to the same level of specificity in the listen directive.
  • Nginx checks the request’s “Host” header. This value holds the domain or IP address that the client was actually trying to reach.
  • Nginx will first try to find a server block with a server_name that matches the value in the “Host” header of the request exactly.
  • If no exact match is found, Nginx will then try to find a server block with a server_name that matches using a leading wildcard (indicated by a * at the beginning of the name in the config).
  • If no match is found using a leading wildcard, Nginx then looks for a server block with a server_name that matches using a trailing wildcard (indicated by a server name ending with a * in the config)
  • If no match is found using a trailing wildcard, Nginx then evaluates server blocks that define the server_name using regular expressions (indicated by a ~ before the name).
  • If no regular expression match is found, Nginx then selects the default server block for that IP address and port.
  • There can be only one default_server declaration per each IP address/port combination.
  • Location blocks live within server blocks (or other location blocks) and are used to decide how to process the request URI (the part of the request that comes after the domain name or IP address/port).
  • If no modifiers are present, the location is interpreted as a prefix match.
  • =: If an equal sign is used, this block will be considered a match if the request URI exactly matches the location given.
  • ~: If a tilde modifier is present, this location will be interpreted as a case-sensitive regular expression match.
  • ~*: If a tilde and asterisk modifier is used, the location block will be interpreted as a case-insensitive regular expression match.
  • ^~: If a carat and tilde modifier is present, and if this block is selected as the best non-regular expression match, regular expression matching will not take place.
  • Keep in mind that if this block is selected and the request is fulfilled using an index page, an internal redirect will take place to another location that will be the actual handler of the request
  • Keeping in mind the types of location declarations we described above, Nginx evaluates the possible location contexts by comparing the request URI to each of the locations.
  • Nginx begins by checking all prefix-based location matches (all location types not involving a regular expression).
  • First, Nginx looks for an exact match.
  • If no exact (with the = modifier) location block matches are found, Nginx then moves on to evaluating non-exact prefixes.
  • After the longest matching prefix location is determined and stored, Nginx moves on to evaluating the regular expression locations (both case sensitive and insensitive).
  • by default, Nginx will serve regular expression matches in preference to prefix matches.
  • regular expression matches within the longest prefix match will “jump the line” when Nginx evaluates regex locations.
  • The exceptions to the “only one location block” rule may have implications on how the request is actually served and may not align with the expectations you had when designing your location blocks.
  • The index directive always leads to an internal redirect if it is used to handle the request.
  • In the case above, if you really need the execution to stay in the first block, you will have to come up with a different method of satisfying the request to the directory.
  • one way of preventing an index from switching contexts, but it’s probably not useful for most configurations
  • the try_files directive. This directive tells Nginx to check for the existence of a named set of files or directories.
  • the rewrite directive. When using the last parameter with the rewrite directive, or when using no parameter at all, Nginx will search for a new matching location based on the results of the rewrite.
  • The error_page directive can lead to an internal redirect similar to that created by try_files.
  • when certain status codes are encountered.
張 旭

Database Profiler - MongoDB Manual - 0 views

  • The database profiler collects detailed information about Database Commands executed against a running mongod instance.
  • The profiler writes all the data it collects to the system.profile collection, a capped collection in the admin database.
  • db.setProfilingLevel(2)
  • ...10 more annotations...
  • The slowms and sampleRate profiling settings are global. When set, these settings affect all databases in your process.
  • db.setProfilingLevel(1, { slowms: 20 })
  • db.setProfilingLevel(0, { slowms: 20 })
  • show profile
  • The system.profile collection is a capped collection with a default size of 1 megabyte.
  • By default, sampleRate is set to 1.0, meaning all slow operations are profiled.
  • When logLevel is set to 0, MongoDB records slow operations to the diagnostic log at a rate determined by slowOpSampleRate.
  • The slowms field indicates operation time threshold, in milliseconds, beyond which operations are considered slow.
  • You cannot enable profiling on a mongos instance.
  • profiler logs information about database operations in the system.profile collection.
張 旭

