Skip to main content

Home/ Harwood AP CHEM Project/ Group items tagged Project

Rss Feed Group items tagged

asfldkj

Project Orion (nuclear propulsion) - Wikipedia, the free encyclopedia - 0 views

  • Project Orion was a study of a spacecraft intended to be directly propelled by a series of explosions of atomic bombs behind the craft (nuclear pulse propulsion). Early versions of this vehicle were proposed to take off from the ground with significant associated nuclear fallout; later versions were presented for use only in space.
  • The Orion nuclear pulse drive combines a very high exhaust velocity, from 19 to 31 km/s in typical interplanetary designs, with meganewtons of thrust.[4] Many spacecraft propulsion drives can achieve one of these or the other, but nuclear pulse rockets are the only proposed technology that could potentially meet the extreme power requirements to deliver both at once
  • The Orion concept detonates nuclear explosions externally at a rate of power release which is beyond what nuclear reactors could survive internally with known materials and design.
  • ...8 more annotations...
  • The shape of the bomb's reaction mass is critical to efficiency. The original project designed bombs with a reaction mass made of tungsten. The bomb's geometry and materials focused the X-rays and plasma from the core of nuclear explosive to hit the reaction mass. In effect each bomb would be a nuclear shaped charge. A bomb with a cylinder of reaction mass expands into a flat, disk-shaped wave of plasma when it explodes. A bomb with a disk-shaped reaction mass expands into a far more efficient cigar-shaped wave of plasma debris. The cigar shape focuses much of the plasma to impinge onto the pusher-plate.
  • In late 1958 to early 1959, it was realized that the smallest practical vehicle would be determined by the smallest achievable bomb yield. The use of 0.03 kt (sea-level yield) bombs would give vehicle mass of 880 tons. However, this was regarded as too small for anything other than an orbital test vehicle and the team soon focused on a 4,000 ton "base design".
  • The biggest design above is the "super" Orion design; at 8 million tonnes, it could easily be a city.[11] In interviews, the designers contemplated the large ship as a possible interstellar ark. This extreme design could be built with materials and techniques that could be obtained in 1958 or were anticipated to be available shortly after. The practical upper limit is likely to be higher with modern materials. Most of the three thousand tonnes of each of the "super" Orion's propulsion units would be inert material such as polyethylene, or boron salts, used to transmit the force of the propulsion units detonation to the Orion's pusher plate, and absorb neutrons to minimize fallout. One design proposed by Freeman Dyson for the "Super Orion" called for the pusher plate to be composed primarily of uranium or a transuranic element so that upon reaching a nearby star system the plate could be converted to nuclear fuel.
  • The Orion nuclear pulse rocket design has extremely high performance. Orion nuclear pulse rockets using nuclear fission type pulse units were originally intended for use on interplanetary space flights. Missions that were designed for an Orion vehicle in the original project included single stage (i.e., directly from Earth's surface) to Mars and back, and a trip to one of the moons of Saturn.[11] One possible modern mission for this near-term technology would be to deflect an asteroid that could collide with Earth. The extremely high performance would permit even a late launch to succeed, and the vehicle could effectively transfer a large amount of kinetic energy to the asteroid by simple impact. Also, such an unmanned mission would eliminate the need for shock absorbers, the most problematic issue of the design. Nuclear fission pulse unit powered Orions could provide fast and economical interplanetary transportation with useful human crewed payloads of several thousand tonnes.
  • Later studies indicate that the top cruise velocity that can theoretically be achieved by a Teller-Ulam thermonuclear unit powered Orion starship, assuming no fuel is saved for slowing back down, is about 8% to 10% of the speed of light (0.08-0.1c).[2] An atomic (fission) Orion can achieve perhaps 3%-5% of the speed of light. A nuclear pulse drive starship powered by Fusion-antimatter catalyzed nuclear pulse propulsion units would be similarly in the 10% range and pure Matter-antimatter annihilation rockets would be theoretically capable of obtaining a velocity between 50% to 80% of the speed of light. In each case saving fuel for slowing down halves the max. speed. The concept of using a magnetic sail to decelerate the spacecraft as it approaches its destination has been discussed as an alternative to using propellant, this would allow the ship to travel near the maximum theoretical velocity.[16]
  • At 0.1c, Orion thermonuclear starships would require a flight time of at least 44 years to reach Alpha Centauri, not counting time needed to reach that speed (about 36 days at constant acceleration of 1g or 9.8 m/s2). At 0.1c, an Orion starship would require 100 years to travel 10 light years. The astronomer Carl Sagan suggested that this would be an excellent use for current stockpiles of nuclear weapons.[17]
  • A concept similar to Orion was designed by the British Interplanetary Society (B.I.S.) in the years 1973–1974. Project Daedalus was to be a robotic interstellar probe to Barnard's Star that would travel at 12% of the speed of light. In 1989, a similar concept was studied by the U.S. Navy and NASA in Project Longshot. Both of these concepts require significant advances in fusion technology, and therefore cannot be built at present, unlike Orion. From 1998 to the present, the nuclear engineering department at Pennsylvania State University has been developing two improved versions of project Orion known as Project ICAN and Project AIMStar using compact antimatter catalyzed nuclear pulse propulsion units,[18] rather than the large inertial confinement fusion ignition systems proposed in Project Daedalus and Longshot.[19]
  • From 1957 until 1964 this information was used to design a spacecraft propulsion system called "Orion", in which nuclear explosives would be thrown behind a pusher-plate mounted on the bottom of a spacecraft and exploded. The shock wave and radiation from the detonation would impact against the underside of the pusher plate, giving it a powerful "kick". The pusher plate would be mounted on large two-stage shock absorbers that would smoothly transmit acceleration to the rest of the spacecraft.
asfldkj

