Skip to main content

Home/ Harwood Nuclear Chem/ Group items tagged neutron

Rss Feed Group items tagged

wizardbrown

Nuclear reactor - Wikipedia, the free encyclopedia - 0 views

  • A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in propulsion of ships. Heat from nuclear fission is passed to a working fluid (water or gas), which runs through turbines. These either drive a ship's propellers or turn electrical generators.
  • When a large fissile atomic nucleus such as uranium-235 or plutonium-239 absorbs a neutron, it may undergo nuclear fission. The heavy nucleus splits into two or more lighter nuclei, (the fission products), releasing kinetic energy, gamma radiation, and free neutrons. A portion of these neutrons may later be absorbed by other fissile atoms and trigger further fission events, which release more neutrons, and so on. This is known as a nuclear chain reaction. To control such a nuclear chain reaction, neutron poisons and neutron moderators can change the portion of neutrons that will go on to cause more fission.[2] Nuclear reactors generally have automatic and manual systems to shut the fission reaction down if monitoring detects unsafe conditions.[3] Commonly-used moderators include regular (light) water (in 74.8% of the world's reactors), solid graphite (20% of reactors) and heavy water (5% of reactors). Some experimental types of reactor have used beryllium, and hydrocarbons have been suggested as another possibility.[2][not in citation given]
daym2015

Neutron radiation - Wikipedia, the free encyclopedia - 0 views

  • Neutrons readily pass through most material, but interact enough to cause biological damage. The most effective shielding materials are hydrocarbons, e.g. polyethylene, paraffin wax or water. Concrete (where a considerable amount of water molecules are chemically bound to the cement) and gravel are used as cheap and effective biological shields due to their combined shielding of both gamma rays and neutrons.
  • the ability of neutron radiation to induce radioactivity in most substances it encounters, including the body tissues of the workers themselves.
wizardbrown

