Skip to main content

Home/ Larvata/ Group items tagged Web

Rss Feed Group items tagged

張 旭

The Rails Command Line - Ruby on Rails Guides - 0 views

  • rake --tasks
  • Think of destroy as the opposite of generate.
  • runner runs Ruby code in the context of Rails non-interactively
  • ...28 more annotations...
  • rails dbconsole figures out which database you're using and drops you into whichever command line interface you would use with it
  • The console command lets you interact with your Rails application from the command line. On the underside, rails console uses IRB
  • rake about gives information about version numbers for Ruby, RubyGems, Rails, the Rails subcomponents, your application's folder, the current Rails environment name, your app's database adapter, and schema version
  • You can precompile the assets in app/assets using rake assets:precompile and remove those compiled assets using rake assets:clean.
  • rake db:version is useful when troubleshooting
  • The doc: namespace has the tools to generate documentation for your app, API documentation, guides.
  • rake notes will search through your code for comments beginning with FIXME, OPTIMIZE or TODO.
  • You can also use custom annotations in your code and list them using rake notes:custom by specifying the annotation using an environment variable ANNOTATION.
  • rake routes will list all of your defined routes, which is useful for tracking down routing problems in your app, or giving you a good overview of the URLs in an app you're trying to get familiar with.
  • rake secret will give you a pseudo-random key to use for your session secret.
  • Custom rake tasks have a .rake extension and are placed in Rails.root/lib/tasks.
  • rails new . --git --database=postgresql
  • All commands can run with -h or --help to list more information
  • The rails server command launches a small web server named WEBrick which comes bundled with Ruby
  • rails server -e production -p 4000
  • You can run a server as a daemon by passing a -d option
  • The rails generate command uses templates to create a whole lot of things.
  • Using generators will save you a large amount of time by writing boilerplate code, code that is necessary for the app to work.
  • All Rails console utilities have help text.
  • generate controller ControllerName action1 action2.
  • With a normal, plain-old Rails application, your URLs will generally follow the pattern of http://(host)/(controller)/(action), and a URL like http://(host)/(controller) will hit the index action of that controller.
  • A scaffold in Rails is a full set of model, database migration for that model, controller to manipulate it, views to view and manipulate the data, and a test suite for each of the above.
  • Unit tests are code that tests and makes assertions about code.
  • Unit tests are your friend.
  • rails console --sandbox
  • rails db
  • Each task has a description, and should help you find the thing you need.
  • rake tmp:clear clears all the three: cache, sessions and sockets.
張 旭

Automated Docker-based Rails deployments - 0 views

  • how to automate the whole deployment process with a real world
  • use Unicorn as our webserver
  •  
    "This is the third post in a series of 3 on how my company moved its infrastructure from PaaS to Docker based deployment."
crazylion lee

transfer.sh - Easy and fast file sharing from the command-line. - 1 views

  •  
    "Easy file sharing from the command line"
張 旭

Managing files | Django documentation | Django - 0 views

  • By default, Django stores files locally, using the MEDIA_ROOT and MEDIA_URL settings.
  • use a FileField or ImageField, Django provides a set of APIs you can use to deal with that file.
  • Behind the scenes, Django delegates decisions about how and where to store files to a file storage system.
  • ...1 more annotation...
  • Django uses a django.core.files.File instance any time it needs to represent a file.
張 旭

Rails API Testing Best Practices - 0 views

  • Writing an API is almost a given with modern web applications
  • A properly designed API should return two things: an HTTP response status-code and the response body.
  • Testing the status-code is necessary
  • ...6 more annotations...
  • testing the response body should just verify that the application is sending the right content.
  • Unauthorized
  • Forbidden
  • Your test should also ensure that any desired business logic gets completed as expected.
  • Request specs provide a thin wrapper around Rails’ integration tests, and are designed to drive behavior through the full stack
  • we’ll be doing json = JSON.parse(response.body) a lot. This should be a helper method.
張 旭

phusion/baseimage-docker - 1 views

    • 張 旭
       
      原始的 docker 在執行命令時,預設就是將傳入的 COMMAND 當成 PID 1 的程序,執行完畢就結束這個  docker,其他的 daemons 並不會執行,而 baseimage 解決了這個問題。
    • crazylion lee
       