Helm | - 0 views

  • Templates generate manifest files, which are YAML-formatted resource descriptions that Kubernetes can understand.
  • service.yaml: A basic manifest for creating a service endpoint for your deployment
  • In Kubernetes, a ConfigMap is simply a container for storing configuration data.
  • ...88 more annotations...
  • deployment.yaml: A basic manifest for creating a Kubernetes deployment
  • using the suffix .yaml for YAML files and .tpl for helpers.
  • It is just fine to put a plain YAML file like this in the templates/ directory.
  • helm get manifest
  • The helm get manifest command takes a release name (full-coral) and prints out all of the Kubernetes resources that were uploaded to the server. Each file begins with --- to indicate the start of a YAML document
  • Names should be unique to a release
  • The name: field is limited to 63 characters because of limitations to the DNS system.
  • release names are limited to 53 characters
  • {{ .Release.Name }}
  • A template directive is enclosed in {{ and }} blocks.
  • The values that are passed into a template can be thought of as namespaced objects, where a dot (.) separates each namespaced element.
  • The leading dot before Release indicates that we start with the top-most namespace for this scope
  • The Release object is one of the built-in objects for Helm
  • When you want to test the template rendering, but not actually install anything, you can use helm install ./mychart --debug --dry-run
  • Using --dry-run will make it easier to test your code, but it won’t ensure that Kubernetes itself will accept the templates you generate.
  • Objects are passed into a template from the template engine.
  • create new objects within your templates
  • Objects can be simple, and have just one value. Or they can contain other objects or functions.
  • Release is one of the top-level objects that you can access in your templates.
  • Release.Namespace: The namespace to be released into (if the manifest doesn’t override)
  • Values: Values passed into the template from the values.yaml file and from user-supplied files. By default, Values is empty.
  • Chart: The contents of the Chart.yaml file.
  • Files: This provides access to all non-special files in a chart.
  • Files.Get is a function for getting a file by name
  • Files.GetBytes is a function for getting the contents of a file as an array of bytes instead of as a string. This is useful for things like images.
  • Template: Contains information about the current template that is being executed
  • BasePath: The namespaced path to the templates directory of the current chart
  • The built-in values always begin with a capital letter.
  • Go’s naming convention
  • use only initial lower case letters in order to distinguish local names from those built-in.
  • If this is a subchart, the values.yaml file of a parent chart
  • Individual parameters passed with --set
  • values.yaml is the default, which can be overridden by a parent chart’s values.yaml, which can in turn be overridden by a user-supplied values file, which can in turn be overridden by --set parameters.
  • While structuring data this way is possible, the recommendation is that you keep your values trees shallow, favoring flatness.
  • If you need to delete a key from the default values, you may override the value of the key to be null, in which case Helm will remove the key from the overridden values merge.
  • Kubernetes would then fail because you can not declare more than one livenessProbe handler.
  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • quote
  • Template functions follow the syntax functionName arg1 arg2...
  • While we talk about the “Helm template language” as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • pipelines are an efficient way of getting several things done in sequence
  • The repeat function will echo the given string the given number of times
  • default DEFAULT_VALUE GIVEN_VALUE. This function allows you to specify a default value inside of the template, in case the value is omitted.
  • all static default values should live in the values.yaml, and should not be repeated using the default command
  • Operators are implemented as functions that return a boolean value.
  • To use eq, ne, lt, gt, and, or, not etcetera place the operator at the front of the statement followed by its parameters just as you would a function.
  • if and
  • if or
  • with to specify a scope
  • range, which provides a “for each”-style loop
  • block declares a special kind of fillable template area
  • A pipeline is evaluated as false if the value is: a boolean false a numeric zero an empty string a nil (empty or null) an empty collection (map, slice, tuple, dict, array)
  • incorrect YAML because of the whitespacing
  • When the template engine runs, it removes the contents inside of {{ and }}, but it leaves the remaining whitespace exactly as is.
  • {{- (with the dash and space added) indicates that whitespace should be chomped left, while -}} means whitespace to the right should be consumed.
  • Newlines are whitespace!
  • an * at the end of the line indicates a newline character that would be removed
  • Be careful with the chomping modifiers.
  • the indent function
  • Scopes can be changed. with can allow you to set the current scope (.) to a particular object.
  • Inside of the restricted scope, you will not be able to access the other objects from the parent scope.
  • range
  • The range function will “range over” (iterate through) the pizzaToppings list.
  • Just like with sets the scope of ., so does a range operator.
  • The toppings: |- line is declaring a multi-line string.
  • not a YAML list. It’s a big string.
  • the data in ConfigMaps data is composed of key/value pairs, where both the key and the value are simple strings.
  • The |- marker in YAML takes a multi-line string.
  • range can be used to iterate over collections that have a key and a value (like a map or dict).
  • In Helm templates, a variable is a named reference to another object. It follows the form $name
  • Variables are assigned with a special assignment operator: :=
  • {{- $relname := .Release.Name -}}
  • capture both the index and the value
  • the integer index (starting from zero) to $index and the value to $topping
  • For data structures that have both a key and a value, we can use range to get both
  • Variables are normally not “global”. They are scoped to the block in which they are declared.
  • one variable that is always global - $ - this variable will always point to the root context.
  • $.
  • $.
  • Helm template language is its ability to declare multiple templates and use them together.
  • A named template (sometimes called a partial or a subtemplate) is simply a template defined inside of a file, and given a name.
  • when naming templates: template names are global.
  • If you declare two templates with the same name, whichever one is loaded last will be the one used.
  • you should be careful to name your templates with chart-specific names.
  • templates in subcharts are compiled together with top-level templates
  • naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • Helm has over 60 available functions.
張 旭

