Skip to main content

Home/ Harwood Nuclear Chem/ Group items tagged therapy

Rss Feed Group items tagged

gabb_03

What is targeted therapy? | American Cancer Society - 0 views

  • What is targeted therapy?
  • As researchers have learned more about the gene changes in cells that cause cancer, they have been able to develop drugs that target these changes. Treatment with these drugs is often called targeted therapy. Targeted therapy drugs, like any drug used to treat cancer, are technically considered “chemotherapy.” But targeted therapy drugs do not work in the same ways as standard chemotherapy drugs. They are often able to attack cancer cells while doing less damage to normal cells by going after the cancer cells’ inner workings—the programming that sets them apart from normal, healthy cells. These drugs tend to have different (and often less severe) side effects than standard chemotherapy drugs. Targeted therapies are used to treat many kinds of diseases. Here we will focus on their use to treat cancer. In the past, only a few cancers could be treated with targeted therapy, but now these drugs are used to treat many different types of cancer. Targeted therapies are a major focus of cancer research today. Many future advances in cancer treatment will probably come from this field.
  •  
    what is targeted therapy
gabb_03

How does targeted therapy work? | The American Cancer Society - 0 views

  • How does targeted therapy work?
  • Targeted therapy is used to keep cancer from growing and spreading. To become cancer cells, normal cells go through a process called carcinogenesis (car-sin-oh-JEN-eh-sis). Cancer cells may then grow into tumors or reproduce throughout a body system, like blood cancers do. Scientists have learned a lot about the molecules that are part of this process and the signals a cell gets to keep this process going. Targeted therapy disrupts this process. The drugs target certain parts of the cell and the signals that are needed for a cancer to develop and keep growing. These drugs are often grouped by how they work or what part of the cell they target.
  •  
    how targeted therapy works
gabb_03

Photodynamic Therapy - 0 views

  • What is photodynamic therapy?
  • Photodynamic therapy or PDT is a treatment that uses special drugs, called photosensitizing agents, along with light to kill cancer cells. The drugs only work after they have been activated or “turned on” by certain kinds of light. PDT may also be called photoradiation therapy, phototherapy, or photochemotherapy. Depending on the part of the body being treated, the photosensitizing agent is either put into the bloodstream through a vein or put on the skin. Over a certain amount of time the drug is absorbed by the cancer cells. Then light is applied to the area to be treated. The light causes the drug to react with oxygen, which forms a chemical that kills the cells. PDT might also help by destroying the blood vessels that feed the cancer cells and by alerting the immune system to attack the cancer. The period of time between when the drug is given and when the light is applied is called the drug-to-light interval. It can be anywhere from a couple of hours to a couple of days, depending on the drug used
  •  
    photodynamic therapy
gabb_03

Radiation Therapy | MemorialCare Health System | Orange County | Los Angeles County - 0 views

  •  
    Types of cancer treated by radiation therapy
gabb_03

Precision radiation therapy may improve survival rates of patients with inoperable earl... - 0 views

  • In a study appearing in the March 17 issue of The Journal of the American Medical Association, primary lung cancer did not recur in nearly 98 percent of the 55 participants who received stereotactic body radiation therapy (SBRT). More than half of these patients – 56 percent – were alive three years after diagnosis, while less than 20 percent ultimately died of metastatic lung cancer.
  • SBRT is a noninvasive procedure that delivers radiation beams to a tumor in a concentrated, extremely precise manner.
mbaron2015

Radiotracer and Radiopharmaceutical Chemistry - Advancing Nuclear Medicine Through Inno... - 0 views

