Skip to main content

Home/ ErgodicPNT/ Group items tagged uniform

Rss Feed Group items tagged

arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
arithwsun arithwsun

The mean distance to the nth neighbour in a uniform distribution of random points - 0 views

  • Abstract. We study different ways of determining the mean distance rn between a reference point and its nth neighbour among random points distributed with uniform density in a D-dimensional Euclidean space. First, we present a heuristic method; though this method provides only a crude mathematical result, it shows a simple way of estimating rn. Next, we describe two alternative means of deriving the exact expression of rn: we review the method using absolute probability and develop an alternative method using conditional probability. Finally, we obtain an approximation to rn from the mean volume between the reference point and its nth neighbour and compare it with the heuristic and exact results.
arithwsun arithwsun

Conference update, part II « The Accidental Mathematician - 0 views

  • In the second lecture (based on Gowers’s joint work with Julia Wolf) we were introduced to decomposition theorems. A decomposition theorem for the norm can be stated as follows: if is a function (on either or ) with , there is a decomposition , where are “generalized quadratic phase functions” and are error terms with and small. This can be deduced from the inverse theorem of Green-Tao; in fact a similar statement was already implicit in their work, based on the energy increment argument. Tim presented a different approach to deducing decomposition theorems from inverse theorems, based on functional-analytic arguments involving the geometry of normed spaces (specifically, a variant of the Hahn-Banach theorem).
  • This can be applied to the question of counting solutions to systems of linear equations in sets. Let’s say that we are interested in finding sensible conditions under which a set will have the “statistically correct” number of solutions to a system of linear equations. For instance, if it is 4-term arithmetic progressions that we are concerned with, then uniformity is sufficient (and, in general, necessary). Green and Tao prove a more general result of this type: they define the complexity of a system of linear forms, and prove that systems of complexity are controlled by norms.
  • Gowers and Wolf, however, do not stop there. Suppose that, instead of 4-term progressions, we are interested in configurations of the form, say, . The complexity of this system in the sense of Green-Tao is 2, hence a set uniform in the norm will contain the “right” number of such configurations. Gowers and Wolf, however, can prove that uniformity already guarantees the same conclusion! The difference between the two examples? The squares are linearly dependent, whereas are not. Gowers and Wolf prove that such “square independence” is in fact both sufficient and necessary for a system of complexity 2 to be controlled by the $U^2$ norm. The proof is based on the decomposition theorem described earlier.
arithwsun arithwsun

[math/0606087] Quadratic Uniformity of the Mobius Function - 0 views

  • Quadratic Uniformity of the Mobius Function Authors: Ben Green, Terence Tao (Submitted on 4 Jun 2006 (v1), last revised 22 Sep 2007 (this version, v2)) Abstract: This paper is a part of our programme to generalise the Hardy-Littlewood method to handle systems of linear questions in primes. This programme is laid out in our paper Linear Equations in Primes [LEP], which accompanies this submission. In particular, the results of this paper may be used, together with the machinery of [LEP], to establish an asymptotic for the number of four-term progressions p_1 < p_2 < p_3 < p_4 <= N of primes, and more generally any problem counting prime points inside a ``non-degenerate'' affine lattice of codimension at most 2. The main result of this paper is a proof of the Mobius and Nilsequences Conjecture for 1 and 2-step nilsequences. This conjecture is introduced in [LEP] and amounts to showing that if G/\Gamma is an s-step nilmanifold, s <= 2, if F : G/\Gamma -> [-1,1] is a Lipschitz function, and if T_g : G/\Gamma -> G/\Gamma is the action of g \in G on G/\Gamma, then the Mobius function \mu(n) is orthogonal to the sequence F(T_g^n x) in a fairly strong sense, uniformly in g and x in G/\Gamma. This can be viewed as a ``quadratic'' generalisation of an exponential sum estimate of Davenport, and is proven by the following the methods of Vinogradov and Vaughan.
arithwsun arithwsun

Milliman Lecture I: Additive combinatorics and the primes « What's new - 0 views

  • However, it turns out that if one of the sets, say A, is sufficiently “uniform” or “pseudorandom”, then one can always solve this Goldbach-type problem, regardless of what the other two sets are. This type of fact is often established by Fourier-analytic means (or by closely related techniques, such as spectral theory), but let me give a heuristic combinatorial argument to indicate why one would expect this type of phenomenon to occur.
  • quares Primes Lagrange’s four square theorem: For every positive integer N, there exists a pattern in of the form . Vinogradov’s theorem: For every sufficiently large integer N, there exists a pattern in of the form . Fermat’s two square theorem: For every prime number , there exists a pattern in of the form . Even Goldbach conjecture: For every even number , there exists a pattern in of the form . Fermat’s four square theorem: There does not exist any pattern in of the form with . Green-Tao theorem: For any , there exist infinitely many patterns in of the form with . Pell’s equation: There are infinitely many patterns in of the form . Sophie Germain conjecture: There are infinitely many patterns in of the form .
arithwsun arithwsun