Using cache in GitLab CI with Docker-in-Docker | $AYMDEV() - 0 views

  • optimize our images.
  • When you build an image, it is made of multiple layers: we add a layer per instruction.
  • If we build the same image again without modifying any file, Docker will use existing layers rather than re-executing the instructions.
  • ...21 more annotations...
  • an image is made of multiple layers, and we can accelerate its build by using layers cache from the previous image version.
  • by using Docker-in-Docker, we get a fresh Docker instance per job which local registry is empty.
  • docker build --cache-from "$CI_REGISTRY_IMAGE:latest" -t "$CI_REGISTRY_IMAGE:new-tag"
  • But if you maintain a CHANGELOG in this format, and/or your Git tags are also your Docker tags, you can get the previous version and use cache the this image version.
  • script: - export PREVIOUS_VERSION=$(perl -lne 'print "v${1}" if /^##\s\[(\d\.\d\.\d)\]\s-\s\d{4}(?:-\d{2}){2}\s*$/' CHANGELOG.md | sed -n '2 p') - docker build --cache-from "$CI_REGISTRY_IMAGE:$PREVIOUS_VERSION" -t "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG" -f ./prod.Dockerfile .
  • « Docker layer caching » is enough to optimize the build time.
  • Cache in CI/CD is about saving directories or files across pipelines.
  • We're building a Docker image, dependencies are installed inside a container.We can't cache a dependencies directory if it doesn't exists in the job workspace.
  • Dependencies will always be installed from a container but will be extracted by the GitLab Runner in the job workspace. Our goal is to send the cached version in the build context.
  • We set the directories to cache in the job settings with a key to share the cache per branch and stage.
  • - docker cp app:/var/www/html/vendor/ ./vendor
  • after_script
  • - docker cp app:/var/www/html/node_modules/ ./node_modules
  • To avoid old dependencies to be mixed with the new ones, at the risk of keeping unused dependencies in cache, which would make cache and images heavier.
  • If you need to cache directories in testing jobs, it's easier: use volumes !
  • version your cache keys !
  • sharing Docker image between jobs
  • In every job, we automatically get artifacts from previous stages.
  • docker save $DOCKER_CI_IMAGE | gzip > app.tar.gz
  • I personally use the « push / pull » technique,
  • we docker push after the build, then we docker pull if needed in the next jobs.
張 旭

Considerations for large clusters | Kubernetes - 0 views

  • A cluster is a set of nodes (physical or virtual machines) running Kubernetes agents, managed by the control plane.
  • Kubernetes v1.23 supports clusters with up to 5000 nodes.
  • criteria: No more than 110 pods per node No more than 5000 nodes No more than 150000 total pods No more than 300000 total containers
  • ...14 more annotations...
  • In-use IP addresses
  • run one or two control plane instances per failure zone, scaling those instances vertically first and then scaling horizontally after reaching the point of falling returns to (vertical) scale.
  • Kubernetes nodes do not automatically steer traffic towards control-plane endpoints that are in the same failure zone
  • store Event objects in a separate dedicated etcd instance.
  • start and configure additional etcd instance
  • Kubernetes resource limits help to minimize the impact of memory leaks and other ways that pods and containers can impact on other components.
  • Addons' default limits are typically based on data collected from experience running each addon on small or medium Kubernetes clusters.
  • When running on large clusters, addons often consume more of some resources than their default limits.
  • Many addons scale horizontally - you add capacity by running more pods
  • The VerticalPodAutoscaler can run in recommender mode to provide suggested figures for requests and limits.
  • Some addons run as one copy per node, controlled by a DaemonSet: for example, a node-level log aggregator.
  • VerticalPodAutoscaler is a custom resource that you can deploy into your cluster to help you manage resource requests and limits for pods.
  • The cluster autoscaler integrates with a number of cloud providers to help you run the right number of nodes for the level of resource demand in your cluster.
  • The addon resizer helps you in resizing the addons automatically as your cluster's scale changes.
張 旭

Building a RESTful API in a Rails application - 0 views

  • designing and implementing a REST API in an intentionally simplistic task management web application, and will cover some best practices to ensure maintainability of the code.
  • each individual request should have no context of the requests that came before it.
  • each request that modifies the database should act on one and only one row of one and only one table
  • ...10 more annotations...
  • The resource endpoints should return representations of the resource as data, usually XML or JSON.
  • POST for create, PUT for update, PATCH for upsert (update and insert).
  • an existing API should never be modified, except for critical bugfixes
  • Rather than changing existing endpoints, expose a new version
  • using unique database ids in the route chain allows users to access short routes, and simplifies resource lookup
  • while exposing internal database ids to the consumer and requiring the consumer to maintain a reference to ids on their end
  • The downfall is longer nested routes
  • require reauthentication on a per-request level
  • Devise.secure_compare helps avoid timing attacks
  • Defensive programming is a software design principle that dictates that a piece of software should be designed to continue functioning in unforeseen circumstances.
張 旭

