Skip to main content

Home/ Larvata/ Group items tagged admin

Rss Feed Group items tagged

張 旭

手动安装 Prometheus · 从 Docker 到 Kubernetes 进阶手册 - 1 views

  • 参数storage.tsdb.path指定了 TSDB 数据的存储路径、通过storage.tsdb.retention设置了保留多长时间的数据,还有下面的web.enable-admin-api参数可以用来开启对 admin api 的访问权限,参数web.enable-lifecycle非常重要,用来开启支持热更新的,有了这个参数之后,prometheus.yml 配置文件只要更新了,通过执行localhost:9090/-/reload就会立即生效,所以一定要加上这个参数。
  • Prometheus 由多个组件组成,但是其中许多组件是可选的: Prometheus Server:用于抓取指标、存储时间序列数据 exporter:暴露指标让任务来抓 pushgateway:push 的方式将指标数据推送到该网关 alertmanager:处理报警的报警组件 adhoc:用于数据查询
  • scrape_configs 用于控制 prometheus 监控哪些资源。
  • ...6 more annotations...
  • prometheus 通过 HTTP 的方式来暴露的它本身的监控数据
  • prometheus 默认会通过目标的/metrics路径采集 metrics
  • 需要配置 rbac 认证,因为我们需要在 prometheus 中去访问 Kubernetes 的相关信息
  • 要获取的资源信息,在每一个 namespace 下面都有可能存在,所以我们这里使用的是 ClusterRole 的资源对象,值得一提的是我们这里的权限规则声明中有一个nonResourceURLs的属性,是用来对非资源型 metrics 进行操作的权限声明
  • 添加一个securityContext的属性,将其中的runAsUser设置为0,这是因为现在的 prometheus 运行过程中使用的用户是 nobody,否则会出现下面的permission denied之类的权限错误
  • PromQL其实就是 prometheus 便于数据聚合展示开发的一套 ad hoc 查询语言的,你想要查什么找对应函数取你的数据好了。
  •  
    "参数storage.tsdb.path指定了 TSDB 数据的存储路径、通过storage.tsdb.retention设置了保留多长时间的数据,还有下面的web.enable-admin-api参数可以用来开启对 admin api 的访问权限,参数web.enable-lifecycle非常重要,用来开启支持热更新的,有了这个参数之后,prometheus.yml 配置文件只要更新了,通过执行localhost:9090/-/reload就会立即生效,所以一定要加上这个参数。"
張 旭

Rails Routing from the Outside In - Ruby on Rails Guides - 0 views

  • Resource routing allows you to quickly declare all of the common routes for a given resourceful controller.
  • Rails would dispatch that request to the destroy method on the photos controller with { id: '17' } in params.
  • a resourceful route provides a mapping between HTTP verbs and URLs to controller actions.
  • ...86 more annotations...
  • each action also maps to particular CRUD operations in a database
  • resource :photo and resources :photos creates both singular and plural routes that map to the same controller (PhotosController).
  • One way to avoid deep nesting (as recommended above) is to generate the collection actions scoped under the parent, so as to get a sense of the hierarchy, but to not nest the member actions.
  • to only build routes with the minimal amount of information to uniquely identify the resource
  • The shallow method of the DSL creates a scope inside of which every nesting is shallow
  • These concerns can be used in resources to avoid code duplication and share behavior across routes
  • add a member route, just add a member block into the resource block
  • You can leave out the :on option, this will create the same member route except that the resource id value will be available in params[:photo_id] instead of params[:id].
  • Singular Resources
  • use a singular resource to map /profile (rather than /profile/:id) to the show action
  • Passing a String to get will expect a controller#action format
  • workaround
  • organize groups of controllers under a namespace
  • route /articles (without the prefix /admin) to Admin::ArticlesController
  • route /admin/articles to ArticlesController (without the Admin:: module prefix)
  • Nested routes allow you to capture this relationship in your routing.
  • helpers take an instance of Magazine as the first parameter (magazine_ads_url(@magazine)).
  • Resources should never be nested more than 1 level deep.
  • via the :shallow option
  • a balance between descriptive routes and deep nesting
  • :shallow_path prefixes member paths with the specified parameter
  • Routing Concerns allows you to declare common routes that can be reused inside other resources and routes
  • Rails can also create paths and URLs from an array of parameters.
  • use url_for with a set of objects
  • In helpers like link_to, you can specify just the object in place of the full url_for call
  • insert the action name as the first element of the array
  • This will recognize /photos/1/preview with GET, and route to the preview action of PhotosController, with the resource id value passed in params[:id]. It will also create the preview_photo_url and preview_photo_path helpers.
  • pass :on to a route, eliminating the block:
  • Collection Routes
  • This will enable Rails to recognize paths such as /photos/search with GET, and route to the search action of PhotosController. It will also create the search_photos_url and search_photos_path route helpers.
  • simple routing makes it very easy to map legacy URLs to new Rails actions
  • add an alternate new action using the :on shortcut
  • When you set up a regular route, you supply a series of symbols that Rails maps to parts of an incoming HTTP request.
  • :controller maps to the name of a controller in your application
  • :action maps to the name of an action within that controller
  • optional parameters, denoted by parentheses
  • This route will also route the incoming request of /photos to PhotosController#index, since :action and :id are
  • use a constraint on :controller that matches the namespace you require
  • dynamic segments don't accept dots
  • The params will also include any parameters from the query string
  • :defaults option.
  • set params[:format] to "jpg"
  • cannot override defaults via query parameters
  • specify a name for any route using the :as option
  • create logout_path and logout_url as named helpers in your application.
  • Inside the show action of UsersController, params[:username] will contain the username for the user.
  • should use the get, post, put, patch and delete methods to constrain a route to a particular verb.
  • use the match method with the :via option to match multiple verbs at once
  • Routing both GET and POST requests to a single action has security implications
  • 'GET' in Rails won't check for CSRF token. You should never write to the database from 'GET' requests
  • use the :constraints option to enforce a format for a dynamic segment
  • constraints
  • don't need to use anchors
  • Request-Based Constraints
  • the same name as the hash key and then compare the return value with the hash value.
  • constraint values should match the corresponding Request object method return type
    • 張 旭
       