      好棒棒
  • docker exec
  • Through SSH
  • ...57 more annotations...
  • docker exec -t -i YOUR-CONTAINER-ID bash -l
  • Login to the container
  • Baseimage-docker only advocates running multiple OS processes inside a single container.
  • Password and challenge-response authentication are disabled by default. Only key authentication is allowed.
  • A tool for running a command as another user
  • The Docker developers advocate the philosophy of running a single logical service per container. A logical service can consist of multiple OS processes.
  • All syslog messages are forwarded to "docker logs".
  • Baseimage-docker advocates running multiple OS processes inside a single container, and a single logical service can consist of multiple OS processes.
  • Baseimage-docker provides tools to encourage running processes as different users
  • sometimes it makes sense to run multiple services in a single container, and sometimes it doesn't.
  • Splitting your logical service into multiple OS processes also makes sense from a security standpoint.
  • using environment variables to pass parameters to containers is very much the "Docker way"
  • Baseimage-docker provides a facility to run a single one-shot command, while solving all of the aforementioned problems
  • the shell script must run the daemon without letting it daemonize/fork it.
  • All executable scripts in /etc/my_init.d, if this directory exists. The scripts are run in lexicographic order.
  • variables will also be passed to all child processes
  • Environment variables on Unix are inherited on a per-process basis
  • there is no good central place for defining environment variables for all applications and services
  • centrally defining environment variables
  • One of the ideas behind Docker is that containers should be stateless, easily restartable, and behave like a black box.
  • a one-shot command in a new container
  • immediately exit after the command exits,
  • However the downside of this approach is that the init system is not started. That is, while invoking COMMAND, important daemons such as cron and syslog are not running. Also, orphaned child processes are not properly reaped, because COMMAND is PID 1.
  • add additional daemons (e.g. your own app) to the image by creating runit entries.
  • Nginx is one such example: it removes all environment variables unless you explicitly instruct it to retain them through the env configuration option.
  • Mechanisms for easily running multiple processes, without violating the Docker philosophy
  • Ubuntu is not designed to be run inside Docker
  • According to the Unix process model, the init process -- PID 1 -- inherits all orphaned child processes and must reap them
  • Syslog-ng seems to be much more stable
  • cron daemon
  • Rotates and compresses logs
  • /sbin/setuser
  • A tool for installing apt packages that automatically cleans up after itself.
  • a single logical service inside a single container
  • A daemon is a program which runs in the background of its system, such as a web server.
  • The shell script must be called run, must be executable, and is to be placed in the directory /etc/service/<NAME>. runsv will switch to the directory and invoke ./run after your container starts.
  • If any script exits with a non-zero exit code, the booting will fail.
  • If your process is started with a shell script, make sure you exec the actual process, otherwise the shell will receive the signal and not your process.
  • any environment variables set with docker run --env or with the ENV command in the Dockerfile, will be picked up by my_init
  • not possible for a child process to change the environment variables of other processes
  • they will not see the environment variables that were originally passed by Docker.
  • We ignore HOME, SHELL, USER and a bunch of other environment variables on purpose, because not ignoring them will break multi-user containers.
  • my_init imports environment variables from the directory /etc/container_environment
  • /etc/container_environment.sh - a dump of the environment variables in Bash format.
  • modify the environment variables in my_init (and therefore the environment variables in all child processes that are spawned after that point in time), by altering the files in /etc/container_environment
  • my_init only activates changes in /etc/container_environment when running startup scripts
  • environment variables don't contain sensitive data, then you can also relax the permissions
  • Syslog messages are forwarded to the console
  • syslog-ng is started separately before the runit supervisor process, and shutdown after runit exits.
  • RUN apt-get update && apt-get upgrade -y -o Dpkg::Options::="--force-confold"
  • /sbin/my_init --skip-startup-files --quiet --
  • By default, no keys are installed, so nobody can login
  • provide a pregenerated, insecure key (PuTTY format)
  • RUN /usr/sbin/enable_insecure_key
  • docker run YOUR_IMAGE /sbin/my_init --enable-insecure-key
  • RUN cat /tmp/your_key.pub >> /root/.ssh/authorized_keys && rm -f /tmp/your_key.pub
  • The default baseimage-docker installs syslog-ng, cron and sshd services during the build process
張 旭

Scalable architecture without magic (and how to build it if you're not Google) - DEV Co... - 0 views

