Contents contributed and discussions participated by arithwsun arithwsun
中国科学软件网 - Scientific WorkPlace V 5.5 - 0 views
On the sign changes of coefficients of general Dirichlet series - 0 views
-
Abstract: Under what conditions do the (possibly complex) coefficients of a general Dirichlet series exhibit oscillatory behavior? In this work we invoke Laguerre's Rule of Signs and Landau's Theorem to provide a rather simple answer to this question. Furthermore, we explain how our result easily applies to a multitude of functions.
The Large Sieve and its Applications - Cambridge University Press - 0 views
-
Among the modern methods used to study prime numbers, the ‘sieve’ has been one of the most efficient. Originally conceived by Linnik in 1941, the ‘large sieve’ has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.• Explores new and surprising applications of the large sieve method, an important technique of analytic number theory • Presents applications in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory • Motivated, clear and self-contained discussions introduce readers to a technique previously confined to one fieldContentsPreface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (τ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.
E. Kowalski's blog » Averages of singular series, or: when Poisson is everywhere - 0 views
-
I have recently posted on my web page a preprint concerning some averages of “singular series” (another example of pretty bad mathematical terminology…) arising in the prime k-tuple conjecture, and its generalization the Bateman-Horn conjecture. The reason for looking at this is a result of Gallagher which is important in the original version of the proof by Goldston-Pintz-Yildirim that there are infinitely many primes p for which the gap q-p between p and the next prime q is smaller than ε times the average gap, for arbitrary small ε>0.
SpringerLink - Journal Article - 0 views
-
Abstract The pointwise ergodic theorem is proved for prime powers for functions inL p,p>1. This extends a result of Bourgain where he proved a similar theorem forp>(1+√3)/2.
Sarnak: Equidistribution and Primes - 0 views
Goldston & Yildirim - 0 views
The Riemann Hypothesis - 0 views
Harmonic Analysis on Finite Groups - Cambridge University Press - 0 views
-
ContentsPart I. Preliminaries, Examples and Motivations: 1. Finite Markov chains; 2. Two basic examples on Abelian groups; Part II. Representation Theory and Gelfand Pairs: 3. Basic representation theory of finite groups; 4. Finite Gelfand pairs; 5. Distance regular graphs and the Hamming scheme; 6. The Johnson Scheme and the Laplace-Bernoulli diffusion model; 7. The ultrametric space; Part III. Advanced theory: 8. Posets and the q−analogs; 9. Complements on representation theory; 10. Basic representation theory of the symmetric group; 11. The Gelfand Pair (S2n, S2 o Sn) and random matchings; Appendix 1. The discrete trigonometric transforms; Appendix 2. Solutions of the exercises; Bibliography; Index.
Grothendieck Circle - 0 views
PrinceComp.pdf (application/pdf 对象) - 0 views
[math/0606087] Quadratic Uniformity of the Mobius Function - 0 views
-
Quadratic Uniformity of the Mobius Function Authors: Ben Green, Terence Tao (Submitted on 4 Jun 2006 (v1), last revised 22 Sep 2007 (this version, v2)) Abstract: This paper is a part of our programme to generalise the Hardy-Littlewood method to handle systems of linear questions in primes. This programme is laid out in our paper Linear Equations in Primes [LEP], which accompanies this submission. In particular, the results of this paper may be used, together with the machinery of [LEP], to establish an asymptotic for the number of four-term progressions p_1 < p_2 < p_3 < p_4 <= N of primes, and more generally any problem counting prime points inside a ``non-degenerate'' affine lattice of codimension at most 2. The main result of this paper is a proof of the Mobius and Nilsequences Conjecture for 1 and 2-step nilsequences. This conjecture is introduced in [LEP] and amounts to showing that if G/\Gamma is an s-step nilmanifold, s <= 2, if F : G/\Gamma -> [-1,1] is a Lipschitz function, and if T_g : G/\Gamma -> G/\Gamma is the action of g \in G on G/\Gamma, then the Mobius function \mu(n) is orthogonal to the sequence F(T_g^n x) in a fairly strong sense, uniformly in g and x in G/\Gamma. This can be viewed as a ``quadratic'' generalisation of an exponential sum estimate of Davenport, and is proven by the following the methods of Vinogradov and Vaughan.