      應該就是檢查來源的 request, 如果是某個特定的 request 來訪問的,就通過。
  • blacklist
    • 張 旭
       
      這裡有點複雜 ...
  • redirect helper
  • reuse dynamic segments from the match in the path to redirect
  • this redirection is a 301 "Moved Permanently" redirect.
  • root method
  • put the root route at the top of the file
  • The root route only routes GET requests to the action.
  • root inside namespaces and scopes
  • For namespaced controllers you can use the directory notation
  • Only the directory notation is supported
  • use the :constraints option to specify a required format on the implicit id
  • specify a single constraint to apply to a number of routes by using the block
  • non-resourceful routes
  • :id parameter doesn't accept dots
  • :as option lets you override the normal naming for the named route helpers
  • use the :as option to prefix the named route helpers that Rails generates for a rout
  • prevent name collisions
  • prefix routes with a named parameter
  • This will provide you with URLs such as /bob/articles/1 and will allow you to reference the username part of the path as params[:username] in controllers, helpers and views
  • :only option
  • :except option
  • generate only the routes that you actually need can cut down on memory use and speed up the routing process.
  • alter path names
  • http://localhost:3000/rails/info/routes
  • rake routes
  • setting the CONTROLLER environment variable
  • Routes should be included in your testing strategy
  • assert_generates assert_recognizes assert_routing
張 旭

Password management in Django | Django documentation | Django - 0 views

  • Each password validator must provide a help text to explain the requirements to the user, validate a given password and return an error message if it does not meet the requirements, and optionally receive passwords that have been set.
  • By default, validators are used in the forms to reset or change passwords and in the createsuperuser and changepassword management commands
  • Validators aren’t applied at the model level,
張 旭

Home · sysown/proxysql Wiki - 0 views

  • bear in mind that the best way to configure ProxySQL is through its admin interface.
  • llow you to control the list of the backend servers, how traffic is routed to them, and other important settings (such as caching, access control, etc)
  • Once you've made modifications to the in-memory data structure, you must load the new configuration to the runtime, or persist the new settings to disk
  • ...4 more annotations...
  • mysql_variables: contains global variables that control the functionality for handling the incoming MySQL traffic.
  • mysql_users: contains rows for the mysql_users table from the admin interface. Basically, these define the users which can connect to the proxy, and the users with which the proxy can connect to the backend servers.
  • mysql_servers: contains rows for the mysql_servers table from the admin interface. Basically, these define the backend servers towards which the incoming MySQL traffic is routed.
  • mysql_query_rules: contains rows for the mysql_query_rules table from the admin interface. Basically, these define the rules used to classify and route the incoming MySQL traffic, according to various criteria (patterns matched, user used to run the query, etc.).
張 旭

The Twelve-Factor App - 0 views

  • The process formation is the array of processes that are used to do the app’s regular business
  • one-off administrative or maintenance tasks for the app
  • One-off admin processes should be run in an identical environment as the regular long-running processes of the app.
  • ...2 more annotations...
  • Admin code must ship with application code to avoid synchronization issues.
  • Twelve-factor strongly favors languages which provide a REPL shell out of the box, and which make it easy to run one-off scripts.
張 旭