Serverless Architectures - 0 views

  • Serverless was first used to describe applications that significantly or fully depend on 3rd party applications / services (‘in the cloud’) to manage server-side logic and state.
  • ‘rich client’ applications (think single page web apps, or mobile apps) that use the vast ecosystem of cloud accessible databases (like Parse, Firebase), authentication services (Auth0, AWS Cognito), etc.
  • ‘(Mobile) Backend as a Service’
  • ...33 more annotations...
  • Serverless can also mean applications where some amount of server-side logic is still written by the application developer but unlike traditional architectures is run in stateless compute containers that are event-triggered, ephemeral (may only last for one invocation), and fully managed by a 3rd party.
  • ‘Functions as a service
  • AWS Lambda is one of the most popular implementations of FaaS at present,
  • A good example is Auth0 - they started initially with BaaS ‘Authentication as a Service’, but with Auth0 Webtask they are entering the FaaS space.
  • a typical ecommerce app
  • a backend data-processing service
  • with zero administration.
  • FaaS offerings do not require coding to a specific framework or library.
  • Horizontal scaling is completely automatic, elastic, and managed by the provider
  • Functions in FaaS are triggered by event types defined by the provider.
  • a FaaS-supported message broker
  • from a deployment-unit point of view FaaS functions are stateless.
  • allowed the client direct access to a subset of our database
  • deleted the authentication logic in the original application and have replaced it with a third party BaaS service
  • The client is in fact well on its way to becoming a Single Page Application.
  • implement a FaaS function that responds to http requests via an API Gateway
  • port the search code from the Pet Store server to the Pet Store Search function
  • replaced a long lived consumer application with a FaaS function that runs within the event driven context
  • server applications - is a key difference when comparing with other modern architectural trends like containers and PaaS
  • the only code that needs to change when moving to FaaS is the ‘main method / startup’ code, in that it is deleted, and likely the specific code that is the top-level message handler (the ‘message listener interface’ implementation), but this might only be a change in method signature
  • With FaaS you need to write the function ahead of time to assume parallelism
  • Most providers also allow functions to be triggered as a response to inbound http requests, typically in some kind of API gateway
  • you should assume that for any given invocation of a function none of the in-process or host state that you create will be available to any subsequent invocation.
  • FaaS functions are either naturally stateless
  • store state across requests or for further input to handle a request.
  • certain classes of long lived task are not suited to FaaS functions without re-architecture
  • if you were writing a low-latency trading application you probably wouldn’t want to use FaaS systems at this time
  • An API Gateway is an HTTP server where routes / endpoints are defined in configuration and each route is associated with a FaaS function.
  • API Gateway will allow mapping from http request parameters to inputs arguments for the FaaS function
  • API Gateways may also perform authentication, input validation, response code mapping, etc.
  • the Serverless Framework makes working with API Gateway + Lambda significantly easier than using the first principles provided by AWS.
  • Apex - a project to ‘Build, deploy, and manage AWS Lambda functions with ease.'
  • 'Serverless' to mean the union of a couple of other ideas - 'Backend as a Service' and 'Functions as a Service'.
crazylion lee

