Skip to main content

Home/ Larvata/ Group items tagged Internet

Rss Feed Group items tagged

張 旭

Internet Gateways - Amazon Virtual Private Cloud - 0 views

  • to provide a target in your VPC route tables for internet-routable traffic
  • to perform network address translation (NAT) for instances that have been assigned public IPv4 addresses
  • Ensure that instances in your subnet have a globally unique IP address (public IPv4 address, Elastic IP address, or IPv6 address)
  • ...10 more annotations...
  • To use an internet gateway, your subnet's route table must contain a route that directs internet-bound traffic to the internet gateway.
  • If your subnet is associated with a route table that has a route to an internet gateway, it's known as a public subnet.
  • To enable communication over the internet for IPv4, your instance must have a public IPv4 address or an Elastic IP address that's associated with a private IPv4 address on your instance.
  • Your instance is only aware of the private (internal) IP address space defined within the VPC and subnet
  • internet gateway logically provides the one-to-one NAT on behalf of your instance
  • To enable communication over the internet for IPv6, your VPC and subnet must have an associated IPv6 CIDR block, and your instance must be assigned an IPv6 address from the range of the subnet.
  • When you create a subnet, we automatically associate it with the main route table for the VPC.
  • the main route table doesn't contain a route to an internet gateway
  • Each instance that you launch into a VPC is automatically associated with its default security group.
  • a default security group allow no inbound traffic from the internet and allow all outbound traffic to the internet.
張 旭

What Is Amazon VPC? - Amazon Virtual Private Cloud - 0 views

  • to allow an instance in your VPC to initiate outbound connections to the internet but prevent unsolicited inbound connections from the internet, you can use a network address translation (NAT) device for IPv4 traffic
  • A NAT device has an Elastic IP address and is connected to the internet through an internet gateway.
  • By default, each instance that you launch into a nondefault subnet has a private IPv4 address, but no public IPv4 address, unless you specifically assign one at launch, or you modify the subnet's public IP address attribute.
  • ...11 more annotations...
  • Amazon VPC is the networking layer for Amazon EC2.
  • A virtual private cloud (VPC) is a virtual network dedicated to your AWS account. It is logically isolated from other virtual networks in the AWS Cloud.
  • Instances can connect to the internet over IPv6 through an internet gateway
  • IPv6 traffic is separate from IPv4 traffic; your route tables must include separate routes for IPv6 traffic.
  • You can optionally connect your VPC to your own corporate data center using an IPsec AWS managed VPN connection, making the AWS Cloud an extension of your data center.
  • A VPN connection consists of a virtual private gateway attached to your VPC and a customer gateway located in your data center.
  • A virtual private gateway is the VPN concentrator on the Amazon side of the VPN connection. A customer gateway is a physical device or software appliance on your side of the VPN connection.
  • AWS PrivateLink is a highly available, scalable technology that enables you to privately connect your VPC to supported AWS services, services hosted by other AWS accounts (VPC endpoint services)
  • Traffic between your VPC and the service does not leave the Amazon network
  • To use AWS PrivateLink, create an interface VPC endpoint for a service in your VPC. This creates an elastic network interface in your subnet with a private IP address that serves as an entry point for traffic destined to the service.
  • create your own AWS PrivateLink-powered service (endpoint service) and enable other AWS customers to access your service.
crazylion lee

How the Internet works: Submarine fiber, brains in jars, and coaxial cables | Ars Technica - 0 views

  •  
    " How the Internet works: Submarine fiber, brains in jars, and coaxial cables"
張 旭