Helm | - 0 views

  • Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually $HOME/.kube/config). This is the same file that kubectl uses.
  • kubectl cluster-info
  • Role-Based Access Control (RBAC) enabled
  • ...133 more annotations...
  • initialize the local CLI
  • install Tiller into your Kubernetes cluster
  • helm install
  • helm init --upgrade
  • By default, when Tiller is installed, it does not have authentication enabled.
  • helm repo update
  • Without a max history set the history is kept indefinitely, leaving a large number of records for helm and tiller to maintain.
  • helm init --upgrade
  • Whenever you install a chart, a new release is created.
  • one chart can be installed multiple times into the same cluster. And each can be independently managed and upgraded.
  • helm list function will show you a list of all deployed releases.
  • helm delete
  • helm status
  • you can audit a cluster’s history, and even undelete a release (with helm rollback).
  • the Helm server (Tiller).
  • The Helm client (helm)
  • brew install kubernetes-helm
  • Tiller, the server portion of Helm, typically runs inside of your Kubernetes cluster.
  • it can also be run locally, and configured to talk to a remote Kubernetes cluster.
  • Role-Based Access Control - RBAC for short
  • create a service account for Tiller with the right roles and permissions to access resources.
  • run Tiller in an RBAC-enabled Kubernetes cluster.
  • run kubectl get pods --namespace kube-system and see Tiller running.
  • helm inspect
  • Helm will look for Tiller in the kube-system namespace unless --tiller-namespace or TILLER_NAMESPACE is set.
  • For development, it is sometimes easier to work on Tiller locally, and configure it to connect to a remote Kubernetes cluster.
  • even when running locally, Tiller will store release configuration in ConfigMaps inside of Kubernetes.
  • helm version should show you both the client and server version.
  • Tiller stores its data in Kubernetes ConfigMaps, you can safely delete and re-install Tiller without worrying about losing any data.
  • helm reset
  • The --node-selectors flag allows us to specify the node labels required for scheduling the Tiller pod.
  • --override allows you to specify properties of Tiller’s deployment manifest.
  • helm init --override manipulates the specified properties of the final manifest (there is no “values” file).
  • The --output flag allows us skip the installation of Tiller’s deployment manifest and simply output the deployment manifest to stdout in either JSON or YAML format.
  • By default, tiller stores release information in ConfigMaps in the namespace where it is running.
  • switch from the default backend to the secrets backend, you’ll have to do the migration for this on your own.
  • a beta SQL storage backend that stores release information in an SQL database (only postgres has been tested so far).
  • Once you have the Helm Client and Tiller successfully installed, you can move on to using Helm to manage charts.
  • Helm requires that kubelet have access to a copy of the socat program to proxy connections to the Tiller API.
  • A Release is an instance of a chart running in a Kubernetes cluster. One chart can often be installed many times into the same cluster.
  • helm init --client-only
  • helm init --dry-run --debug
  • A panic in Tiller is almost always the result of a failure to negotiate with the Kubernetes API server
  • Tiller and Helm have to negotiate a common version to make sure that they can safely communicate without breaking API assumptions
  • helm delete --purge
  • Helm stores some files in $HELM_HOME, which is located by default in ~/.helm
  • A Chart is a Helm package. It contains all of the resource definitions necessary to run an application, tool, or service inside of a Kubernetes cluster.
  • it like the Kubernetes equivalent of a Homebrew formula, an Apt dpkg, or a Yum RPM file.
  • A Repository is the place where charts can be collected and shared.
  • Set the $HELM_HOME environment variable
  • each time it is installed, a new release is created.
  • Helm installs charts into Kubernetes, creating a new release for each installation. And to find new charts, you can search Helm chart repositories.
  • chart repository is named stable by default
  • helm search shows you all of the available charts
  • helm inspect
  • To install a new package, use the helm install command. At its simplest, it takes only one argument: The name of the chart.
  • If you want to use your own release name, simply use the --name flag on helm install
  • additional configuration steps you can or should take.
  • Helm does not wait until all of the resources are running before it exits. Many charts require Docker images that are over 600M in size, and may take a long time to install into the cluster.
  • helm status
  • helm inspect values
  • helm inspect values stable/mariadb
  • override any of these settings in a YAML formatted file, and then pass that file during installation.
  • helm install -f config.yaml stable/mariadb
  • --values (or -f): Specify a YAML file with overrides.
  • --set (and its variants --set-string and --set-file): Specify overrides on the command line.
  • Values that have been --set can be cleared by running helm upgrade with --reset-values specified.
  • Chart designers are encouraged to consider the --set usage when designing the format of a values.yaml file.
  • --set-file key=filepath is another variant of --set. It reads the file and use its content as a value.
  • inject a multi-line text into values without dealing with indentation in YAML.
  • An unpacked chart directory
  • When a new version of a chart is released, or when you want to change the configuration of your release, you can use the helm upgrade command.
  • Kubernetes charts can be large and complex, Helm tries to perform the least invasive upgrade.
  • It will only update things that have changed since the last release
  • $ helm upgrade -f panda.yaml happy-panda stable/mariadb
  • deployment
  • If both are used, --set values are merged into --values with higher precedence.
  • The helm get command is a useful tool for looking at a release in the cluster.
  • helm rollback
  • A release version is an incremental revision. Every time an install, upgrade, or rollback happens, the revision number is incremented by 1.
  • helm history
  • a release name cannot be re-used.
  • you can rollback a deleted resource, and have it re-activate.
  • helm repo list
  • helm repo add
  • helm repo update
  • The Chart Development Guide explains how to develop your own charts.
  • helm create
  • helm lint
  • helm package
  • Charts that are archived can be loaded into chart repositories.
  • chart repository server
  • Tiller can be installed into any namespace.
  • Limiting Tiller to only be able to install into specific namespaces and/or resource types is controlled by Kubernetes RBAC roles and rolebindings
  • Release names are unique PER TILLER INSTANCE
  • Charts should only contain resources that exist in a single namespace.
  • not recommended to have multiple Tillers configured to manage resources in the same namespace.
  • a client-side Helm plugin. A plugin is a tool that can be accessed through the helm CLI, but which is not part of the built-in Helm codebase.
  • Helm plugins are add-on tools that integrate seamlessly with Helm. They provide a way to extend the core feature set of Helm, but without requiring every new feature to be written in Go and added to the core tool.
  • Helm plugins live in $(helm home)/plugins
  • The Helm plugin model is partially modeled on Git’s plugin model
  • helm referred to as the porcelain layer, with plugins being the plumbing.
  • helm plugin install https://github.com/technosophos/helm-template
  • command is the command that this plugin will execute when it is called.
  • Environment variables are interpolated before the plugin is executed.
  • The command itself is not executed in a shell. So you can’t oneline a shell script.
  • Helm is able to fetch Charts using HTTP/S
  • Variables like KUBECONFIG are set for the plugin if they are set in the outer environment.
  • In Kubernetes, granting a role to an application-specific service account is a best practice to ensure that your application is operating in the scope that you have specified.
  • restrict Tiller’s capabilities to install resources to certain namespaces, or to grant a Helm client running access to a Tiller instance.
  • Service account with cluster-admin role
  • The cluster-admin role is created by default in a Kubernetes cluster
  • Deploy Tiller in a namespace, restricted to deploying resources only in that namespace
  • Deploy Tiller in a namespace, restricted to deploying resources in another namespace
  • When running a Helm client in a pod, in order for the Helm client to talk to a Tiller instance, it will need certain privileges to be granted.
  • SSL Between Helm and Tiller
  • The Tiller authentication model uses client-side SSL certificates.
  • creating an internal CA, and using both the cryptographic and identity functions of SSL.
  • Helm is a powerful and flexible package-management and operations tool for Kubernetes.
  • default installation applies no security configurations
  • with a cluster that is well-secured in a private network with no data-sharing or no other users or teams.
  • With great power comes great responsibility.
  • Choose the Best Practices you should apply to your helm installation
  • Role-based access control, or RBAC
  • Tiller’s gRPC endpoint and its usage by Helm
  • Kubernetes employ a role-based access control (or RBAC) system (as do modern operating systems) to help mitigate the damage that can be done if credentials are misused or bugs exist.
  • In the default installation the gRPC endpoint that Tiller offers is available inside the cluster (not external to the cluster) without authentication configuration applied.
  • Tiller stores its release information in ConfigMaps. We suggest changing the default to Secrets.
  • release information
  • charts
  • charts are a kind of package that not only installs containers you may or may not have validated yourself, but it may also install into more than one namespace.
  • As with all shared software, in a controlled or shared environment you must validate all software you install yourself before you install it.
  • Helm’s provenance tools to ensure the provenance and integrity of charts
  •  
    "Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually $HOME/.kube/config). This is the same file that kubectl uses."
張 旭