Modaal is a WCAG 2.0 Level AA accessible modal plugin - 0 views

  •  
    "An accessible dialog window plugin for all humans."
張 旭

Rails Routing from the Outside In - Ruby on Rails Guides - 0 views

  • Resource routing allows you to quickly declare all of the common routes for a given resourceful controller.
  • Rails would dispatch that request to the destroy method on the photos controller with { id: '17' } in params.
  • a resourceful route provides a mapping between HTTP verbs and URLs to controller actions.
  • ...86 more annotations...
  • each action also maps to particular CRUD operations in a database
  • resource :photo and resources :photos creates both singular and plural routes that map to the same controller (PhotosController).
  • One way to avoid deep nesting (as recommended above) is to generate the collection actions scoped under the parent, so as to get a sense of the hierarchy, but to not nest the member actions.
  • to only build routes with the minimal amount of information to uniquely identify the resource
  • The shallow method of the DSL creates a scope inside of which every nesting is shallow
  • These concerns can be used in resources to avoid code duplication and share behavior across routes
  • add a member route, just add a member block into the resource block
  • You can leave out the :on option, this will create the same member route except that the resource id value will be available in params[:photo_id] instead of params[:id].
  • Singular Resources
  • use a singular resource to map /profile (rather than /profile/:id) to the show action
  • Passing a String to get will expect a controller#action format
  • workaround
  • organize groups of controllers under a namespace
  • route /articles (without the prefix /admin) to Admin::ArticlesController
  • route /admin/articles to ArticlesController (without the Admin:: module prefix)
  • Nested routes allow you to capture this relationship in your routing.
  • helpers take an instance of Magazine as the first parameter (magazine_ads_url(@magazine)).
  • Resources should never be nested more than 1 level deep.
  • via the :shallow option
  • a balance between descriptive routes and deep nesting
  • :shallow_path prefixes member paths with the specified parameter
  • Routing Concerns allows you to declare common routes that can be reused inside other resources and routes
  • Rails can also create paths and URLs from an array of parameters.
  • use url_for with a set of objects
  • In helpers like link_to, you can specify just the object in place of the full url_for call
  • insert the action name as the first element of the array
  • This will recognize /photos/1/preview with GET, and route to the preview action of PhotosController, with the resource id value passed in params[:id]. It will also create the preview_photo_url and preview_photo_path helpers.
  • pass :on to a route, eliminating the block:
  • Collection Routes
  • This will enable Rails to recognize paths such as /photos/search with GET, and route to the search action of PhotosController. It will also create the search_photos_url and search_photos_path route helpers.
  • simple routing makes it very easy to map legacy URLs to new Rails actions
  • add an alternate new action using the :on shortcut
  • When you set up a regular route, you supply a series of symbols that Rails maps to parts of an incoming HTTP request.
  • :controller maps to the name of a controller in your application
  • :action maps to the name of an action within that controller
  • optional parameters, denoted by parentheses
  • This route will also route the incoming request of /photos to PhotosController#index, since :action and :id are
  • use a constraint on :controller that matches the namespace you require
  • dynamic segments don't accept dots
  • The params will also include any parameters from the query string
  • :defaults option.
  • set params[:format] to "jpg"
  • cannot override defaults via query parameters
  • specify a name for any route using the :as option
  • create logout_path and logout_url as named helpers in your application.
  • Inside the show action of UsersController, params[:username] will contain the username for the user.
  • should use the get, post, put, patch and delete methods to constrain a route to a particular verb.
  • use the match method with the :via option to match multiple verbs at once
  • Routing both GET and POST requests to a single action has security implications
  • 'GET' in Rails won't check for CSRF token. You should never write to the database from 'GET' requests
  • use the :constraints option to enforce a format for a dynamic segment
  • constraints
  • don't need to use anchors
  • Request-Based Constraints
  • the same name as the hash key and then compare the return value with the hash value.
  • constraint values should match the corresponding Request object method return type
    • 張 旭
       
      應該就是檢查來源的 request, 如果是某個特定的 request 來訪問的,就通過。
  • blacklist
    • 張 旭
       
      這裡有點複雜 ...
  • redirect helper
  • reuse dynamic segments from the match in the path to redirect
  • this redirection is a 301 "Moved Permanently" redirect.
  • root method
  • put the root route at the top of the file
  • The root route only routes GET requests to the action.
  • root inside namespaces and scopes
  • For namespaced controllers you can use the directory notation
  • Only the directory notation is supported
  • use the :constraints option to specify a required format on the implicit id
  • specify a single constraint to apply to a number of routes by using the block
  • non-resourceful routes
  • :id parameter doesn't accept dots
  • :as option lets you override the normal naming for the named route helpers
  • use the :as option to prefix the named route helpers that Rails generates for a rout
  • prevent name collisions
  • prefix routes with a named parameter
  • This will provide you with URLs such as /bob/articles/1 and will allow you to reference the username part of the path as params[:username] in controllers, helpers and views
  • :only option
  • :except option
  • generate only the routes that you actually need can cut down on memory use and speed up the routing process.
  • alter path names
  • http://localhost:3000/rails/info/routes
  • rake routes
  • setting the CONTROLLER environment variable
  • Routes should be included in your testing strategy
  • assert_generates assert_recognizes assert_routing
張 旭

Containers Vs. Config Management - 0 views

  • With configuration management systems, you write code that describes how you want some component of your systems to be installed and configured, and when you execute the code on your server, it should end up in the desired state.
  • building a hosting platform that is capable of a lot of things that system administrators used to do manually
  • build modules on deployment via bundler or npm or similar, it can be incredibly slow to run, taking minutes or longer in some cases
  • ...10 more annotations...
  • pulling from git is slow.
  • deploying with configuration management tools is a pain in the ass and error prone.
  • Support for containers has existed in the Linux kernel since version 2.6.24 when cgroup support was added
  • All of the logic that used to live in your cookbooks/playbooks/manifests/etc now lives in a Dockerfile that resides directly in the repository for the application it is designed to build
  • All of the dependencies of the application are bundled with the container which means no need to build on the fly on every server during deployment.
  • Containers bring standardization which allows for systems like centralized logging, monitoring, and metrics to easily snap into place no matter what is running in the container.
  • Dockerfiles do not give you the same level of control over configuration as your application transitions between environments, like dev, staging, and production.
  • You may even need to have different Dockerfile’s for each environment in certain cases.
  • configuration management systems now have hooks for docker integration.
  • Config management will only be used to install Docker, an orchestration system, configure PAM/SSH auth, and tune OS sysctl values.
  •  
    "With configuration management systems, you write code that describes how you want some component of your systems to be installed and configured, and when you execute the code on your server, it should end up in the desired state."
張 旭