NAT Gateways - Amazon Virtual Private Cloud - 0 views

  • a network address translation (NAT) gateway to enable instances in a private subnet to connect to the internet or other AWS services
  • but prevent the internet from initiating a connection with those instances
  • NAT gateways are not supported for IPv6 traffic
  • ...11 more annotations...
  • must specify the public subnet in which the NAT gateway should reside
  • update the route table associated with one or more of your private subnets to point Internet-bound traffic to the NAT gateway.
  • NAT gateway is created in a specific Availability Zone and implemented with redundancy in that zone.
  • ensure that resources use the NAT gateway in the same Availability Zone
  • The main route table sends internet traffic from the instances in the private subnet to the NAT gateway. The NAT gateway sends the traffic to the internet gateway using the NAT gateway’s Elastic IP address as the source IP address
  • A NAT gateway supports 5 Gbps of bandwidth and automatically scales up to 45 Gbps
  • You can associate exactly one Elastic IP address with a NAT gateway
  • A NAT gateway supports the following protocols: TCP, UDP, and ICMP
  • cannot associate a security group with a NAT gateway.
  • create a NAT gateway in the same subnet as your NAT instance, and then replace the existing route in your route table that points to the NAT instance with a route that points to the NAT gateway
  • A NAT gateway cannot send traffic over VPC endpoints, VPN connections, AWS Direct Connect, or VPC peering connections.
張 旭

VPCs and Subnets - Amazon Virtual Private Cloud - 0 views

  • you must specify a range of IPv4 addresses for the VPC in the form of a Classless Inter-Domain Routing (CIDR) block
  • A VPC spans all the Availability Zones in the region
  • add one or more subnets in each Availability Zone.
  • ...19 more annotations...
  • Each subnet must reside entirely within one Availability Zone and cannot span zones.
  • Availability Zones are distinct locations that are engineered to be isolated from failures in other Availability Zones
  • If a subnet's traffic is routed to an internet gateway, the subnet is known as a public subnet.
  • If a subnet doesn't have a route to the internet gateway, the subnet is known as a private subnet.
  • If a subnet doesn't have a route to the internet gateway, but has its traffic routed to a virtual private gateway for a VPN connection, the subnet is known as a VPN-only subnet.
  • By default, all VPCs and subnets must have IPv4 CIDR blocks—you can't change this behavior.
  • The allowed block size is between a /16 netmask (65,536 IP addresses) and /28 netmask (16 IP addresses).
  • The first four IP addresses and the last IP address in each subnet CIDR block are not available for you to use
  • The allowed block size is between a /28 netmask and /16 netmask
  • The CIDR block must not overlap with any existing CIDR block that's associated with the VPC.
  • Each subnet must be associated with a route table
  • Every subnet that you create is automatically associated with the main route table for the VPC
  • Security groups control inbound and outbound traffic for your instances
  • network ACLs control inbound and outbound traffic for your subnets
  • each subnet must be associated with a network ACL
  • You can create a flow log on your VPC or subnet to capture the traffic that flows to and from the network interfaces in your VPC or subnet.
  • A VPC peering connection enables you to route traffic between the VPCs using private IP addresses
  • you cannot create a VPC peering connection between VPCs that have overlapping CIDR blocks
  • recommend that you create a VPC with a CIDR range large enough for expected future growth, but not one that overlaps with current or expected future subnets anywhere in your corporate or home network, or that overlaps with current or future VPCs
crazylion lee

Little Snitch - 1 views

  •  
    "As soon as you're connected to the Internet, applications can potentially send whatever they want to wherever they want. Most often they do this to your benefit. But sometimes, like in case of tracking software, trojans or other malware, they don't. But you don't notice anything, because all of this happens invisibly under the hood."
crazylion lee