FreeIPAv2:Dynamic updates with GSS-TSIG - FreeIPA - 0 views

  • This short tutorial will teach you how to setup your name server so that you can dynamically update the resource records with the help of FreeIPA.
  • tkey-gssapi-keytab
  • BIND version
    • 張 旭
       
      named -v
  • ...9 more annotations...
  • add the DNS service principal and acquire the keytab
  • kinit admin
  • All machines belonging to Kerberos realm EXAMPLE.COM are allowed to update own A record.
  • grant EXAMPLE.COM krb5-self * A;
  • Allow Kerberos principal SERVICE/ipaserver.example.com@EXAMPLE.COM to do any updates in whole zone.
  • Machine is allowed to update own PTR record in reverse zone.
  • kinit admin
  • with kinit. (This step is not required if the client was enrolled by ipa-client-install script or host keytab is already in place for other reasons.)
  • the "server dns.example.com" command tells nsupdate to update the specified DNS server
張 旭

plataformatec/simple_form - 0 views

  • The basic goal of Simple Form is to not touch your way of defining the layout
  • by default contains label, hints, errors and the input itself
  • Simple Form acts as a DSL and just maps your input type (retrieved from the column definition in the database) to a specific helper method.
  • ...68 more annotations...
  • can overwrite the default label by passing it to the input method
  • configure the html of any of them
  • disable labels, hints or error
  • add a hint, an error, or even a placeholder
  • add an inline label
  • pass any html attribute straight to the input, by using the :input_html option
  • use the :defaults option in simple_form_fo
  • Simple Form generates a wrapper div around your label and input by default, you can pass any html attribute to that wrapper as well using the :wrapper_html option,
  • By default all inputs are required
  • the required property of any input can be overwritten
  • Simple Form will look at the column type in the database and use an appropriate input for the column
  • lets you overwrite the default input type it creates
  • can also render boolean attributes using as: :select to show a dropdown.
  • give the :disabled option to Simple Form, and it'll automatically mark the wrapper as disabled with a CSS class
  • Simple Form accepts same options as their corresponding input type helper in Rails
  • Any extra option passed to these methods will be rendered as html option.
  • use label, hint, input_field, error and full_error helpers
  • to strip away all the div wrappers around the <input> field
  • is to use f.input_field
  • changing boolean_style from default value :nested to :inline
  • overriding the :collection option
  • Collections can be arrays or ranges, and when a :collection is given the :select input will be rendered by default
  • Other types of collection are :radio_buttons and :check_boxes
  • label_method
  • value_method
  • Both of these options also accept lambda/procs
  • define a to_label method on your model as Simple Form will search for and use :to_label as a :label_method first if it is found
  • create grouped collection selects, that will use the html optgroup tags
  • Grouped collection inputs accept the same :label_method and :value_method options
  • group_method
  • group_label_method
  • configured with a default value to be used on the site through the SimpleForm.country_priority and SimpleForm.time_zone_priority helpers.
  • association
  • association
  • render a :select input for choosing the :company, and another :select input with :multiple option for the :roles
  • all options available to :select, :radio_buttons and :check_boxes are also available to association
  • declare different labels and values
  • the association helper is currently only tested with Active Record
  • f.input
  • f.select
  • create a <button> element
  • simple_fields_for
  • Creates a collection of radio inputs with labels associated
  • Creates a collection of checkboxes with labels associated
  • collection_radio_buttons
  • collection_check_boxes
  • associations in your model
  • Role.all
  • the html element you will get for each attribute according to its database definition
  • redefine existing Simple Form inputs by creating a new class with the same name
  • Simple Form uses all power of I18n API to lookup labels, hints, prompts and placeholders
  • specify defaults for all models under the 'defaults' key
  • Simple Form will always look for a default attribute translation under the "defaults" key if no specific is found inside the model key
  • Simple Form will fallback to default human_attribute_name from Rails when no other translation is found for labels.
  • Simple Form will only do the lookup for options if you give a collection composed of symbols only.
  • "Add %{model}"
  • translations for labels, hints and placeholders for a namespaced model, e.g. Admin::User, should be placed under admin_user, not under admin/user
  • This difference exists because Simple Form relies on object_name provided by Rails' FormBuilder to determine the translation path for a given object instead of i18n_key from the object itself.
  • configure how your components will be rendered using the wrappers API
  • optional
  • unless_blank
  • By default, Simple Form will generate input field types and attributes that are supported in HTML5
  • The HTML5 extensions include the new field types such as email, number, search, url, tel, and the new attributes such as required, autofocus, maxlength, min, max, step.
  • If you want to have all other HTML 5 features, such as the new field types, you can disable only the browser validation
  • add novalidate to a specific form by setting the option on the form itself
  • the Simple Form configuration file
  • passing the html5 option
  • as: :date, html5: true
張 旭