  • In fact, one can trace the major advances in nuclear medicine directly to research in chemistry.
  • 20 million nuclear medicine procedures using radiopharmaceuticals and imaging instruments are carried out in hospitals in the United States alone each year to diagnose disease and to deliver targeted treatments. These techniques have also been adopted by basic and clinical scientists in dozens of fields (e.g., cardiology, oncology, neurology, psychiatry) for diagnosis and as scientific tools. For example, many pharmaceutical companies are now developing radiopharmaceuticals as biomarkers for new drug targets to facilitate the entry of their new drugs into the practice of health care and to objectively examine drug efficacy at a particular target relative to clinical outcome (Erondu et al. 2006).
  • progress in synthetic organic and inorganic chemistry laid the groundwork for dozens of compounds labeled with positron emitters or single photon emitters, which are now used in many clinical specialties.
  • ...18 more annotations...
  • FDG-PETTumors and some organs, such as the brain, use glucose as a source of energy. FDG (Sidebar 2.2) is a fluorine-18-labeled derivative of glucose (fluorodeoxyglucose) which is used with positron emission tomography (PET) to provide a map of where glucose is metabolized in the body. Because tumors, as well as the brain and the heart, all use glucose as a source of energy, FDG is widely used in cancer diagnosis and in cardiology, neurology, and psychiatry. FDG is now widely available to hospitals throughout the United States and the world from a network of regional commercial cyclotron/FDG distribution centers (Figure 6.1). With the current large infrastructure of commercial cyclotron/FDG distribution centers, many chemists are developing other highly targeted fluorine-18-labeled compounds to take advantage of this unique network to broaden the use of PET for making health care decisions. The translation of FDG from the chemistry laboratory into a practical clinical tool had its roots in government-supported research in hot atom chemistry (see Chapter 5), cyclotron targetry, biochemistry, synthetic chemistry, nuclear chemistry, and radiochemistry that was integrated with engineering and automation (Fowler and Ido 2002).
  • The first section (6.3.1) summarizes five priority areas with broad public health impact where radiopharmaceuticals could serve as scientific and clinical tools leading to major breakthroughs in health care and basic understanding of human biology. The second section (6.3.2) describes technologies and methods currently being explored that could enable innovations in radiopharmaceutical development and advances in these five priority areas.
  • Cancer Biology and Targeted Radionuclide Therapy.
  • Neuroscience, Neurology and Psychiatry
  • Drug Development.
  • Cardiovascular Disease
  • Genetics and Personalized Medicine.
  • Currently, chemists working in the areas of molecular imaging and targeted radionuclide therapy are focused on designing and synthesizing radiopharmaceuticals with the required bioavailability and specificity to act as true tracers targeting specific cellular elements (e.g., receptors, enzymes, transporters, antigens, etc.) in healthy human subjects and in patients. Goals are to make labeling chemistry occur faster, more efficiently, and at smaller and smaller scales to give labeled compounds of very high specific activity that can act as true tracers.4
  • specific activity is critical for imaging receptors present at a copy number of 1,000 per cell, but less of an issue with receptors such as the epidermal growth factor receptor that are present at a concentration of millions per cell.
  • Two high research priorities that are under investigation are carbon-11 and fluorine-18 chemistry and peptide and antibody labeling.
  • Of particular importance is research on the design and development of radiotracers that are more broadly applicable to common pathophysiological processes, which may be more useful and more readily commercialized (e.g., targets involved in inflammation and infection, angiogenesis, tissue hypoxia, mitochondrial targets, cell signaling targets, and targets associated with diabetes, obesity, metabolic syndrome, or liver disease).
  • For example, MIBG, used initially mainly for assessment of neuroendocrine tumors, is now showing promise in early diagnosis of heart failure, a major health and economic issue in the United States. It is important to keep in mind that any new developments in targeted radionuclide therapy require access to research radionuclides (see Chapters 4 and 5
  • Four major impediments—some of which are elaborated further in other chapters of the report—stand in the way of scientific and medical progress and the competitive edge that the United States has held for more than 50 years:
  • Lack of Support for Radiopharmaceutical R&D.
  • Shortage of Trained Chemists and Physician Scientists
  • Inappropriate Regulatory Requirements
  • Limited Radionuclide Availability
  • 6.5. RECOMMENDATIONSThe committee formulated two recommendations to meet the future needs for radiopharmaceutical development for the diagnosis and treatment of human disease and to overcome national impediments to their entry into the practice of health care. RECOMMENDATION 1 : Enhance the federal commitment to nuclear medicine research. Given the somewhat different orientations of the DOE and the National Institutes of Health (NIH) toward nuclear medicine research, the two agencies should find some cooperative mechanism to support radionuclide production and distribution; basic research in radio nuclide production, nuclear imaging, radiopharmaceutical/radiotracer and therapy development; and the transfer of these technologies into routine clinical use. Implementation Action 1A1: A national nuclear medicine research program should be coordinated by the DOE and NIH, with the former emphasizing the general development of technology and the latter disease-specific applications. Implementation Action 1A2: In developing their strategic plan, the agencies should avail themselves of advice from a broad range of authorities in academia, national laboratories and industry; these authorities should include experts in physics, engineering, chemistry, radiopharmaceutical science, commercial development, regulatory affairs, clinical trials, and radiation biology. RECOMMENDATION 2: Encourage interdisciplinary collaboration. DOE-OBER should support collaborations between basic chemistry and physics laboratories, as well as multi-disciplinary centers focused on nuclear medicine technology development and application, to stimulate the flow of new ideas for the development of next-generation radiopharmaceuticals and imaging instrumentation.
  •  
    NuclearMedicine, Radiotracers
gabb_03

Radiation Therapy for Cancer - National Cancer Institute - 0 views

  •  
    What is radiation therapy
gabb_03

Types of stem cell transplants for treating cancer - 0 views

  • Types of stem cell transplants for treating cancer
  • In a typical stem cell transplant for cancer very high doses of chemo are used, often along with radiation therapy, to try to destroy all the cancer cells. This treatment also kills the stem cells in the bone marrow. Soon after treatment, stem cells are given to replace those that were destroyed. These stem cells are given into a vein, much like a blood transfusion. Over time they settle in the bone marrow and begin to grow and make healthy blood cells. This process is called engraftment
  •  
    stem cell transplant
1 - 9 of 9
Showing 20 items per page