Node-RED - 0 views

  •  
    "A visual tool for wiring the Internet of Things"
crazylion lee

Trigger Happy - 0 views

  •  
    "AN OPEN SOURCE CLONE OF IFTTT.COM, A BRIDGE BETWEEN YOUR INTERNET SERVICES"
crazylion lee

Shadowsocks - A secure socks5 proxy - 0 views

  •  
    "A secure socks5 proxy, designed to protect your Internet traffic."
張 旭

Ingress - Kubernetes - 0 views

  • An API object that manages external access to the services in a cluster, typically HTTP.
  • load balancing
  • SSL termination
  • ...62 more annotations...
  • name-based virtual hosting
  • Edge routerA router that enforces the firewall policy for your cluster.
  • Cluster networkA set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • A Kubernetes ServiceA way to expose an application running on a set of Pods as a network service. that identifies a set of Pods using labelTags objects with identifying attributes that are meaningful and relevant to users. selectors.
  • Services are assumed to have virtual IPs only routable within the cluster network.
  • Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.
  • Traffic routing is controlled by rules defined on the Ingress resource.
  • An Ingress can be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name based virtual hosting.
  • Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.
  • You must have an ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • As with all other Kubernetes resources, an Ingress needs apiVersion, kind, and metadata fields
  • Ingress frequently uses annotations to configure some options depending on the Ingress controller,
  • Ingress resource only supports rules for directing HTTP traffic.
  • An optional host.
  • A list of paths
  • A backend is a combination of Service and port names
  • has an associated backend
  • Both the host and path must match the content of an incoming request before the load balancer directs traffic to the referenced Service.
  • HTTP (and HTTPS) requests to the Ingress that matches the host and path of the rule are sent to the listed backend.
  • A default backend is often configured in an Ingress controller to service any requests that do not match a path in the spec.
  • An Ingress with no rules sends all traffic to a single default backend.
  • Ingress controllers and load balancers may take a minute or two to allocate an IP address.
  • A fanout configuration routes traffic from a single IP address to more than one Service, based on the HTTP URI being requested.
  • nginx.ingress.kubernetes.io/rewrite-target: /
  • describe ingress
  • get ingress
  • Name-based virtual hosts support routing HTTP traffic to multiple host names at the same IP address.
  • route requests based on the Host header.
  • an Ingress resource without any hosts defined in the rules, then any web traffic to the IP address of your Ingress controller can be matched without a name based virtual host being required.
  • secure an Ingress by specifying a SecretStores sensitive information, such as passwords, OAuth tokens, and ssh keys. that contains a TLS private key and certificate.
  • Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination.
  • An Ingress controller is bootstrapped with some load balancing policy settings that it applies to all Ingress, such as the load balancing algorithm, backend weight scheme, and others.
  • persistent sessions, dynamic weights) are not yet exposed through the Ingress. You can instead get these features through the load balancer used for a Service.
  • review the controller specific documentation to see how they handle health checks
  • edit ingress
  • After you save your changes, kubectl updates the resource in the API server, which tells the Ingress controller to reconfigure the load balancer.
  • kubectl replace -f on a modified Ingress YAML file.
  • Node: A worker machine in Kubernetes, part of a cluster.
  • in most common Kubernetes deployments, nodes in the cluster are not part of the public internet.
  • Edge router: A router that enforces the firewall policy for your cluster.
  • a gateway managed by a cloud provider or a physical piece of hardware.
  • Cluster network: A set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • Service: A Kubernetes Service that identifies a set of Pods using label selectors.
  • An Ingress may be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based virtual hosting.
  • An Ingress does not expose arbitrary ports or protocols.
  • You must have an Ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • The name of an Ingress object must be a valid DNS subdomain name
  • The Ingress spec has all the information needed to configure a load balancer or proxy server.
  • Ingress resource only supports rules for directing HTTP(S) traffic.
  • An Ingress with no rules sends all traffic to a single default backend and .spec.defaultBackend is the backend that should handle requests in that case.
  • If defaultBackend is not set, the handling of requests that do not match any of the rules will be up to the ingress controller
  • A common usage for a Resource backend is to ingress data to an object storage backend with static assets.
  • Exact: Matches the URL path exactly and with case sensitivity.
  • Prefix: Matches based on a URL path prefix split by /. Matching is case sensitive and done on a path element by element basis.
  • multiple paths within an Ingress will match a request. In those cases precedence will be given first to the longest matching path.
  • Hosts can be precise matches (for example “foo.bar.com”) or a wildcard (for example “*.foo.com”).
  • No match, wildcard only covers a single DNS label
  • Each Ingress should specify a class, a reference to an IngressClass resource that contains additional configuration including the name of the controller that should implement the class.
  • secure an Ingress by specifying a Secret that contains a TLS private key and certificate.
  • The Ingress resource only supports a single TLS port, 443, and assumes TLS termination at the ingress point (traffic to the Service and its Pods is in plaintext).
  • TLS will not work on the default rule because the certificates would have to be issued for all the possible sub-domains.
  • hosts in the tls section need to explicitly match the host in the rules section.
crazylion lee