ProxySQL Series : Percona Cluster/MariaDB Cluster (Galera) Read-write Split - Mydbops - 0 views

  • PXC / MariaDB Clusters really works better with writes on single ode than multi node writes.
  • proxySQL setup for a cluster in Single-writer mode, Which is the most recommended for Cluster to avoid of conflicts of writes and split-Brain scenarios.
  • listening on ports 6032 for proxysql admin interface and 6033 for MySQL interface by default
  •  
    "PXC / MariaDB Clusters really works better with writes on single ode than multi node writes. "
張 旭

Let's Encrypt & Docker - Træfik - 0 views

  • automatically discover any services on the Docker host and let Træfik reconfigure itself automatically when containers get created (or shut down) so HTTP traffic can be routed accordingly.
  • use Træfik as a layer-7 load balancer with SSL termination for a set of micro-services used to run a web application.
  • Docker containers can only communicate with each other over TCP when they share at least one network.
  • ...15 more annotations...
  • Docker under the hood creates IPTable rules so containers can't reach other containers unless you'd want to
  • Træfik can listen to Docker events and reconfigure its own internal configuration when containers are created (or shut down).
  • Enable the Docker provider and listen for container events on the Docker unix socket we've mounted earlier.
  • Enable automatic request and configuration of SSL certificates using Let's Encrypt. These certificates will be stored in the acme.json file, which you can back-up yourself and store off-premises.
  • there isn't a single container that has any published ports to the host -- everything is routed through Docker networks.
  • Thanks to Docker labels, we can tell Træfik how to create its internal routing configuration.
  • container labels and service labels
  • With the traefik.enable label, we tell Træfik to include this container in its internal configuration.
  • tell Træfik to use the web network to route HTTP traffic to this container.
  • Service labels allow managing many routes for the same container.
  • When both container labels and service labels are defined, container labels are just used as default values for missing service labels but no frontend/backend are going to be defined only with these labels.
  • In the example, two service names are defined : basic and admin. They allow creating two frontends and two backends.
  • Always specify the correct port where the container expects HTTP traffic using traefik.port label.
  • all containers that are placed in the same network as Træfik will automatically be reachable from the outside world
  • With the traefik.frontend.auth.basic label, it's possible for Træfik to provide a HTTP basic-auth challenge for the endpoints you provide the label for.
張 旭

The Twelve-Factor App - 0 views

  • software is commonly delivered as a service: called web apps, or software-as-a-service.
  • Use declarative formats for setup automation
  • offering maximum portability between execution environments
  • ...18 more annotations...
  • obviating the need for servers and systems administration
  • Minimize divergence between development and production
  • scale up without significant changes to tooling, architecture, or development practices
  • Ops engineers who deploy or manage such applications.
  • developer building applications which run as a service
  • One codebase
  • many deploys
  • in the environment
  • services as attached resources
  • Explicitly declare
  • separate build and run stages
  • stateless processes
  • Export services via port binding
  • Scale out
  • fast startup and graceful shutdown
  • as similar as possible
  • logs as event streams
  • admin/management tasks as one-off processes
  •  
    "software is commonly delivered as a service: called web apps, or software-as-a-service"
張 旭

Using Orbs - CircleCI - 0 views

  • Orbs enable you to share, standardize, and simplify config across your projects.
  • Jobs are comprised of two parts: a set of steps, and the environment they should be executed within.
  • Executors define the environment in which the steps of a job will be run.
  • ...12 more annotations...
  • Commands are reusable sets of steps that you can invoke with specific parameters within an existing job.
  • you can pass my-executor as the value of a name key under executor. This method is primarily employed when passing parameters to executor invocations.
  • Development orbs are mutable and expire after 90 days.
  • Production Orbs are immutable and durable.
  • CircleCI allows development orbs that have versions that start with dev:
  • Production orbs are immutable
  • Each installation of CircleCI, including circleci.com, has only one registry where orbs can be kept.
  • Organization Admins publish production orbs.
  • Organization members publish development orbs
  • You must invoke jobs in the workflow stanza of config.yml file, making sure to pass any necessary parameters as subkeys to the job.
  • When you declare an executor in a configuration outside of jobs, you can use these declarations for all jobs in the scope of that declaration, enabling you to reuse a single executor definition across multiple jobs.
  • Orbs are transparent - If you can execute an orb, you and anyone else can view the source of that orb.
張 旭

elabs/pundit: Minimal authorization through OO design and pure Ruby classes - 0 views

  • The class implements some kind of query method
  • Pundit will call the current_user method to retrieve what to send into this argumen
  • put these classes in app/policies
  • ...49 more annotations...
  • in leveraging regular Ruby classes and object oriented design patterns to build a simple, robust and scaleable authorization system
  • map to the name of a particular controller action
  • In the generated ApplicationPolicy, the model object is called record.
  • record
  • authorize
  • authorize would have done something like this: raise "not authorized" unless PostPolicy.new(current_user, @post).update?
  • pass a second argument to authorize if the name of the permission you want to check doesn't match the action name.
  • you can chain it
  • authorize returns the object passed to it
  • the policy method in both the view and controller.
  • have some kind of view listing records which a particular user has access to
  • ActiveRecord::Relation
  • Instances of this class respond to the method resolve, which should return some kind of result which can be iterated over.
  • scope.where(published: true)
    • 張 旭
       