Embracing REST with mind, body and soul « Plataformatec Blog - 0 views

  • gain with respond_with introduction is more obvious if you compare index, new and show actions
    • 張 旭
       
      看起來 respond_with 會根據 request 型態自動回覆對應型態的 response
  • you can define supported formats at the class level and tell in the instance the resource to be represented by those formats.
  • when a request comes, for example with format xml, it will first search for a template at users/index.xml. If the template is not available, it tries to render the resource given (in this case, @users) by calling :to_xml on it
  • ...6 more annotations...
  • how to render our resources depending on the format AND HTTP verb
  • By default, ActionController::Responder holds all formats behavior in a method called to_format.
  • Suddenly we realized that respond_with is useful just for GET requests
  • it renders the resource based on the HTTP verb and whether it has errors or not
  • Your controller code just have to send the resource using respond_with(@resource) and respond_with will call ActionController::Responder which will know what to do.
    • 張 旭
       
      簡單說,就是只要寫 respond_with 就好了,其它都不用管了。Responder 會幫你判斷 HTTP 的動作。
  • Anything that responds to :call can be a responder, so you can create your custom classes or even give procs, fibers and so on.
張 旭

Password management in Django | Django documentation | Django - 0 views

  • Each password validator must provide a help text to explain the requirements to the user, validate a given password and return an error message if it does not meet the requirements, and optionally receive passwords that have been set.
  • By default, validators are used in the forms to reset or change passwords and in the createsuperuser and changepassword management commands
  • Validators aren’t applied at the model level,
張 旭

Bash Reference Manual: Shell Parameter Expansion - 1 views

  • parameter expansion
  • command substitution
  • arithmetic expansion
  • ...16 more annotations...
  • The parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to protect the variable to be expanded from characters immediately following it which could be interpreted as part of the name.
  • When braces are used, the matching ending brace is the first ‘}’ not escaped by a backslash or within a quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter expansion.
  • ${parameter}
  • braces are required
  • If the first character of parameter is an exclamation point (!), and parameter is not a nameref, it introduces a level of variable indirection.
  • ${parameter:-word} If parameter is unset or null, the expansion of word is substituted. Otherwise, the value of parameter is substituted.
  • ${parameter:=word} If parameter is unset or null, the expansion of word is assigned to parameter.
  • ${parameter:?word} If parameter is null or unset, the expansion of word (or a message to that effect if word is not present) is written to the standard error and the shell, if it is not interactive, exits.
  • ${parameter:+word} If parameter is null or unset, nothing is substituted, otherwise the expansion of word is substituted.
  • ${parameter:offset} ${parameter:offset:length}
  • Substring expansion applied to an associative array produces undefined results.
  • ${parameter/pattern/string} The pattern is expanded to produce a pattern just as in filename expansion.
  • If pattern begins with ‘/’, all matches of pattern are replaced with string.
  • Normally only the first match is replaced
  • The ‘^’ operator converts lowercase letters matching pattern to uppercase
  • the ‘,’ operator converts matching uppercase letters to lowercase.
張 旭