Fermath - The Prime Numbers and Their Distribution - 0 views
-
The Prime Numbers and Their Distribution User Rating: / 5 PoorBest Written by Giulia Biagini Sunday, 14 January 2007 Basic Information Title: The Prime Numbers and Their Distribution Authors: Gérald Tenenbaum and Michel Mendès France Paperback: 115 pages Publisher: American Mathematical Society (May 2000) Language: English ISBN-10: 0821816470 ISBN-13: 978-0821816479
-
This book gives a general and pleasing overview on many topics about the distribution of prime numbers. Its goal is to provide insights of different nature on that theme and this is performed through the illustration of conjectures, methods, results and even (very concise) proofs. The volume is divided into five chapters, they are: Genesis: from Euclid to Chebyshev; The Riemann Zeta Function; Stochastic Distribution of Prime Numbers; An Elementary Proof of the Prime Number Theorem; The Major Conjectures. All of them are almost independent one to another, so you may skip the ones you are not interested in without any problem. The first one consists of
Mathematics of Computation - 0 views
-
For any and any non-exceptional modulus , we prove that, for large enough ( ), the interval contains a prime in any of the arithmetic progressions modulo . We apply this result to establish that every integer larger than is a sum of seven cubes.
[0711.3388] Inverse Conjecture for the Gowers norm is false - 0 views
-
Inverse Conjecture for the Gowers norm is false Authors: Shachar Lovett, Roy Meshulam, Alex Samorodnitsky (Submitted on 21 Nov 2007) Abstract: Let $p$ be a fixed prime number, and $N$ be a large integer. The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially approximated by a degree $d-1$ polynomial. The conjecture is known to hold for $d=2,3$ and for any prime $p$. In this paper we show the conjecture to be false for $p=2$ and for $d = 4$, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose correlation any polynomial of degree 3 is exponentially small. Essentially the same result (with different correlation bounds) was independently obtained by Green and Tao \cite{gt07}. Their analysis uses a modification of a Ramsey-type argument of Alon and Beigel \cite{ab} to show inapproximability of certain functions by low-degree polynomials. We observe that a combination of our results with the argument of Alon and Beigel implies the inverse conjecture to be false for any prime $p$, for $d = p^2$. Comments: 20 pages
[math/0603450] Pseudo Random test of prime numbers - 0 views
-
Pseudo Random test of prime numbers Authors: Wang Liang; Huang Yan (Submitted on 18 Mar 2006) Abstract: The prime numbers look like a randomly chosen sequence of natural numbers, but there is still no strict theory to determine 'Randomness'. In these years, cryptography has developed a battery of statistical tests for randomness. In this paper, we just apply these methods to study the distribution of primes. Here the binary sequence constructed by second difference of primes is used as samples. We find this sequence can't reach all the 'random standard' of FIPS 140-1/2, but still show obvious random feature. The interesting self-similarity is also observed in this sequence. These results add the evidence that prime numbers is a chaos system.
Recent Perspectives in Random Matrix Theory and Number Theory - Cambridge University Pr... - 0 views
-
In recent years the application of random matrix techniques to analytic number theory has been responsible for major advances in this area of mathematics. As a consequence it has created a new and rapidly developing area of research. The aim of this book is to provide the necessary grounding both in relevant aspects of number theory and techniques of random matrix theory, as well as to inform the reader of what progress has been made when these two apparently disparate subjects meet. This volume of proceedings is addressed to graduate students and other researchers in both pure mathematics and theoretical physics. The contributing authors, who are among the world leading experts in this area, have taken care to write self-contained lectures on subjects chosen to produce a coherent volume.• Self-contained lectures by world-leading experts in the field • The volume is integrated, indexed and cross-referenced • This title covers the most important and recent advances in the subjectContents1. Introduction; 2. Prime number theory and the Riemann zeta-function; 3. Notes on pair correlation of zeros and prime numbers; 4. Notes on eigenvalue distributions for the classical compact groups; 5. Compound nucleus resonances, random matrices and quantum chaos; 6. Families of L-functions and 1-level densities; 7. Basic analytic number theory; 8. Applications of mean value theorems to the theory of the Riemann zeta function; 9. L-functions and the characteristic polynomials of random matrices; 10. Mock gaussian behaviour; 11. Some specimens of L-functions; 12. Computational methods and experiments in analytic number theory.
« First
‹ Previous
101 - 120 of 211
Next ›
Last »
Showing 20▼ items per page