Software Library: Amiga : Free Texts : Download & Streaming : Internet Archive - 0 views

  •  
    "Software Library: Amiga"
張 旭

Virtual Private Cloud (VPC)  |  Virtual Private Cloud  |  Google Cloud - 0 views

  • A single Google Cloud VPC can span multiple regions without communicating across the public Internet.
  • Google Cloud VPCs let you increase the IP space of any subnets without any workload shutdown or downtime.
  • Get private access to Google services, such as storage, big data, analytics, or machine learning, without having to give your service a public IP address.
  • ...3 more annotations...
  • Enable dynamic Border Gateway Protocol (BGP) route updates between your VPC network and your non-Google network with our virtual router.
  • Configure a VPC Network to be shared across several projects in your organization.
  • Hosting globally distributed multi-tier applications, by creating a VPC with subnets.
張 旭

Overview of Virtual Private Cloud  |  VPC  |  Google Cloud - 0 views

  • a VPC network the same way you'd think of a physical network, except that it is virtualized within GCP.
  • VPC networks are logically isolated from each other in GCP.
  • The network connects the resources to each other and to the Internet.
  •  
    "a VPC network the same way you'd think of a physical network, except that it is virtualized within GCP."
張 旭

cryptography - What's the difference between SSL, TLS, and HTTPS? - Information Securit... - 0 views

  • TLS is the new name for SSL
  • HTTPS is HTTP-within-SSL/TLS
  • SSL (TLS) establishes a secured, bidirectional tunnel for arbitrary binary data between two hosts
  • ...10 more annotations...
  • HTTP is meant to run over a bidirectional tunnel for arbitrary binary data; when that tunnel is an SSL/TLS connection, then the whole is called "HTTPS".
  • "SSL" means "Secure Sockets Layer".
  • "TLS" means "Transport Layer Security".
  • The name was changed to avoid any legal issues with Netscape so that the protocol could be "open and free" (and published as a RFC).
    • 張 旭
       
      看起來其實就指同一件事,只是講 TLS 可以避開 SSL 這個有產權糾紛的名諱。
  • not just Internet-based sockets
  • "HTTPS" is supposed to mean "HyperText Transfer Protocol Secure",
  • Other protocol acronyms have been built the same way, e.g. SMTPS, IMAPS, FTPS... all of them being a bare protocol that "got secured" by running it within some SSL/TLS.
  • To make the confusing perfect: SSL (secure socket layer) often refers to the old protocol variant which starts with the handshake right away and therefore requires another port for the encrypted protocol such as 443 instead of 80.
  • TLS (transport layer security) often refers to the new variant which allows to start with an unencrypted traditional protocol and then issuing a command (usually STARTTLS) to initialize the handshake.
  • Whether you use SSL or TLS for this depends on the configuration of your browser and of the server (there usually is an option to allow SSLv2, SSLv3 or TLS 1.x).
張 旭

