Skip to main content

Home/ GAVNet Collaborative Curation/ Group items tagged mckinsey

Rss Feed Group items tagged

Steve Bosserman

Which Industries Are Investing in Artificial Intelligence? - 0 views

  • The term artificial intelligence typically refers to automation of tasks by software that previously required human levels of intelligence to perform. While machine learning is sometimes used interchangeably with AI, machine learning is just one sub-category of artificial intelligence whereby a device learns from its access to a stream of data.When we talk about AI spending, we’re typically talking about investment that companies are making in building AI capabilities. While this may change in the future, McKinsey estimates that the vast majority of spending is done internally or as an investment, and very little of it is done purchasing artificial intelligence applications from other businesses.
  • 62% of AI spending in 2016 was for machine learning, twice as much as the second largest category computer vision. It’s worth noting that these categories are all types of “narrow” (or “weak”) forms of AI that use data to learn about and accomplish a specific narrowly defined task. Excluded from this report is “general” (or “strong”) artificial intelligence which is more akin to trying to create a thinking human brain.
  • The McKinsey survey mostly fits well as evidence supporting Cross’s framework that large profitable industries are the most fertile grounds of AI adoption. Not surprisingly, Technology is the industry with highest AI adoption and financial services also makes the top three as Cross would predict.Notably, automotive and assembly is the industry with the second highest rate of AI adoption in the McKinsey survey. This may be somewhat surprising as automotive isn’t necessarily an industry with the reputation for high margins. However, the use cases of AI for developing self-driving cars and cost savings using machine learning to improve manufacturing and procurement efficiencies are two potential drivers of this industry’s adoption.
  • ...2 more annotations...
  • AI jobs are much more likely to be unfilled after 60 days compared to the typical job on Indeed, which is only unfilled a quarter of the time. As the demand for AI talent continues to grow faster than the supply, there is no indication this hiring cycle will become quicker anytime soon.
  • One thing we know for certain is that it is very expensive to attract AI talent, given that starting salaries for entry-level talent exceed $300,000. A good bet is that the companies that invest in AI are the ones with healthy enough profit margins that they can afford it.
Steve Bosserman

Modeling the global economic impact of AI | McKinsey - 0 views

  • The role of artificial intelligence (AI) tools and techniques in business and the global economy is a hot topic. This is not surprising given that AI might usher in radical—arguably unprecedented—changes in the way people live and work. The AI revolution is not in its infancy, but most of its economic impact is yet to come.
  • New research from the McKinsey Global Institute attempts to simulate the impact of AI on the world economy. First, it builds on an understanding of the behavior of companies and the dynamics of various sectors to develop a bottom-up view of how to adopt and absorb AI technologies. Second, it takes into account the likely disruptions that countries, companies, and workers are likely to experience as they transition to AI. There will very probably be costs during this transition period, and they need to be factored into any estimate. The analysis examines how economic gains and losses are likely to be distributed among firms, employees, and countries and how this distribution could potentially hamper the capture of AI benefits. Third, the research examines the dynamics of AI for a wide range of countries—clustered into groups with similar characteristics—with the aim of giving a more global view.
  • The analysis should be seen as a guide to the potential economic impact of AI based on the best knowledge available at this stage. Among the major findings are the following: There is large potential for AI to contribute to global economic activity A key challenge is that adoption of AI could widen gaps among countries, companies, and workers
Steve Bosserman

There is no difference between computer art and human art | Aeon Ideas - 0 views

  • In industry, there is blunt-force algorithmic tension – ‘Efficiency, capitalism, commerce!’ versus ‘Robots are stealing our jobs!’ But for algorithmic art, the tension is subtler. Only 4 per cent of the work done in the United States economy requires ‘creativity at a median human level’, according to the consulting firm McKinsey and Company. So for computer art – which tries explicitly to zoom into this small piece of that vocational pie – it’s a question not of efficiency or equity, but of trust. Art requires emotional and phrenic investments, with the promised return of a shared slice of the human experience. When we view computer art, the pestering, creepy worry is: who’s on the other end of the line? Is it human? We might, then, worry that it’s not art at all.
  • But the honest-to-God truth, at the end of all of this, is that this whole notion is in some way a put-on: a distinction without a difference. ‘Computer art’ doesn’t really exist in an any more provocative sense than ‘paint art’ or ‘piano art’ does. The algorithmic software was written by a human, after all, using theories thought up by a human, using a computer built by a human, using specs written by a human, using materials gathered by a human, at a company staffed by humans, using tools built by a human, and so on. Computer art is human art – a subset rather than a distinction. It’s safe to release the tension.
Steve Bosserman