      我想大概的意思就是:如果是 admin 可以看到全部 post,如果不是只能看到 published = true 的 post
  • use this class from your controller via the policy_scope method:
  • PostPolicy::Scope.new(current_user, Post).resolve
  • policy_scope(@user.posts).each
  • This method will raise an exception if authorize has not yet been called.
  • verify_policy_scoped to your controller. This will raise an exception in the vein of verify_authorized. However, it tracks if policy_scope is used instead of authorize
  • need to conditionally bypass verification, you can use skip_authorization
  • skip_policy_scope
  • Having a mechanism that ensures authorization happens allows developers to thoroughly test authorization scenarios as units on the policy objects themselves.
  • Pundit doesn't do anything you couldn't have easily done yourself. It's a very small library, it just provides a few neat helpers.
  • all of the policy and scope classes are just plain Ruby classes
  • rails g pundit:policy post
  • define a filter that redirects unauthenticated users to the login page
  • fail more gracefully
  • raise Pundit::NotAuthorizedError, "must be logged in" unless user
  • having rails handle them as a 403 error and serving a 403 error page.
  • config.action_dispatch.rescue_responses["Pundit::NotAuthorizedError"] = :forbidden
  • with I18n to generate error messages
  • retrieve a policy for a record outside the controller or view
  • define a method in your controller called pundit_user
  • Pundit strongly encourages you to model your application in such a way that the only context you need for authorization is a user object and a domain model that you want to check authorization for.
  • Pundit does not allow you to pass additional arguments to policies
  • authorization is dependent on IP address in addition to the authenticated user
  • create a special class which wraps up both user and IP and passes it to the policy.
  • set up a permitted_attributes method in your policy
  • policy(@post).permitted_attributes
  • permitted_attributes(@post)
  • Pundit provides a convenient helper method
  • permit different attributes based on the current action,
  • If you have defined an action-specific method on your policy for the current action, the permitted_attributes helper will call it instead of calling permitted_attributes on your controller
  • If you don't have an instance for the first argument to authorize, then you can pass the class
  • restart the Rails server
  • Given there is a policy without a corresponding model / ruby class, you can retrieve it by passing a symbol
  • after_action :verify_authorized
  • It is not some kind of failsafe mechanism or authorization mechanism.
  • Pundit will work just fine without using verify_authorized and verify_policy_scoped
  •  
    "Minimal authorization through OO design and pure Ruby classes"
張 旭

How to Implement Categories in Django | DjangoPy - 0 views

  • Categories may have their subcategories, and subcategories may also have subcategories and so on.
  • You can create categories with Django Admin Panel and then associate it with content like an article or post
張 旭

Secrets - Kubernetes - 0 views

  • Putting this information in a secret is safer and more flexible than putting it verbatim in a PodThe smallest and simplest Kubernetes object. A Pod represents a set of running containers on your cluster. definition or in a container imageStored instance of a container that holds a set of software needed to run an application. .
  • A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key.
  • Users can create secrets, and the system also creates some secrets.
  • ...63 more annotations...
  • To use a secret, a pod needs to reference the secret.
  • A secret can be used with a pod in two ways: as files in a volumeA directory containing data, accessible to the containers in a pod. mounted on one or more of its containers, or used by kubelet when pulling images for the pod.
  • --from-file
  • You can also create a Secret in a file first, in json or yaml format, and then create that object.
  • The Secret contains two maps: data and stringData.
  • The data field is used to store arbitrary data, encoded using base64.
  • Kubernetes automatically creates secrets which contain credentials for accessing the API and it automatically modifies your pods to use this type of secret.
  • kubectl get and kubectl describe avoid showing the contents of a secret by default.
  • stringData field is provided for convenience, and allows you to provide secret data as unencoded strings.
  • where you are deploying an application that uses a Secret to store a configuration file, and you want to populate parts of that configuration file during your deployment process.
  • a field is specified in both data and stringData, the value from stringData is used.
  • The keys of data and stringData must consist of alphanumeric characters, ‘-’, ‘_’ or ‘.’.
  • Newlines are not valid within these strings and must be omitted.
  • When using the base64 utility on Darwin/macOS users should avoid using the -b option to split long lines.
  • create a Secret from generators and then apply it to create the object on the Apiserver.
  • The generated Secrets name has a suffix appended by hashing the contents.
  • base64 --decode
  • Secrets can be mounted as data volumes or be exposed as environment variablesContainer environment variables are name=value pairs that provide useful information into containers running in a Pod. to be used by a container in a pod.
  • Multiple pods can reference the same secret.
  • Each key in the secret data map becomes the filename under mountPath
  • each container needs its own volumeMounts block, but only one .spec.volumes is needed per secret
  • use .spec.volumes[].secret.items field to change target path of each key:
  • If .spec.volumes[].secret.items is used, only keys specified in items are projected. To consume all keys from the secret, all of them must be listed in the items field.
  • You can also specify the permission mode bits files part of a secret will have. If you don’t specify any, 0644 is used by default.
  • JSON spec doesn’t support octal notation, so use the value 256 for 0400 permissions.
  • Inside the container that mounts a secret volume, the secret keys appear as files and the secret values are base-64 decoded and stored inside these files.
  • Mounted Secrets are updated automatically
  • Kubelet is checking whether the mounted secret is fresh on every periodic sync.
  • cache propagation delay depends on the chosen cache type
  • A container using a Secret as a subPath volume mount will not receive Secret updates.
  • Multiple pods can reference the same secret.
  • env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username
  • Inside a container that consumes a secret in an environment variables, the secret keys appear as normal environment variables containing the base-64 decoded values of the secret data.
  • An imagePullSecret is a way to pass a secret that contains a Docker (or other) image registry password to the Kubelet so it can pull a private image on behalf of your Pod.
  • a secret needs to be created before any pods that depend on it.
  • Secret API objects reside in a namespaceAn abstraction used by Kubernetes to support multiple virtual clusters on the same physical cluster. . They can only be referenced by pods in that same namespace.
  • Individual secrets are limited to 1MiB in size.
  • Kubelet only supports use of secrets for Pods it gets from the API server.
  • Secrets must be created before they are consumed in pods as environment variables unless they are marked as optional.
  • References to Secrets that do not exist will prevent the pod from starting.
  • References via secretKeyRef to keys that do not exist in a named Secret will prevent the pod from starting.
  • Once a pod is scheduled, the kubelet will try to fetch the secret value.
  • Think carefully before sending your own ssh keys: other users of the cluster may have access to the secret.
  • volumes: - name: secret-volume secret: secretName: ssh-key-secret
  • Special characters such as $, \*, and ! require escaping. If the password you are using has special characters, you need to escape them using the \\ character.
  • You do not need to escape special characters in passwords from files
  • make that key begin with a dot
  • Dotfiles in secret volume
  • .secret-file
  • a frontend container which handles user interaction and business logic, but which cannot see the private key;
  • a signer container that can see the private key, and responds to simple signing requests from the frontend
  • When deploying applications that interact with the secrets API, access should be limited using authorization policies such as RBAC
  • watch and list requests for secrets within a namespace are extremely powerful capabilities and should be avoided
  • watch and list all secrets in a cluster should be reserved for only the most privileged, system-level components.
  • additional precautions with secret objects, such as avoiding writing them to disk where possible.
  • A secret is only sent to a node if a pod on that node requires it
  • only the secrets that a pod requests are potentially visible within its containers
  • each container in a pod has to request the secret volume in its volumeMounts for it to be visible within the container.
  • In the API server secret data is stored in etcdConsistent and highly-available key value store used as Kubernetes’ backing store for all cluster data.
  • limit access to etcd to admin users
  • Base64 encoding is not an encryption method and is considered the same as plain text.
  • A user who can create a pod that uses a secret can also see the value of that secret.
  • anyone with root on any node can read any secret from the apiserver, by impersonating the kubelet.
張 旭