What is DevOps? | Atlassian - 0 views

  • DevOps is a set of practices that automates the processes between software development and IT teams, in order that they can build, test, and release software faster and more reliably.
  • increased trust, faster software releases, ability to solve critical issues quickly, and better manage unplanned work.
  • bringing together the best of software development and IT operations.
  • ...39 more annotations...
  • DevOps is a culture, a movement, a philosophy.
  • a firm handshake between development and operations
  • DevOps isn’t magic, and transformations don’t happen overnight.
  • Infrastructure as code
  • Culture is the #1 success factor in DevOps.
  • Building a culture of shared responsibility, transparency and faster feedback is the foundation of every high performing DevOps team.
  •  'not our problem' mentality
  • DevOps is that change in mindset of looking at the development process holistically and breaking down the barrier between Dev and Ops.
  • Speed is everything.
  • Lack of automated test and review cycles block the release to production and poor incident response time kills velocity and team confidence
  • Open communication helps Dev and Ops teams swarm on issues, fix incidents, and unblock the release pipeline faster.
  • Unplanned work is a reality that every team faces–a reality that most often impacts team productivity.
  • “cross-functional collaboration.”
  • All the tooling and automation in the world are useless if they aren’t accompanied by a genuine desire on the part of development and IT/Ops professionals to work together.
  • DevOps doesn’t solve tooling problems. It solves human problems.
  • Forming project- or product-oriented teams to replace function-based teams is a step in the right direction.
  • sharing a common goal and having a plan to reach it together
  • join sprint planning sessions, daily stand-ups, and sprint demos.
  • DevOps culture across every department
  • open channels of communication, and talk regularly
  • DevOps isn’t one team’s job. It’s everyone’s job.
  • automation eliminates repetitive manual work, yields repeatable processes, and creates reliable systems.
  • Build, test, deploy, and provisioning automation
  • continuous delivery: the practice of running each code change through a gauntlet of automated tests, often facilitated by cloud-based infrastructure, then packaging up successful builds and promoting them up toward production using automated deploys.
  • automated deploys alert IT/Ops to server “drift” between environments, which reduces or eliminates surprises when it’s time to release.
  • “configuration as code.”
  • when DevOps uses automated deploys to send thoroughly tested code to identically provisioned environments, “Works on my machine!” becomes irrelevant.
  • A DevOps mindset sees opportunities for continuous improvement everywhere.
  • regular retrospectives
  • A/B testing
  • failure is inevitable. So you might as well set up your team to absorb it, recover, and learn from it (some call this “being anti-fragile”).
  • Postmortems focus on where processes fell down and how to strengthen them – not on which team member f'ed up the code.
  • Our engineers are responsible for QA, writing, and running their own tests to get the software out to customers.
  • How long did it take to go from development to deployment? 
  • How long does it take to recover after a system failure?
  • service level agreements (SLAs)
  • Devops isn't any single person's job. It's everyone's job.
  • DevOps is big on the idea that the same people who build an application should be involved in shipping and running it.
  • developers and operators pair with each other in each phase of the application’s lifecycle.
張 旭

Choosing an Executor Type - CircleCI - 0 views

  • Containers are an instance of the Docker Image you specify and the first image listed in your configuration is the primary container image in which all steps run.
  • In this example, all steps run in the container created by the first image listed under the build job
  • If you experience increases in your run times due to installing additional tools during execution, it is best practice to use the Building Custom Docker Images Documentation to create a custom image with tools that are pre-loaded in the container to meet the job requirements.
  • ...9 more annotations...
  • The machine option runs your jobs in a dedicated, ephemeral VM
  • Using the machine executor gives your application full access to OS resources and provides you with full control over the job environment.
  • Using machine may require additional fees in a future pricing update.
  • Using the macos executor allows you to run your job in a macOS environment on a VM.
  • In a multi-image configuration job, all steps are executed in the container created by the first image listed.
  • All containers run in a common network and every exposed port will be available on localhost from a primary container.
  • If you want to work with private images/registries, please refer to Using Private Images.
  • Docker also has built-in image caching and enables you to build, run, and publish Docker images via Remote Docker.
  • if you require low-level access to the network or need to mount external volumes consider using machine
張 旭

Setup ProxySQL for High Availability (not a Single Point of Failure) - Percona Database... - 0 views

  • ProxySQL doesn’t natively support any high availability solution
  • most common solution is setting up ProxySQL as part of a tile architecture, where Application/ProxySQL are deployed together.
    • 張 旭
       
      直接把 ProxySQL 跟 App 捆綁發佈
  • If we have 400 instances of ProxySQL, we end up keeping our databases busy just performing the checks.
  • ...5 more annotations...
  • Another possible approach is to have two layers of ProxySQL, one close to the application and another in the middle to connect to the database.
  • creates additional complexity in the management of the platform, and it adds network hops.
  • combining existing solutions and existing blocks: KeepAlived + ProxySQl + MySQL.
  • Keepalived implements a set of checkers to dynamically and adaptively maintain and manage load-balanced server pool according to their health.
  • Keepalived implements a set of hooks to the VRRP finite state machine providing low-level and high-speed protocol interactions.
張 旭

A Clear, Concise & Comfy Code Review Checklist - DEV Community - 0 views

  • 2 blocks doing similar things might be allowable, but 3 or more is a definitive red cross from me!
  • This would ultimately be integrated into your CI/CD pipelines running on each build/commit/deploy too; stopping any rogue commits getting in.
  • not to say that every code block that is duplicated needs to be refactored
  • ...13 more annotations...
  • Refactoring is a cyclical process
  • Before accessing variables within objects and collections make sure they are there! PLEASE!
  • If that variable is a constant or won't be changed then use the Const keyword in applicable languages and the CAPITALISATION convention to let users aware of your decisions about them.
  • The name of a method is more important than we give it credit for, when a method changes so should its name.
  • Make sure you are returning the right thing, trying to make it as generic as possible.
  • Void should do something, not change something!
  • Private vs Public, this is a big topic
  • keeping an eye of the access level of a method can stop issues further down the line
  • Gherkin is a Business Readable, Domain Specific Language created especially for behavior descriptions.
  • specify the 3 main points of a test, including what you expect to happen using the following keywords GIVEN,  WHEN / AND , THEN.
  • look at how the code is structured, make sure methods aren't too long, don't have too many branches, and that for and if statements could be simplified.
  • Use your initiative and discuss if a rewrite would benefit maintainability for the future.
  • it's unnecessary to leave commented code when working in and around areas with them.
張 旭