Nuclear meltdown - Wikipedia, the free encyclopedia - 0 views

  • A core melt accident occurs when the heat generated by a nuclear reactor exceeds the heat removed by the cooling systems to the point where at least one nuclear fuel element exceeds its melting point. This differs from a fuel element failure, which is not caused by high temperatures. A meltdown may be caused by a loss of coolant, loss of coolant pressure, or low coolant flow rate or be the result of a criticality excursion in which the reactor is operated at a power level that exceeds its design limits
  • Once the fuel elements of a reactor begin to melt, the fuel cladding has been breached, and the nuclear fuel (such as uranium, plutonium, or thorium) and fission products (such as cesium-137, krypton-85, or iodine-131) within the fuel elements can leach out into the coolant. Subsequent failures can permit these radioisotopes to breach further layers of containment. Superheated steam and hot metal inside the core can lead to fuel-coolant interactions, hydrogen explosions, or water hammer, any of which could destroy parts of the containment. A meltdown is considered very serious because of the potential for radioactive materials to breach all containment and escape (or be released) into the environment, resulting in radioactive contamination and fallout, and potentially leading to radiation poisoning of people and animals nearby.
  • In a loss-of-coolant accident, either the physical loss of coolant (which is typically deionized water, an inert gas, NaK, or liquid sodium) or the loss of a method to ensure a sufficient flow rate of the coolant occurs. A loss-of-coolant accident and a loss-of-pressure-control accident are closely related in some reactors. In a pressurized water reactor, a LOCA can also cause a "steam bubble" to form in the core due to excessive heating of stalled coolant or by the subsequent loss-of-pressure-control accident caused by a rapid loss of coolant. In a loss-of-forced-circulation accident, a gas cooled reactor's circulators (generally motor or steam driven turbines) fail to circulate the gas coolant within the core, and heat transfer is impeded by this loss of forced circulation, though natural circulation through convection will keep the fuel cool as long as the reactor is not depressurized.[6]
  • ...7 more annotations...
  • Nuclear power plants generate electricity by heating fluid via a nuclear reaction to run a generator. If the heat from that reaction is not removed adequately, the fuel assemblies in a reactor core can melt. A core damage incident can occur even after a reactor is shut down because the fuel continues to produce decay heat. A core damage accident is caused by the loss of sufficient cooling for the nuclear fuel within the reactor core. The reason may be one of several factors, including a loss-of-pressure-control accident, a loss-of-coolant accident (LOCA), an uncontrolled power excursion or, in reactors without a pressure vessel, a fire within the reactor core. Failures in control systems may cause a series of events resulting in loss of cooling. Contemporary safety principles of defense in depth ensure that multiple layers of safety systems are always present to make such accidents unlikely.
  • The containment building is the last of several safeguards that prevent the release of radioactivity to the environment. Many commercial reactors are contained within a 1.2-to-2.4-metre (3.9 to 7.9 ft) thick pre-stressed, steel-reinforced, air-tight concrete structure that can withstand hurricane-force winds and severe earthquakes.
  • A core melt accident occurs when the heat generated by a nuclear reactor exceeds the heat removed by the cooling systems to the point where at least one nuclear fuel element exceeds its melting point. This differs from a fuel element failure, which is not caused by high temperatures. A meltdown may be caused by a loss of coolant, loss of coolant pressure, or low coolant flow rate or be the result of a criticality excursion in which the reactor is operated at a power level that exceeds its design limits. Alternately, in a reactor plant such as the RBMK-1000, an external fire may endanger the core, leading to a meltdown. Once the fuel elements of a reactor begin to melt, the fuel cladding has been breached, and the nuclear fuel (such as uranium, plutonium, or thorium) and fission products (such as cesium-137, krypton-85, or iodine-131) within the fuel elements can leach out into the coolant. Subsequent failures can permit these radioisotopes to breach further layers of containment. Superheated steam and hot metal inside the core can lead to fuel-coolant interactions, hydrogen explosions, or water hammer, any of which could destroy parts of the containment. A meltdown is considered very serious because of the potential for radioactive materials to breach all containment and escape (or be released) into the environment, resulting in radioactive contamination and fallout, and potentially leading to radiation poisoning of people and animals nearby.
  • In a loss-of-pressure-control accident, the pressure of the confined coolant falls below specification without the means to restore it. In some cases this may reduce the heat transfer efficiency (when using an inert gas as a coolant) and in others may form an insulating "bubble" of steam surrounding the fuel assemblies (for pressurized water reactors). In the latter case, due to localized heating of the "steam bubble" due to decay heat, the pressure required to collapse the "steam bubble" may exceed reactor design specifications until the reactor has had time to cool down. (This event is less likely to occur in boiling water reactors, where the core may be deliberately depressurized so that the Emergency Core Cooling System may be turned on). In a depressurization fault, a gas-cooled reactor loses gas pressure within the core, reducing heat transfer efficiency and posing a challenge to the cooling of fuel; however, as long as at least one gas circulator is available, the fuel will be kept cool.[6]
  • In an uncontrolled power excursion accident, a sudden power spike in the reactor exceeds reactor design specifications due to a sudden increase in reactor reactivity. An uncontrolled power excursion occurs due to significantly altering a parameter that affects the neutron multiplication rate of a chain reaction (examples include ejecting a control rod or significantly altering the nuclear characteristics of the moderator, such as by rapid cooling). In extreme cases the reactor may proceed to a condition known as prompt critical. This is especially a problem in reactors that have a positive void coefficient of reactivity, a positive temperature coefficient, are overmoderated, or can trap excess quantities of deleterious fission products within their fuel or moderators. Many of these characteristics are present in the RBMK design, and the Chernobyl disaster was caused by such deficiencies as well as by severe operator negligence. Western light water reactors are not subject to very large uncontrolled power excursions because loss of coolant decreases, rather than increases, core reactivity (a negative void coefficient of reactivity); "transients," as the minor power fluctuations within Western light water reactors are called, are limited to momentary increases in reactivity that will rapidly decrease with time (approximately 200% - 250% of maximum neutronic power for a few seconds in the event of a complete rapid shutdown failure combined with a transient).
  • Core-based fires endanger the core and can cause the fuel assemblies to melt. A fire may be caused by air entering a graphite moderated reactor, or a liquid-sodium cooled reactor. Graphite is also subject to accumulation of Wigner energy, which can overheat the graphite (as happened at the Windscale fire). Light water reactors do not have flammable cores or moderators and are not subject to core fires. Gas-cooled civilian reactors, such as the Magnox, UNGG, and AGCR type reactors, keep their cores blanketed with non reactive carbon dioxide gas, which cannot support a fire. Modern gas-cooled civilian reactors use helium, which cannot burn, and have fuel that can withstand high temperatures without melting (such as the High Temperature Gas Cooled Reactor and the Pebble Bed Modular Reactor).
  • Byzantine faults and cascading failures within instrumentation and control systems may cause severe problems in reactor operation, potentially leading to core damage if not mitigated. For example, the Browns Ferry fire damaged control cables and required the plant operators to manually activate cooling systems. The Three Mile Island accident was caused by a stuck-open pilot-operated pressure relief valve combined with a deceptive water level gauge that misled reactor operators, which resulted in core damage.
  •  
    "A core melt accident occurs when the heat generated by a nuclear reactor exceeds the heat removed by the cooling systems to the point where at least one nuclear fuel element exceeds its melting point. This differs from a fuel element failure, which is not caused by high temperatures. A meltdown may be caused by a loss of coolant, loss of coolant pressure, or low coolant flow rate or be the result of a criticality excursion in which the reactor is operated at a power level that exceeds its design limits."
laurenh468

NRC: Measuring Radiation - 0 views

  • Dose equivalent (or effective dose) combines the amount of radiation absorbed and the medical effects of that type of radiation. For beta and gamma radiation, the dose equivalent is the same as the absorbed dose. By contrast, the dose equivalent is larger than the absorbed dose for alpha and neutron radiation, because these types of radiation are more damaging to the human body. Units for dose equivalent are the roentgen equivalent man (rem) and sievert (Sv), and biological dose equivalents are commonly measured in 1/1000th of a rem (known as a millirem or mrem).
  • Exposure describes the amount of radiation traveling through the air. Many radiation monitors measure exposure. The units for exposure are the roentgen (R) and coulomb/kilogram (C/kg). Absorbed dose describes the amount of radiation absorbed by an object or person (that is, the amount of energy that radioactive sources deposit in materials through which they pass). The units for absorbed dose are the radiation absorbed dose (rad) and gray (Gy).
  • Radioactivity refers to the amount of ionizing radiation released by a material. Whether it emits alpha or beta particles, gamma rays, x-rays, or neutrons, a quantity of radioactive material is expressed in terms of its radioactivity (or simply its activity), which represents how many atoms in the material decay in a given time period. The units of measure for radioactivity are the curie (Ci) and becquerel (Bq).
1 - 4 of 4
Showing 20 items per page