Nuclear Pulse Propulsion: Gateway to the Stars | ANS Nuclear Cafe - 0 views

  • roject Orion was the first serious attempt to design a nuclear pulse rocket. The design effort was carried out at General Atomics in the late 1950s and early 1960s. The idea of Orion was to react small directional nuclear explosives against a large steel pusher plate attached to the spacecraft with shock absorbers. Efficient directional explosives maximized the momentum transfer, leading to specific impulses in the range of 6,000 seconds, or about 12 times that of the Space Shuttle Main Engine. With refinements, a theoretical maximum of 100,000 seconds (1 MN·s/kg) might be possible. Thrusts were in the millions of tons, allowing spacecraft larger than eight million tons to be built with 1958 materials.
  • The reference design was to be constructed of steel using submarine-style construction, with a crew of more than 200 and a vehicle takeoff weight of several thousand tons. This low-tech single-stage reference design would reach Mars and back in four weeks from the Earth’s surface (compared to ≈50 weeks for NASA’s current chemically powered reference mission). The same craft could visit Saturn’s moons in a seven-month mission (compared to chemically powered missions of about nine years).
  • A number of engineering problems were found, and solved, over the course of the project. Many of these related to crew shielding and pusher-plate lifetime. The system appeared to be entirely workable, and was under serious development in the United States, when the project was shut down in 1965. The primary reason given was that the Partial Test Ban Treaty made it illegal to detonate nuclear explosions in space (before the treaty, the United States and the Soviet Union had already detonated at least nine nuclear bombs, including thermonuclear bombs, in space; i.e., at altitudes over 100 km).
  • ...9 more annotations...
  • Calculations showed that the fallout from a takeoff could be projected to lead to the premature death of between 1 and 10 people.
  • Project Daedalus
  • ICF uses small pellets of fusion fuel, typically lithium deuteride (6Li2H), with a small deuterium/tritium trigger at the center. The pellets are thrown into a reaction chamber where they are hit on all sides by lasers or another form of beamed energy. The heat generated by the beams explosively compresses the pellet, to the point where fusion takes place. The result is a hot plasma, and a very small “explosion” (compared to using a fission “bomb” to compress and heat the fusion fuel, as in a thermonuclear bomb).
  • This variant of a fusion rocket uses enormous electromagnetic fields as a “scoop” to collect and compress hydrogen from interstellar space.
  • High speeds force the reactive mass into a progressively constricted magnetic field, compressing it until thermonuclear fusion occurs.
  • To counter this, Bussard proposed ionizing these atoms at a safe distance using a laser beam, and using a powerful magnetic field to funnel the ionized atoms into the ship, bypassing the ship’s hull.
  • Let’s assume a constant acceleration of 1g during the first half of the ship’s journey, whereupon the ship decelerates to its destination at the same 1g for the comfort of all aboard. The resulting velocity of the ship for most of the journey would be very close to the speed of light. This would mean that the relativistic effects of time dilation come into play for the passengers.
  • For such a hypothetical voyage, Barnard’s Star—six light-years away—could be reached in a little under eight years, ship time. For longer voyages, even the center of our Milky Way galaxy could be reached in just 21 years.
  • those left behind on earth during such a hypothetical journey would perceive things very much differently. For them, millions of years would have passed.  Relativistic travels make distant interstellar space travel feasible—but only for those on board the voyage.
emiliamk

What is specific impulse? - 0 views

  •  
    Good information of propulsion in general
snishi97

http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol3/abstracts/coburn_01.pdf - 0 views