Applying AI for social good | McKinsey - 0 views

  • Artificial intelligence (AI) has the potential to help tackle some of the world’s most challenging social problems. To analyze potential applications for social good, we compiled a library of about 160 AI social-impact use cases. They suggest that existing capabilities could contribute to tackling cases across all 17 of the UN’s sustainable-development goals, potentially helping hundreds of millions of people in both advanced and emerging countries. Real-life examples of AI are already being applied in about one-third of these use cases, albeit in relatively small tests. They range from diagnosing cancer to helping blind people navigate their surroundings, identifying victims of online sexual exploitation, and aiding disaster-relief efforts (such as the flooding that followed Hurricane Harvey in 2017). AI is only part of a much broader tool kit of measures that can be used to tackle societal issues, however. For now, issues such as data accessibility and shortages of AI talent constrain its application for social good.
  • The United Nations’ Sustainable Development Goals (SDGs) are among the best-known and most frequently cited societal challenges, and our use cases map to all 17 of the goals, supporting some aspect of each one (Exhibit 3). Our use-case library does not rest on the taxonomy of the SDGs, because their goals, unlike ours, are not directly related to AI usage; about 20 cases in our library do not map to the SDGs at all. The chart should not be read as a comprehensive evaluation of AI’s potential for each SDG; if an SDG has a low number of cases, that reflects our library rather than AI’s applicability to that SDG.
Steve Bosserman

AI, automation, and the future of work: Ten things to solve for - 0 views

  • Automation and artificial intelligence (AI) are transforming businesses and will contribute to economic growth via contributions to productivity. They will also help address “moonshot” societal challenges in areas from health to climate change.
  • At the same time, these technologies will transform the nature of work and the workplace itself. Machines will be able to carry out more of the tasks done by humans, complement the work that humans do, and even perform some tasks that go beyond what humans can do. As a result, some occupations will decline, others will grow, and many more will change.
  • While we believe there will be enough work to go around (barring extreme scenarios), society will need to grapple with significant workforce transitions and dislocation. Workers will need to acquire new skills and adapt to the increasingly capable machines alongside them in the workplace. They may have to move from declining occupations to growing and, in some cases, new occupations.
  • ...1 more annotation...
  • This executive briefing, which draws on the latest research from the McKinsey Global Institute, examines both the promise and the challenge of automation and AI in the workplace and outlines some of the critical issues that policy makers, companies, and individuals will need to solve for.
Steve Bosserman

Modern grocery and the emerging-market consumer: A complicated courtship | McKinsey & C... - 0 views

  • In the 1990s, the term “modern grocery retail” was essentially a proxy for a small group of multinational grocers including Ahold, Aldi, Auchan, Carrefour, Costco, Lidl, Metro, Tesco, and Walmart. It was widely presumed that these retailers’ entry into any market would lead to the demise of the traditional trade—the family-owned grocery chains, small independent stores, and informal merchants that at the time accounted for the vast majority of grocery sales in emerging markets. The prevailing expectation was that although there would be local differences due to cultural specificities, in every country the retail landscape would eventually consist of a combination of modern formats: full-line supermarkets and hypermarkets, convenience stores, and discounters. These assumptions have been proved wrong. Global grocery giants are struggling to grow profitably in many emerging markets. Traditional trade has proved remarkably resilient. And the market and channel structures taking shape in individual emerging economies are distinct from one another, following no obvious pattern.
1 - 20 of 39 Next ›
Showing 20 items per page