Pseudorandom number generation by p-adic ergodic transformations. arXiv Mathematics - C... - 0 views

  • Abstract. The paper study counter-dependent pseudorandom number generators based on m-variate (m> 1) ergodic mappings of the space of 2-adic integers Z2. The sequence of internal states of these generators is defined by the recurrence law xi+1 = H B i (xi) mod 2 n, whereas their output sequence is zi = F B i (xi) mod 2 n; here xj, zj are m-dimensional vectors over Z2. It is shown how the results obtained for a univariate case could be extended to a multivariate case. 1.
  • Foundations of Cryptography. Basic Tools. Cambridge Univ – Goldreich - 2001
  • 129 Uniform distribution of sequences – Kuipers, Niederreiter - 1974
  • ...2 more annotations...
  • 22 The art of computer programming. Vol. 2: Seminumerical Algorithms – Knuth - 1981
  • 8 Uniformly distributed sequences of p-adic integers – Anashin - 1994
arithwsun arithwsun

talks.cam : A new norm related to the Gowers U^3 norm - 0 views

  • A new norm related to the Gowers U^3 norm Add to your list(s) Download to your calendar using vCal Pablo Candela Pokorna Monday 16 February 2009, 16:00-17:00 MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB. If you have a question about this talk, please contact Anton Evseev. The uniformity norms (or U^d norms, for d>1 a positive integer) were introduced about ten years ago by Gowers in his effective proof of Szemerédi’s theorem, and have played an important role in arithmetic combinatorics ever since. The U^2 norm is naturally related to Fourier analysis, and a very active trend in current research aims to develop an analogue of Fourier analysis for each U^d norm with d>2. The body of results of this research for d=3 is known as quadratic Fourier analysis. After an introduction to this area we will consider a new norm related to the U^3 norm, and discuss some of its applications in quadratic Fourier analysis, including a strengthening of a central theorem of Green and Tao (the inverse theorem for the U^3 norm), and how this stronger version of the theorem can be used to give a new proof of a recent decomposition-theorem of Gowers and Wolf. This talk is part of the Junior Algebra/Combinatorics/Number Theory seminar series.
arithwsun arithwsun

The quantitative behaviour of polynomial orbits on nilmanifolds « What's new - 0 views

  • For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.
  • For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.
  • [Incidentally, regarding the interactions between physics and number theory: physical intuition has proven to be quite useful in making accurate predictions about many mathematical objects, such as the distribution of zeroes of the Riemann zeta function, but has been significantly less useful in generating rigorous proofs of these predictions. In number theory, our ability to make accurate predictions on anything relating to the primes (or related objects) is now remarkably good, but our ability to actually prove these predictions rigorously lags behind quite significantly. So I doubt that the key to further rigorous progress on these problems lies with physics.]
  •  
    For instance, the question of whether (10^n \pi)_{n \in {\Bbb N}} is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether \pi is normal base 10.
arithwsun arithwsun

Gowers' note for additive number theory - 0 views

  •  
    I have proposed this course for the academic year 2006-7. The syllabus is Roth's theorem, the geometry of numbers, Freiman's theorem, quasirandomness of graphs and 3-uniform hypergraphs, and Szemerédi's regularity lemmaThe course will be examined as a 24
arithwsun arithwsun

OBSTRUCTIONS TO UNIFORMITY, AND ARITHMETIC - 0 views

arithwsun arithwsun

Andrew Granville's Publications - 0 views

  •  
    Introduction to Additive Combinatorics
arithwsun arithwsun

Harman :Metric number theory - 0 views

  •  
    Harman, Glyn (4-WALC-
    Metric number theory.
    LondonMathematical
    The Clarendon Press, Oxford
    ISBN 0-19-850083-1
arithwsun arithwsun

[PAMQ] Obstructions to Uniformity and Arithmetic Patterns in the Primes - 0 views

  •  
    Published version, can be downloaded freely. PAMQ is a new journal with many beautiful papers.
1 - 17 of 17
Showing 20 items per page