  •  
    History of Biomaterials, Natural Biomaterials
snishi97

http://edge.rit.edu/edge/R13001/public/Tissue%20Compatability%20of%20Biomaterials - 0 views

  •  
    Biocompatability
  •  
    Biocompatability
snishi97

Progress in Biomaterials | Full text | Polystyrene surface modification using excimer l... - 0 views

  • Although synthetic polymers are widely used in medicine, in direct contact with blood, these polymers are still prone to initiate the formation of clots due to activation of platelets and other components of the blood coagulation system ([Aiping and Tian 2006]). It is well known that interactions between the surface of an artificial biomaterial and biological environment are the key factor to determine the biocompatibility
  •  
    Blood biocompatability
  •  
    Blood biocompatability
snishi97

Combining stem cells and biomaterial scaffolds for constructing tissues and cell delive... - 0 views

  • In 1987, a group of experts defined the word biomaterial as “a non-viable material used in a medical device, intended to interact with biological systems” (Europeon Society of Biomaterials Conference, 1987). This definition reflected the state of the field at the time, which was focused on developing materials and coatings to prevent the rejection of implantable medical device
  •  
    Scaffolds
snishi97

Science in Context - Document - 0 views

  • looks
  • Bioglass® is a clear bioactive material made of calcium, phosphorous, silicon, and sodium salts. It is a type of artificially made glass classified as a bioceramic. It chemically reacts with body fluids to form a bond at the surfaces of tissues and bones. The elements that make up Bioglass® are needed to repair and grow tissues and bones.
  • There is no risk of disease or rejection since Bioglass® is made completely of elements found in the human body.
  •  
    Advanced Biomaterial, Scaffolds
asfldkj

NASA - Ideas Based On What We Know - 0 views

  • About 5 bombs per second are dropped out the back and detonated to propel the craft along. A huge shock plate with shock absorbers make up the base of the craft.
  • This project ended with the nuclear test ban treaty in the 60’s.
  • Well, rather than bring your fuel along, why not get it as you go. This Bussard Interstellar Ramjet concept, from the 1960’s
snishi97

The next generation of biomaterial development - 0 views

  • As defined by Park & Lakes (2007), a biomaterial is a material that replaces either a tissue within the body or a function of the body.
  • In the first generation of biomaterial development, individuals used materials in their local environments for replacing tissues that were lost to damage or disease.
  • The goal during the first generation of biomaterial development was the creation of materials that exhibited inert behaviour when placed in the body. Surgeons sought materials that provided (i) appropriate mechanical properties for the intended use, (ii) corrosion resistance, and (iii) an absence of injurious effects such as carcinogenicity, toxicity, allergy and inflammation.
  • ...3 more annotations...
  • In the second half of the twentieth century, materials scientists began to partner with physicians in order to develop novel biomaterials that were specifically designed for use within the human body. During this time, biomaterials were created that promoted specific responses by the surrounding tissues.
  • At the present time, which is referred to as the third generation of biomaterial development, biomaterials are being created that promote or inhibit specific cell activities.
  • Current biomaterial research efforts involve the development of materials that promote an ‘appropriate host response for a given application’
snishi97

UWEB :: Research : Biomaterials Tutorial - 0 views

  •  
    Naturally Derived Biomaterials
chasefortier

Inventor of the Week: Archive - 0 views

  • Experimenting on rats, Damadian discovered dramatic differences in the quality and duration of NMR signals emitted by cancerous versus healthy tissues that confirmed his idea of the MR body scanner.
  • Finally, in 1977, Damadian's team produced the first MRI scan of the human body, using a prototype device he called "Indomitable" (now installed in the Smithsonian Institution).
  • The first MRI scan provided a clear image of the heart, lungs and chest wall with no side effects. Today, MRI scanners can instantly map and analyze any part of the human body in minute detail, allowing visual diagnosis of virtually any medical condition, from strained muscles to tumors. They can also provide the chemical composition of the tissue being scanned.
  • ...1 more annotation...
  • Later the company developed the first FDA-approved, first mobile, and first whole-body MR scanners. FONAR's patented Iron Circuit™ technology has enabled the company to develop seven different MRI products including the recently cleared-for-marketing FONAR 360°, a full-size room with two circular structures (the poles of the magnet) projecting from the ceiling and the floor. There are no obstructions between the patient and the walls of the scanner room, and the patient is accessible from any direction. Damadian is also working on the Stand-Up MRI™, the only scanner that allows MRI patients to be scanned while standing up.
nkuzio

Neurons, Synapses, Action Potentials, and Neurotransmission - The Mind Project - 0 views

  •  
    animation of neurotransmission process
1 - 17 of 17
Showing 20 items per page