  • Don’t mess up write-first and read-first databases.
  • keep them stateless.
  • you should know how to make a scalable setup on bare metal.
  • ...29 more annotations...
  • Different programming languages are for different tasks.
  • Go or C which are compiled to run on bare metal.
  • To run NodeJS on multiple cores, you have to use something like PM2, but since this you have to keep your code stateless.
  • Python have very rich and sugary syntax that’s great for working with data while keeping your code small and expressive.
  • SQL is almost always slower than NoSQL
  • databases are often read-first or write-first
  • write-first, just like Cassandra.
  • store all of your data to your databases and leave nothing at backend
  • Functional code is stateless by default
  • It’s better to go for stateless right from the very beginning.
  • deliver exactly the same responses for same requests.
  • Sessions? Store them at Redis and allow all of your servers to access it.
  • Only the first user will trigger a data query, and all others will be receiving exactly the same data straight from the RAM
  • never, never cache user input
  • Only the server output should be cached
  • Varnish is a great cache option that works with HTTP responses, so it may work with any backend.
  • a rate limiter – if there’s not enough time have passed since last request, the ongoing request will be denied.
  • different requests blasting every 10ms can bring your server down
  • Just set up entry relations and allow your database to calculate external keys for you
  • the query planner will always be faster than your backend.
  • Backend should have different responsibilities: hashing, building web pages from data and templates, managing sessions and so on.
  • For anything related to data management or data models, move it to your database as procedures or queries.
  • a distributed database.
  • your code has to be stateless
  • Move anything related to the data to the database.
  • For load-balancing a database, go for cluster.
  • DB is balancing requests, as well as your backend.
  • Users from different continents are separated with DNS.
  • Keep is scalable, keep is stateless.
  •  
    "Don't mess up write-first and read-first databases."
張 旭

Queues - Laravel - The PHP Framework For Web Artisans - 0 views

  • Laravel queues provide a unified API across a variety of different queue backends, such as Beanstalk, Amazon SQS, Redis, or even a relational database.
  • The queue configuration file is stored in config/queue.php
  • a synchronous driver that will execute jobs immediately (for local use)
  • ...56 more annotations...
  • A null queue driver is also included which discards queued jobs.
  • In your config/queue.php configuration file, there is a connections configuration option.
  • any given queue connection may have multiple "queues" which may be thought of as different stacks or piles of queued jobs.
  • each connection configuration example in the queue configuration file contains a queue attribute.
  • if you dispatch a job without explicitly defining which queue it should be dispatched to, the job will be placed on the queue that is defined in the queue attribute of the connection configuration
  • pushing jobs to multiple queues can be especially useful for applications that wish to prioritize or segment how jobs are processed
  • specify which queues it should process by priority.
  • If your Redis queue connection uses a Redis Cluster, your queue names must contain a key hash tag.
  • ensure all of the Redis keys for a given queue are placed into the same hash slot
  • all of the queueable jobs for your application are stored in the app/Jobs directory.
  • Job classes are very simple, normally containing only a handle method which is called when the job is processed by the queue.
  • we were able to pass an Eloquent model directly into the queued job's constructor. Because of the SerializesModels trait that the job is using, Eloquent models will be gracefully serialized and unserialized when the job is processing.
  • When the job is actually handled, the queue system will automatically re-retrieve the full model instance from the database.
  • The handle method is called when the job is processed by the queue
  • The arguments passed to the dispatch method will be given to the job's constructor
  • delay the execution of a queued job, you may use the delay method when dispatching a job.
  • dispatch a job immediately (synchronously), you may use the dispatchNow method.
  • When using this method, the job will not be queued and will be run immediately within the current process
  • specify a list of queued jobs that should be run in sequence.
  • Deleting jobs using the $this->delete() method will not prevent chained jobs from being processed. The chain will only stop executing if a job in the chain fails.
  • this does not push jobs to different queue "connections" as defined by your queue configuration file, but only to specific queues within a single connection.
  • To specify the queue, use the onQueue method when dispatching the job
  • To specify the connection, use the onConnection method when dispatching the job
  • defining the maximum number of attempts on the job class itself.
  • to defining how many times a job may be attempted before it fails, you may define a time at which the job should timeout.
  • using the funnel method, you may limit jobs of a given type to only be processed by one worker at a time
  • using the throttle method, you may throttle a given type of job to only run 10 times every 60 seconds.
  • If an exception is thrown while the job is being processed, the job will automatically be released back onto the queue so it may be attempted again.
  • dispatch a Closure. This is great for quick, simple tasks that need to be executed outside of the current request cycle
  • When dispatching Closures to the queue, the Closure's code contents is cryptographically signed so it can not be modified in transit.
  • Laravel includes a queue worker that will process new jobs as they are pushed onto the queue.
  • once the queue:work command has started, it will continue to run until it is manually stopped or you close your terminal
  • queue workers are long-lived processes and store the booted application state in memory.
  • they will not notice changes in your code base after they have been started.
  • during your deployment process, be sure to restart your queue workers.
  • customize your queue worker even further by only processing particular queues for a given connection
  • The --once option may be used to instruct the worker to only process a single job from the queue
  • The --stop-when-empty option may be used to instruct the worker to process all jobs and then exit gracefully.
  • Daemon queue workers do not "reboot" the framework before processing each job.
  • you should free any heavy resources after each job completes.
  • Since queue workers are long-lived processes, they will not pick up changes to your code without being restarted.
  • restart the workers during your deployment process.
  • php artisan queue:restart
  • The queue uses the cache to store restart signals
  • the queue workers will die when the queue:restart command is executed, you should be running a process manager such as Supervisor to automatically restart the queue workers.
  • each queue connection defines a retry_after option. This option specifies how many seconds the queue connection should wait before retrying a job that is being processed.
  • The --timeout option specifies how long the Laravel queue master process will wait before killing off a child queue worker that is processing a job.
  • When jobs are available on the queue, the worker will keep processing jobs with no delay in between them.
  • While sleeping, the worker will not process any new jobs - the jobs will be processed after the worker wakes up again
  • the numprocs directive will instruct Supervisor to run 8 queue:work processes and monitor all of them, automatically restarting them if they fail.
  • Laravel includes a convenient way to specify the maximum number of times a job should be attempted.
  • define a failed method directly on your job class, allowing you to perform job specific clean-up when a failure occurs.
  • a great opportunity to notify your team via email or Slack.
  • php artisan queue:retry all
  • php artisan queue:flush
  • When injecting an Eloquent model into a job, it is automatically serialized before being placed on the queue and restored when the job is processed
crazylion lee

