Neutrons readily pass through most material, but interact enough to cause biological damage. The most effective shielding materials are hydrocarbons, e.g. polyethylene, paraffin wax or water. Concrete (where a considerable amount of water molecules are chemically bound to the cement) and gravel are used as cheap and effective biological shields due to their combined shielding of both gamma rays and neutrons.
Neutron radiation - Wikipedia, the free encyclopedia - 0 views
-
-
the ability of neutron radiation to induce radioactivity in most substances it encounters, including the body tissues of the workers themselves.
ANS / Public Information / Resources / Radiation Dose Chart - 0 views
-
The average dose per person from all sources is about 620 mrems per year. It is not, however, uncommon for any of us to receive less or more than that in a given year (largely due to medical procedures we may undergo). International Standards allow exposure to as much as 5,000 mrems a year for those who work with and around radioactive material.
Nobelprize.org - 0 views
-
In October 1939, just after the outbreak of World War II in Europe, the President of the United States Franklin D. Roosevelt received a letter from physicist Albert Einstein and his Hungarian colleague Leo Szilard, calling to his attention the prospect that a bomb of unprecedented power could be made by tapping the forces of nuclear fission. The two scientists, who had fled from Europe in order to escape Nazism, feared that Hitler-Germany was already working on the problem. Should the Germans be the first to develop the envisaged "atomic bomb," Hitler would have a weapon at his disposal that would make it possible for him to destroy his enemies and rule the world.
-
To avoid this nightmare, Einstein and Szilard urged the government of the United States to join the race for the atomic bomb. Roosevelt agreed, and for the next four and half years a vast, utterly secret effort was launched in cooperation with the United Kingdom. Code-named "The Manhattan Project," the effort eventually employed more than 200,000 workers and several thousands scientists and engineers, many of European background. Finally, on July 16, 1945, the first atomic bomb was tested in the midst of the Alamogordo desert in New Mexico. Its power astonished even the men and women who had constructed it. As he witnessed the spectacular explosion, Robert Oppenheimer, the physicist who had directed the scientific work on the bomb, remembered a line from the Vedic religious text Bhagavad-Gita: "I am become death, the shatterer of worlds."
-
After the Japanese surrender on August 15, 1945, many people called for a ban on nuclear weapons in order to avoid a nuclear arms race and the risk of future catastrophes like the ones in Hiroshima and Nagasaki. Both the United States and the Soviet Union declared that they were in favor of putting the atomic bomb under foolproof international control. In spite of these declarations, the big powers were, in fact, never ready to give up their own nuclear weapons programs. By the end of 1946 it was clear to everybody that the effort to prevent a nuclear arms race had failed. Indeed, the Soviet Union had already launched a full-speed secret nuclear weapons program in an attempt to catch up with the United States. Thanks in part to espionage, the Soviet scientists were able to build a blueprint of the American fission bomb that was used against Nagasaki and to conduct a successful testing of it on August 29, 1949.
- ...7 more annotations...
Types of Medical Imaging - 0 views
HowStuffWorks "Fission Bomb Triggers" - 0 views
HowStuffWorks "Nuclear War and the Atmosphere" - 0 views
-
If sufficient ash from burning cities and forests ascended into the sky, it could effectively work as an umbrella, shielding large portions of the Earth from the sun. If you diminish the amount of sunlight that makes its way to the surface, then you diminish the resulting atmospheric temperature -- as well as potentially interfere with photosynthesis.
HowStuffWorks "Nuclear Catastrophe and Reactor Shutdown" - 0 views
-
Plants such as Japan's Fukushima-Daiichi facility, Russia's Chernobyl and the United States' Three Mile Island remain a black eye for the nuclear power industry, often overshadowing some of the environmental advantages the technology has to offer. You can read more about exactly what happened in How Japan's Nuclear Crisis Works.