DNS Records: an Introduction - 0 views

  • reading from right to left
  • top-level domain, or TLD
  • first-level subdomains plus their TLDs (example.com) are referred to as “domains.”
  • ...37 more annotations...
  • Name servers host a domain’s DNS information in a text file called the zone file
  • Start of Authority (SOA) records
  • You’ll want to specify at least two name servers. That way, if one of them is down, the next one can continue to serve your DNS information.
  • Every domain’s zone file contains the admin’s email address, the name servers, and the DNS records.
  • a zone file, which lists domains and their corresponding IP addresses (and a few other things)
  • TLD nameserver
  • ISPs cache a lot of DNS information after they’ve looked it up the first time
  • Usually caching is a good thing, but it can be a problem if you’ve recently made a change to your DNS information
  • An A record matches up a domain (or subdomain) to an IP address
  • point different subdomains to different IP addresses
  • An AAAA record is just like an A record, but for IPv6 IP addresses.
  • An AXFR record is a type of DNS record used for DNS replication
  • used on a slave DNS server to replicate the zone file from a master DNS server
  • DNS Certification Authority Authorization uses DNS to allow the holder of a domain to specify which certificate authorities are allowed to issue certificates for that domain.
  • A CNAME record or Canonical Name record matches up a domain (or subdomain) to a different domain.
  • You should not use a CNAME record for a domain that gets email, because some mail servers handle mail oddly for domains with CNAME records
  • the target domain for a CNAME record should have a normal A-record resolution
  • a CNAME record does not function the same way as a URL redirect
  • A DKIM record or domain keys identified mail record displays the public key for authenticating messages that have been signed with the DKIM protocol
  • An MX record or mail exchange record sets the mail delivery destination for a domain (or subdomain).
  • Ideally, an MX record should point to a domain that is also the hostname for its server.
  • Your MX records don’t necessarily have to point to your Linode. If you’re using a third-party mail service, like Google Apps, you should use the MX records they provide.
  • Lower numbers have a higher priority
  • NS records or name server records set the nameservers for a domain (or subdomain).
  • You can also set up different nameservers for any of your subdomains.
  • The order of NS records does not matter; DNS requests are sent randomly to the different servers, and if one host fails to respond, another one will be queried.
  • A PTR record or pointer record matches up an IP address to a domain (or subdomain), allowing reverse DNS queries to function.
  • PTR records are usually set with your hosting provider. They are not part of your domain’s zone file.
  • An SOA record or Start of Authority record labels a zone file with the name of the host where it was originally created.
  • The administrative email address is written with a period (.) instead of an at symbol (<@>).
  • The single nameserver mentioned in the SOA record is considered the primary master for the purposes of Dynamic DNS and is the server where zone file changes get made before they are propagated to all other nameservers.
  • An SPF record or Sender Policy Framework record lists the designated mail servers for a domain (or subdomain).
  • An SPF record for your domain tells other receiving mail servers which outgoing server(s) are valid sources of email, so they can reject spoofed email from your domain that has originated from unauthorized servers.
  • Your SPF record will have a domain or subdomain, type (which is TXT, or SPF if your name server supports it), and text (which starts with “v=spf1” and contains the SPF record settings).
  • An SRV record or service record matches up a specific service that runs on your domain (or subdomain) to a target domain.
  • A TXT record or text record provides information about the domain in question to other resources on the Internet.
  • One common use of the TXT record is to create an SPF record on nameservers that don’t natively support SPF.
張 旭

Public Key Infrastructure (PKI) Overview - 0 views

  • A PKI allows you to bind public keys (contained in SSL certificates) with a person in a way that allows you to trust the certificate.
  • Public Key Infrastructures, like the one used to secure the Internet, most commonly use a Certificate Authority (also called a Registration Authority) to verify the identity of an entity and create unforgeable certificates.
  • An SSL Certificate Authority (also called a trusted third party or CA) is an organization that issues digital certificates to organizations or individuals after verifying their identity.
  • ...9 more annotations...
  • An SSL Certificate provides assurances that we are talking to the right server, but the assurances are limited.
  • In PKI, trust simply means that a certificate can be validated by a CA that is in our trust store.
  • An SSL Certificate in a PKI is a digital document containing a public key, entity information, and a digital signature from the certificate issuer.
  • it is much more practical and secure to establish a chain of trust to the Root certificate by signing an Intermediate certificate
  • A trust store is a collection of Root certificates that are trusted by default.
  • there are four primary trust stores that are relied upon for the majority of software: Apple, Microsoft, Chrome, and Mozilla.
  • a revocation system that allows a certificate to be listed as invalid if it was improperly issued or if the private key has been compromised.
  • Online Certificate Status Protocol (OCSP)
  • Certificate Revocation List (CRL)
張 旭