Practical persistent cloud storage for Docker in AWS using RexRay - pt 4 - 0 views

  • Docker volumes can then be created and managed via the plugin, as requests are passed by Docker, and then orchestrated by the local server.
  • volumes are usually protected from deletion via a reference count.
  • Using the plugin means that the reference count is kept at the node level, so the plugin is only aware of the containers on a single node.
  • ...3 more annotations...
  • The S3FS plugin as of version 0.9.2 cannot delete an S3 bucket unless the bucket is empty, and has never been used (just created) as a Docker volume.
  • Starting with Docker 1.13 a new plugin system was introduced in which the plugin runs inside of a container.
  • Even though the plugin is a container image, you cannot start it using either docker image pull or docker container run; you need to use the docker plugin set of sub‑commands.
  •  
    "Docker volumes can then be created and managed via the plugin, as requests are passed by Docker, and then orchestrated by the local server."
張 旭

你到底知不知道什麼是 Kubernetes? | Hwchiu Learning Note - 0 views

  • Storage(儲存) 實際上一直都不是一個簡單處理的問題,從軟體面來看實際上牽扯到非常多的層級,譬如 Linux Kernel, FileSystem, Block/File-Level, Cache, Snapshot, Object Storage 等各式各樣的議題可以討論。
  • DRBD
  • 異地備援,容錯機制,快照,重複資料刪除等超多相關的議題基本上從來沒有一個完美的解法能夠滿足所有使用情境。
  • ...20 more annotations...
  • 管理者可能會直接在 NFS Server 上進行 MDADM 來設定相關的 Block Device 並且基於上面提供 Export 供 NFS 使用,甚至底層套用不同的檔案系統 (EXT4/BTF4) 來獲取不同的功能與效能。
  • Kubernetes 就只是 NFS Client 的角色
  • CSI(Container Storage Interface)。CSI 本身作為 Kubernetes 與 Storage Solution 的中介層。
  • 基本上 Pod 裡面每個 Container 會使用 Volume 這個物件來代表容器內的掛載點,而在外部實際上會透過 PVC 以及 PV 的方式來描述這個 Volume 背後的儲存方案伺服器的資訊。
  • 整體會透過 CSI 的元件們與最外面實際上的儲存設備連接,所有儲存相關的功能是否有實現,有支援全部都要仰賴最後面的實際提供者, kubernetes 只透過 CSI 的標準去執行。
  • 在網路部分也有與之對應的 CNI(Container Network Interface). kubernetes 透過 CNI 這個介面來與後方的 網路解決方案 溝通
  • CNI 最基本的要求就是在在對應的階段為對應的容器提供網路能力
  • 目前最常見也是 IPv4 + TCP/UDP 的傳輸方式,因此才會看到大部分的 CNI 都在講這些。
  • 希望所有容器彼此之間可以透過 IPv4 來互相存取彼此,不論是同節點或是跨節點的容器們都要可以滿足這個需求。
  • 容器間到底怎麼傳輸的,需不需要封裝,透過什麼網卡,要不要透過 NAT 處理? 這一切都是 CNI 介面背後的實現
  • 外部網路存取容器服務 (Service/Ingress)
  • kubernetes 在 Service/Ingress 中間自行實現了一個模組,大抵上稱為 kube-proxy, 其底層可以使用 iptables, IPVS, user-space software 等不同的實現方法,這部分是跟 CNI 完全無關。
  • CNI 跟 Service/Ingress 是會衝突的,也有可能彼此沒有配合,這中間沒有絕對的穩定整合。
  • CNI 一般會處理的部份,包含了容器內的 網卡數量,網卡名稱,網卡IP, 以及容器與外部節點的連接能力等
  • CRI (Container Runtime Interface) 或是 Device Plugin
  • 對於 kubernetes 來說,其實本身並不在意到底底下的容器化技術實際上是怎麼實現的,你要用 Docker, rkt, CRI-O 都無所謂,甚至背後是一個偽裝成 Container 的 Virtaul Machine virtlet 都可以。
  • 去思考到底為什麼自己本身的服務需要容器化,容器化可以帶來什麼優點
  • 太多太多的人都認為只要寫一個 Dockerfile 將原先的應用程式們全部包裝起來放在一起就是一個很好的容器 來使用了。
  • 最後就會發現根本把 Container 當作 Virtual Machine 來使用,然後再補一句 Contaienr 根本不好用啊
  • 容器化 不是把直接 Virtual Machine 的使用習慣換個環境使用就叫做 容器化,而是要從概念上去暸解與使用
‹ Previous 21 - 40 of 60 Next ›
Showing 20 items per page