GitHub - hugmanrique/turbo-ws: Blazing fast low-level WebSocket server - 0 views

  •  
    "
張 旭

Ruby on Rails 實戰聖經 | 網站效能 - 0 views

  • 依照慣例是_count結尾,型別是integer,有預設值0。
  • lol_dba提供了Rake任務可以幫忙找忘記加的索引。
  • Bullet是一個外掛可以在開發時偵測N+1 queries問題。
  • ...19 more annotations...
  • 存取資料庫是一種相對很慢的I/O的操作:每一條SQL query都得耗上時間、執行回傳的結果也會被轉成ActiveRecord物件全部放進記憶體
  • 如果需要撈出全部的資料做處理,強烈建議最好不要用all方法,因為這樣會把全部的資料一次放進記憶體中,如果資料有成千上萬筆的話,效能就墜毀了。
  • .find_each( :batch_size => 100 )
  • .find_in_batches( :batch_size => 100 )
  • 在Transaction交易範圍內的SQL效能會加快,因為最後只需要COMMIT一次即可
  • Elasticsearch全文搜尋引擎和elasticsearch-rails gem
  • QueryReviewer這個套件透過SQL EXPLAIN分析SQL query的效率
  • 必要時可以採用逆正規化的設計。犧牲空間,增加修改的麻煩,但是讓讀取這事件變得更快更簡單。
  • 將成本轉嫁到寫入,而最佳化了讀取時間
  • 在效能還沒有造成問題前,就為了優化效能而修改程式和架構,只會讓程式更混亂不好維護
  • 當效能還不會造成問題時,程式的維護性比考慮效能重要
  • 會拖慢整體效能的程式,只佔全部程式的一小部分而已,所以我們只最佳化會造成問題的程式。
  • 善用分析工具找效能瓶頸,最佳化前需要測量,最佳化後也要測量比較。
  • rack-mini-profiler在頁面的左上角顯示花了多少時間,並且提供報表,推薦安裝
  • 如果是不需要權限控管的靜態檔案,可以直接放在public目錄下讓使用者下載。
  • Web伺服器得先安裝好x_sendfile功能
  • 如果要讓你的Assets例如CSS, JavaScript, Images也讓使用者透過CDN下載,只要修改config/environments/production.rb的config.action_controller.asset_host為CDN網址即可。
  • 有時候「執行速度較快」的程式碼不代表好維護、好除錯的程式碼
  • Ruby不是萬能,有時候直接呼叫外部程式是最快的作法
crazylion lee

Wappalyzer - 0 views

  •  
    "Wappalyzer uncovers the technologies used on websites. "
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
« First ‹ Previous 101 - 120 of 137 Next ›
Showing 20 items per page