DNS Records: An Introduction - 0 views

  • Domain names are best understood by reading from right to left.
  • the top-level domain, or TLD
  • Every term to the left of the TLD is separated by a period and considered a more specific subdomain
  • ...40 more annotations...
  • Name servers host a domain’s DNS information in a text file called a zone file.
  • Start of Authority (SOA) records
  • specifying DNS records, which match domain names to IP addresses.
  • Every domain’s zone file contains the domain administrator’s email address, the name servers, and the DNS records.
  • Your ISP’s DNS resolver queries a root nameserver for the proper TLD nameserver. In other words, it asks the root nameserver, *Where can I find the nameserver for .com domains?*
  • In actuality, ISPs cache a lot of DNS information after they’ve looked it up the first time.
  • caching is a good thing, but it can be a problem if you’ve recently made a change to your DNS information
  • An A record points your domain or subdomain to your Linode’s IP address,
  • use an asterisk (*) as your subdomain
  • An AAAA record is just like an A record, but for IPv6 IP addresses.
  • An AXFR record is a type of DNS record used for DNS replication
  • DNS Certification Authority Authorization uses DNS to allow the holder of a domain to specify which certificate authorities are allowed to issue certificates for that domain.
  • A CNAME record or Canonical Name record matches a domain or subdomain to a different domain.
  • Some mail servers handle mail oddly for domains with CNAME records, so you should not use a CNAME record for a domain that gets email.
  • MX records cannot reference CNAME-defined hostnames.
  • Chaining or looping CNAME records is not recommended.
  • a CNAME record does not function the same way as a URL redirect.
  • A DKIM record or DomainKeys Identified Mail record displays the public key for authenticating messages that have been signed with the DKIM protocol
  • DKIM records are implemented as text records.
  • An MX record or mail exchanger record sets the mail delivery destination for a domain or subdomain.
  • An MX record should ideally point to a domain that is also the hostname for its server.
  • Priority allows you to designate a fallback server (or servers) for mail for a particular domain. Lower numbers have a higher priority.
  • NS records or name server records set the nameservers for a domain or subdomain.
  • You can also set up different nameservers for any of your subdomains
  • Primary nameservers get configured at your registrar and secondary subdomain nameservers get configured in the primary domain’s zone file.
  • The order of NS records does not matter. DNS requests are sent randomly to the different servers
  • A PTR record or pointer record matches up an IP address to a domain or subdomain, allowing reverse DNS queries to function.
  • opposite service an A record does
  • PTR records are usually set with your hosting provider. They are not part of your domain’s zone file.
  • An SOA record or Start of Authority record labels a zone file with the name of the host where it was originally created.
  • Minimum TTL: The minimum amount of time other servers should keep data cached from this zone file.
  • An SPF record or Sender Policy Framework record lists the designated mail servers for a domain or subdomain.
  • An SPF record for your domain tells other receiving mail servers which outgoing server(s) are valid sources of email so they can reject spoofed mail from your domain that has originated from unauthorized servers.
  • Make sure your SPF records are not too strict.
  • An SRV record or service record matches up a specific service that runs on your domain or subdomain to a target domain.
  • Service: The name of the service must be preceded by an underscore (_) and followed by a period (.)
  • Protocol: The name of the protocol must be proceeded by an underscore (_) and followed by a period (.)
  • Port: The TCP or UDP port on which the service runs.
  • Target: The target domain or subdomain. This domain must have an A or AAAA record that resolves to an IP address.
  • A TXT record or text record provides information about the domain in question to other resources on the internet.
  •  
    "Domain names are best understood by reading from right to left."
張 旭

Deploying Rails Apps, Part 6: Writing Capistrano Tasks - Vladi Gleba - 0 views

  • we can write our own tasks to help us automate various things.
  • organizing all of the tasks here under a namespace
  • upload a file from our local computer.
  • ...27 more annotations...
  • learn about is SSHKit and the various methods it provides
  • SSHKit was actually developed and released with Capistrano 3, and it’s basically a lower-level tool that provides methods for connecting and interacting with remote servers
  • on(): specifies the server to run on
  • within(): specifies the directory path to run in
  • with(): specifies the environment variables to run with
  • run on the application server
  • within the path specified
  • with certain environment variables set
  • execute(): the workhorse that runs the commands on your server
  • upload(): uploads a file from your local computer to your remote server
  • capture(): executes a command and returns its output as a string
    • 張 旭
       