Howto/DNS updates and zone transfers with TSIG - FreeIPA - 0 views

  • dnssec-keygen -a HMAC-SHA512 -b 512 -n HOST keyname
  • vim /etc/named.conf
  • keyvalue
  • ...2 more annotations...
  • ipa dnszone-mod example.com. --update-policy="grant keyname name example.com A;"
    • 張 旭
       
      先執行 kinit admin
  • ipa dnszone-mod example.com. --dynamic-update=1
    • 張 旭
       
      ipa dnszone-show --all example.com.
張 旭

DNS - FreeIPA - 0 views

  • FreeIPA DNS integration allows administrator to manage and serve DNS records in a domain using the same CLI or Web UI as when managing identities and policies.
  • Single-master DNS is error prone, especially for inexperienced admins.
  • a decent Kerberos experience.
  • ...14 more annotations...
  • Goal is NOT to provide general-purpose DNS server.
  • DNS component in FreeIPA is optional and user may choose to manage all DNS records manually in other third party DNS server.
  • Clients can be configured to automatically run DNS updates (nsupdate) when their IP address changes and thus keeping its DNS record up-to-date. DNS zones can be configured to synchronize client's reverse (PTR) record along with the forward (A, AAAA) DNS record.
  • It is extremely hard to change DNS domain in existing installations so it is better to think ahead.
  • You should only use names which are delegated to you by the parent domain.
  • Not respecting this rule will cause problems sooner or later!
  • DNSSEC validation.
  • For internal names you can use arbitrary sub-domain in a DNS sub-tree you own, e.g. int.example.com.. Always respect rules from the previous section.
  • General advice about DNS views is do not use them because views make DNS deployment harder to maintain and security benefits are questionable (when compared with ACL).
  • The DNS integration is based on the bind-dyndb-ldap project, which enhances BIND name server to be able to use FreeIPA server LDAP instance as a data backend (data are stored in cn=dns entry, using schema defined by bind-dyndb-ldap
  • FreeIPA LDAP directory information tree is by default accessible to any user in the network
  • As DNS data are often considered as sensitive and as having access to cn=dns tree would be basically equal to being able to run zone transfer to all FreeIPA managed DNS zones, contents of this tree in LDAP are hidden by default.
  • standard system log (/var/log/messages or system journal)
  • BIND configuration (/etc/named.conf) can be updated to produce a more detailed log.
  •  
    "FreeIPA DNS integration allows administrator to manage and serve DNS records in a domain using the same CLI or Web UI as when managing identities and policies."
張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • GitLab flow as a clearly defined set of best practices. It combines feature-driven development and feature branches with issue tracking.
  • In Git, you add files from the working copy to the staging area. After that, you commit them to your local repo. The third step is pushing to a shared remote repository.
  • branching model
  • ...68 more annotations...
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • It is a convention to call your default branch master and to mostly branch from and merge to this.
  • Nowadays, most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Continuous delivery removes the need for hotfix and release branches, including all the ceremony they introduce.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • GitHub flow assumes you can deploy to production every time you merge a feature branch.
  • You can deploy a new version by merging master into the production branch. If you need to know what code is in production, you can just checkout the production branch to see.
  • Production branch
  • Environment branches
  • have an environment that is automatically updated to the master branch.
  • deploy the master branch to staging.
  • To deploy to pre-production, create a merge request from the master branch to the pre-production branch.
  • Go live by merging the pre-production branch into the production branch.
  • Release branches
  • work with release branches if you need to release software to the outside world.
  • each branch contains a minor version
  • After announcing a release branch, only add serious bug fixes to the branch.
  • merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • Tools such as GitHub and Bitbucket choose the name “pull request” since the first manual action is to pull the feature branch.
  • Tools such as GitLab and others choose the name “merge request” since the final action is to merge the feature branch.
  • If you work on a feature branch for more than a few hours, it is good to share the intermediate result with the rest of the team.
  • the merge request automatically updates when new commits are pushed to the branch.
  • If the assigned person does not feel comfortable, they can request more changes or close the merge request without merging.
  • In GitLab, it is common to protect the long-lived branches, e.g., the master branch, so that most developers can’t modify them.
  • if you want to merge into a protected branch, assign your merge request to someone with maintainer permissions.
  • After you merge a feature branch, you should remove it from the source control software.
  • Having a reason for every code change helps to inform the rest of the team and to keep the scope of a feature branch small.
  • If there is no issue yet, create the issue
  • The issue title should describe the desired state of the system.
  • For example, the issue title “As an administrator, I want to remove users without receiving an error” is better than “Admin can’t remove users.”
  • create a branch for the issue from the master branch
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with [WIP] or WIP: to prevent it from being merged before it’s ready.
  • When they press the merge button, GitLab merges the code and creates a merge commit that makes this event easily visible later on.
  • Merge requests always create a merge commit, even when the branch could be merged without one. This merge strategy is called “no fast-forward” in Git.
  • Suppose that a branch is merged but a problem occurs and the issue is reopened. In this case, it is no problem to reuse the same branch name since the first branch was deleted when it was merged.
  • At any time, there is at most one branch for every issue.
  • It is possible that one feature branch solves more than one issue.
  • GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • If you revert a merge commit and then change your mind, revert the revert commit to redo the merge.
  • Often, people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch.
  • Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • every time you rebase, you have to resolve similar conflicts.
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • A good way to prevent creating many merge commits is to not frequently merge master into the feature branch.
  • keep your feature branches short-lived.
  • Most feature branches should take less than one day of work.
  • If your feature branches often take more than a day of work, try to split your features into smaller units of work.
  • You could also use feature toggles to hide incomplete features so you can still merge back into master every day.
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • If you rebase code, the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers
  • Commit often and push frequently
  • You should push your feature branch frequently, even when it is not yet ready for review.
  • A commit message should reflect your intention, not just the contents of the commit.
  • each merge request must be tested before it is accepted.
  • test the master branch after each change.
  • If new commits in master cause merge conflicts with the feature branch, merge master back into the branch to make the CI server re-run the tests.
  • When creating a feature branch, always branch from an up-to-date master.
  • Do not merge from upstream again if your code can work and merge cleanly without doing so.
張 旭