Why people with cancer might need blood transfusions - 0 views
-
Why people with cancer might need blood transfusions
Nuclear meltdown - Wikipedia, the free encyclopedia - 0 views
-
A core melt accident occurs when the heat generated by a nuclear reactor exceeds the heat removed by the cooling systems to the point where at least one nuclear fuel element exceeds its melting point. This differs from a fuel element failure, which is not caused by high temperatures. A meltdown may be caused by a loss of coolant, loss of coolant pressure, or low coolant flow rate or be the result of a criticality excursion in which the reactor is operated at a power level that exceeds its design limits
-
Once the fuel elements of a reactor begin to melt, the fuel cladding has been breached, and the nuclear fuel (such as uranium, plutonium, or thorium) and fission products (such as cesium-137, krypton-85, or iodine-131) within the fuel elements can leach out into the coolant. Subsequent failures can permit these radioisotopes to breach further layers of containment. Superheated steam and hot metal inside the core can lead to fuel-coolant interactions, hydrogen explosions, or water hammer, any of which could destroy parts of the containment. A meltdown is considered very serious because of the potential for radioactive materials to breach all containment and escape (or be released) into the environment, resulting in radioactive contamination and fallout, and potentially leading to radiation poisoning of people and animals nearby.
-
In a loss-of-coolant accident, either the physical loss of coolant (which is typically deionized water, an inert gas, NaK, or liquid sodium) or the loss of a method to ensure a sufficient flow rate of the coolant occurs. A loss-of-coolant accident and a loss-of-pressure-control accident are closely related in some reactors. In a pressurized water reactor, a LOCA can also cause a "steam bubble" to form in the core due to excessive heating of stalled coolant or by the subsequent loss-of-pressure-control accident caused by a rapid loss of coolant. In a loss-of-forced-circulation accident, a gas cooled reactor's circulators (generally motor or steam driven turbines) fail to circulate the gas coolant within the core, and heat transfer is impeded by this loss of forced circulation, though natural circulation through convection will keep the fuel cool as long as the reactor is not depressurized.[6]
- ...7 more annotations...
-
"A core melt accident occurs when the heat generated by a nuclear reactor exceeds the heat removed by the cooling systems to the point where at least one nuclear fuel element exceeds its melting point. This differs from a fuel element failure, which is not caused by high temperatures. A meltdown may be caused by a loss of coolant, loss of coolant pressure, or low coolant flow rate or be the result of a criticality excursion in which the reactor is operated at a power level that exceeds its design limits."
20130129-220357.jpg (297×300) - 0 views
NRC: Measuring Radiation - 0 views
-
Dose equivalent (or effective dose) combines the amount of radiation absorbed and the medical effects of that type of radiation. For beta and gamma radiation, the dose equivalent is the same as the absorbed dose. By contrast, the dose equivalent is larger than the absorbed dose for alpha and neutron radiation, because these types of radiation are more damaging to the human body. Units for dose equivalent are the roentgen equivalent man (rem) and sievert (Sv), and biological dose equivalents are commonly measured in 1/1000th of a rem (known as a millirem or mrem).
-
Exposure describes the amount of radiation traveling through the air. Many radiation monitors measure exposure. The units for exposure are the roentgen (R) and coulomb/kilogram (C/kg). Absorbed dose describes the amount of radiation absorbed by an object or person (that is, the amount of energy that radioactive sources deposit in materials through which they pass). The units for absorbed dose are the radiation absorbed dose (rad) and gray (Gy).
-
Radioactivity refers to the amount of ionizing radiation released by a material. Whether it emits alpha or beta particles, gamma rays, x-rays, or neutrons, a quantity of radioactive material is expressed in terms of its radioactivity (or simply its activity), which represents how many atoms in the material decay in a given time period. The units of measure for radioactivity are the curie (Ci) and becquerel (Bq).
Radiotracer and Radiopharmaceutical Chemistry - Advancing Nuclear Medicine Through Inno... - 0 views
-
In fact, one can trace the major advances in nuclear medicine directly to research in chemistry.
-
20 million nuclear medicine procedures using radiopharmaceuticals and imaging instruments are carried out in hospitals in the United States alone each year to diagnose disease and to deliver targeted treatments. These techniques have also been adopted by basic and clinical scientists in dozens of fields (e.g., cardiology, oncology, neurology, psychiatry) for diagnosis and as scientific tools. For example, many pharmaceutical companies are now developing radiopharmaceuticals as biomarkers for new drug targets to facilitate the entry of their new drugs into the practice of health care and to objectively examine drug efficacy at a particular target relative to clinical outcome (Erondu et al. 2006).
-
progress in synthetic organic and inorganic chemistry laid the groundwork for dozens of compounds labeled with positron emitters or single photon emitters, which are now used in many clinical specialties.
- ...18 more annotations...