      capture 是跑在遠端伺服器上
  • upload() has the bang symbol (!) because that’s how it’s defined in SSHKit, and it’s just a convention letting us know that the method will block until it finishes.
  • But in order to ensure rake runs with the proper environment variables set, we have to use rake as a symbol and pass db:seed as a string
  • This format will also be necessary whenever you’re running any other Rails-specific commands that rely on certain environment variables being set
  • I recommend you take a look at SSHKit’s example page to learn more
  • make sure we pushed all our local changes to the remote master branch
  • run this task before Capistrano runs its own deploy task
  • actually creates three separate tasks
  • I created a namespace called deploy to contain these tasks since that’s what they’re related to.
  • we’re using the callbacks inside a namespace to make sure Capistrano knows which tasks the callbacks are referencing.
  • custom recipe (a Capistrano term meaning a series of tasks)
  • /shared: holds files and directories that persist throughout deploys
  • When you run cap production deploy, you’re actually calling a Capistrano task called deploy, which then sequentially invokes other tasks
  • your favorite browser (I hope it’s not Internet Explorer)
  • Deployment is hard and takes a while to sink in.
  • the most important thing is to not get discouraged
  • I didn’t want other people going through the same thing
crazylion lee

Serveo: expose local servers to the internet using SSH - 0 views

shared by crazylion lee on 22 Jul 19 - No Cached
  •  ssh -R 80:example.com:80 serveo.net
張 旭

What is Kubernetes Ingress? | IBM - 0 views

  • expose an application to the outside of your Kubernetes cluster,
  • ClusterIP, NodePort, LoadBalancer, and Ingress.
  • A service is essentially a frontend for your application that automatically reroutes traffic to available pods in an evenly distributed way.
  • ...23 more annotations...
  • Services are an abstract way of exposing an application running on a set of pods as a network service.
  • Pods are immutable, which means that when they die, they are not resurrected. The Kubernetes cluster creates new pods in the same node or in a new node once a pod dies. 
  • A service provides a single point of access from outside the Kubernetes cluster and allows you to dynamically access a group of replica pods. 
  • For internal application access within a Kubernetes cluster, ClusterIP is the preferred method
  • To expose a service to external network requests, NodePort, LoadBalancer, and Ingress are possible options.
  • Kubernetes Ingress is an API object that provides routing rules to manage external users' access to the services in a Kubernetes cluster, typically via HTTPS/HTTP.
  • content-based routing, support for multiple protocols, and authentication.
  • Ingress is made up of an Ingress API object and the Ingress Controller.
  • Kubernetes Ingress is an API object that describes the desired state for exposing services to the outside of the Kubernetes cluster.
  • An Ingress Controller reads and processes the Ingress Resource information and usually runs as pods within the Kubernetes cluster.  
  • If Kubernetes Ingress is the API object that provides routing rules to manage external access to services, Ingress Controller is the actual implementation of the Ingress API.
  • The Ingress Controller is usually a load balancer for routing external traffic to your Kubernetes cluster and is responsible for L4-L7 Network Services. 
  • Layer 7 (L7) refers to the application level of the OSI stack—external connections load-balanced across pods, based on requests.
  • if Kubernetes Ingress is a computer, then Ingress Controller is a programmer using the computer and taking action.
  • Ingress Rules are a set of rules for processing inbound HTTP traffic. An Ingress with no rules sends all traffic to a single default backend service. 
  • the Ingress Controller is an application that runs in a Kubernetes cluster and configures an HTTP load balancer according to Ingress Resources.
  • The load balancer can be a software load balancer running in the cluster or a hardware or cloud load balancer running externally.
  • ClusterIP is the preferred option for internal service access and uses an internal IP address to access the service
  • A NodePort is a virtual machine (VM) used to expose a service on a Static Port number.
  • a NodePort would be used to expose a single service (with no load-balancing requirements for multiple services).
  • Ingress enables you to consolidate the traffic-routing rules into a single resource and runs as part of a Kubernetes cluster.
  • An application is accessed from the Internet via Port 80 (HTTP) or Port 443 (HTTPS), and Ingress is an object that allows access to your Kubernetes services from outside the Kubernetes cluster. 
  • To implement Ingress, you need to configure an Ingress Controller in your cluster—it is responsible for processing Ingress Resource information and allowing traffic based on the Ingress Rules.
1 - 20 of 21 Next ›
Showing 20 items per page