Warnings, Notes, & Tips - 0 views

  • AS3 manages topology records globally in /Common, it is required that records only be managed through AS3, as it will treat the records declaratively.
  • If a record is added outside of AS3, it will be removed if it is not included in the next AS3 declaration for topology records (AS3 completely overwrites non-AS3 topologies when a declaration is submitted).
  • using AS3 to delete a tenant (for example, sending DELETE to the /declare/<TENANT> endpoint) that contains GSLB topologies will completely remove ALL GSLB topologies from the BIG-IP.
  • ...12 more annotations...
  • When posting a large declaration (hundreds of application services in a single declaration), you may experience a 500 error stating that the save sys config operation failed.
  • Even if you have asynchronous mode set to false, after 45 seconds AS3 sets asynchronous mode to true (API swap), and returns an async response.
  • When creating a new tenant using AS3, it must not use the same name as a partition you separately create on the target BIG-IP system.
  • If you use the same name and then post the declaration, AS3 overwrites (or removes) the existing partition completely, including all configuration objects in that partition.
  • use AS3 to create a tenant (which creates a BIG-IP partition), manually adding configuration objects to the partition created by AS3 can have unexpected results
  • When you delete the Tenant using AS3, the system deletes both virtual servers.
  • if a Firewall_Address_List contains zero addresses, a dummy IPv6 address of ::1:5ee:bad:c0de is added in order to maintain a valid Firewall_Address_List. If an address is added to the list, the dummy address is removed.
  • use /mgmt/shared/appsvcs/declare?async=true if you have a particularly large declaration which will take a long time to process.
  • reviewing the Sizing BIG-IP Virtual Editions section (page 7) of Deploying BIG-IP VEs in a Hyper-Converged Infrastructure
  • To test whether your system has AS3 installed or not, use GET with the /mgmt/shared/appsvcs/info URI.
  • You may find it more convenient to put multi-line texts such as iRules into AS3 declarations by first encoding them in Base64.
  • no matter your BIG-IP user account name, audit logs show all messages from admin and not the specific user name.
張 旭

AskF5 | Manual Chapter: Working with Partitions - 0 views

  • During BIG-IP® system installation, the system automatically creates a partition named Common
  • An administrative partition is a logical container that you create, containing a defined set of BIG-IP® system objects.
  • No user can delete partition Common itself.
  • ...9 more annotations...
  • With respect to permissions, all users on the system except those with a user role of No Access have read access to objects in partition Common, and by default, partition Common is their current partition.
  • The current partition is the specific partition to which the system is currently set for a logged-in user.
  • A partition access assignment gives a user some level of access to the specified partition.
  • assigning partition access to a user does not necessarily give the user full access to all objects in the partition
  • user account objects also reside in partitions
  • when you first install the BIG-IP system, every existing user account (root and admin) resides in partition Common
  • the partition in which a user account object resides does not affect the partition or partitions to which that user is granted access to manage other BIG-IP objects
  • the object it references resides in partition Common
  • a referenced object must reside either in the same partition as the object that is referencing it
1 - 20 of 27 Next ›
Showing 20 items per page