Skip to main content

Home/ ErgodicPNT/ Group items tagged distribution

Rss Feed Group items tagged

arithwsun arithwsun

Fermath - The Prime Numbers and Their Distribution - 0 views

  • The Prime Numbers and Their Distribution User Rating: / 5 PoorBest  Written by Giulia Biagini    Sunday, 14 January 2007 Basic Information Title: The Prime Numbers and Their Distribution Authors: Gérald Tenenbaum and Michel Mendès France Paperback: 115 pages Publisher: American Mathematical Society (May 2000) Language: English ISBN-10: 0821816470 ISBN-13: 978-0821816479
  • This book gives a general and pleasing overview on many topics about the distribution of prime numbers. Its goal is to provide insights of different nature on that theme and this is performed through the illustration of conjectures, methods, results and even (very concise) proofs.   The volume is divided into five chapters, they are: Genesis: from Euclid to Chebyshev; The Riemann Zeta Function; Stochastic Distribution of Prime Numbers; An Elementary Proof of the Prime Number Theorem; The Major Conjectures. All of them are almost independent one to another, so you may skip the ones you are not interested in without any problem. The first one consists of
arithwsun arithwsun

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
arithwsun arithwsun

E. Kowalski's blog » Averages of singular series, or: when Poisson is everywhere - 0 views

  • I have recently posted on my web page a preprint concerning some averages of “singular series” (another example of pretty bad mathematical terminology…) arising in the prime k-tuple conjecture, and its generalization the Bateman-Horn conjecture. The reason for looking at this is a result of Gallagher which is important in the original version of the proof by Goldston-Pintz-Yildirim that there are infinitely many primes p for which the gap q-p between p and the next prime q is smaller than ε times the average gap, for arbitrary small ε>0.
arithwsun arithwsun

The mean distance to the nth neighbour in a uniform distribution of random points - 0 views

  • Abstract. We study different ways of determining the mean distance rn between a reference point and its nth neighbour among random points distributed with uniform density in a D-dimensional Euclidean space. First, we present a heuristic method; though this method provides only a crude mathematical result, it shows a simple way of estimating rn. Next, we describe two alternative means of deriving the exact expression of rn: we review the method using absolute probability and develop an alternative method using conditional probability. Finally, we obtain an approximation to rn from the mean volume between the reference point and its nth neighbour and compare it with the heuristic and exact results.
arithwsun arithwsun

Pseudorandom number generation by p-adic ergodic transformations. arXiv Mathematics - C... - 0 views

  • Abstract. The paper study counter-dependent pseudorandom number generators based on m-variate (m> 1) ergodic mappings of the space of 2-adic integers Z2. The sequence of internal states of these generators is defined by the recurrence law xi+1 = H B i (xi) mod 2 n, whereas their output sequence is zi = F B i (xi) mod 2 n; here xj, zj are m-dimensional vectors over Z2. It is shown how the results obtained for a univariate case could be extended to a multivariate case. 1.
  • Foundations of Cryptography. Basic Tools. Cambridge Univ – Goldreich - 2001
  • 129 Uniform distribution of sequences – Kuipers, Niederreiter - 1974
  • ...2 more annotations...
  • 22 The art of computer programming. Vol. 2: Seminumerical Algorithms – Knuth - 1981
  • 8 Uniformly distributed sequences of p-adic integers – Anashin - 1994
arithwsun arithwsun

The quantitative behaviour of polynomial orbits on nilmanifolds « What's new - 0 views

  • For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.
  • For instance, the question of whether is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether is normal base 10.
  • [Incidentally, regarding the interactions between physics and number theory: physical intuition has proven to be quite useful in making accurate predictions about many mathematical objects, such as the distribution of zeroes of the Riemann zeta function, but has been significantly less useful in generating rigorous proofs of these predictions. In number theory, our ability to make accurate predictions on anything relating to the primes (or related objects) is now remarkably good, but our ability to actually prove these predictions rigorously lags behind quite significantly. So I doubt that the key to further rigorous progress on these problems lies with physics.]
  •  
    For instance, the question of whether (10^n \pi)_{n \in {\Bbb N}} is equidistributed mod 1 is an old unsolved problem, equivalent to asking whether \pi is normal base 10.
arithwsun arithwsun

[0807.1736] The Mobius and Nilsequences Conjecture - 0 views

  • We show that the Mobius function mu(n) is strongly asymptotically orthogonal to any polynomial nilsequence n -> F(g(n)L). Here, G is a simply-connected nilpotent Lie group with a discrete and cocompact subgroup L (so G/L is a nilmanifold), g : Z -> G is a polynomial sequence and F: G/L -> R is a Lipschitz function. More precisely, we show that the inner product of mu(n) with F(g(n)L) over {1,...,N} is bounded by 1/log^A N, for all A > 0. In particular, this implies the Mobius and Nilsequence conjecture MN(s) from our earlier paper ``Linear equations in primes'' for every positive integer s. This is one of two major ingredients in our programme, outlined in that paper, to establish a large number of cases of the generalised Hardy-Littlewood conjecture, which predicts how often a collection \psi_1,...,\psi_t : Z^d -> Z of linear forms all take prime values. The proof is a relatively quick application of the results in our recent companion paper on the distribution of polynomial orbits on nilmanifolds. We give some applications of our main theorem. We show, for example, that the Mobius function is uncorrelated with any bracket polynomial. We also obtain a result about the distribution of nilsequences n -> a^nxL as n ranges only over the primes.
arithwsun arithwsun

Eigenvalues of random matrices and not the Riemann Hypothesis | Pacific Institute for t... - 0 views

  • Random matrix theory has been a hot topic in number theory, particularly since the Rudnick and Sarnak landmark work on the spacing of consecutive zeros of L-functions. This highly accessible talk has a far more elementary flavour, focusing on eigenvalues of random integer matrices instead of the Gaussian Unitary Ensemble. For a fixed n, consider a random n×n integer matrix with entries bounded by the parameter k. I'll give a simple proof that such a matrix almost certainly has no rational eigenvalues (as k increases). Then we'll delve into more detail on the exact eigenvalue distribution of the 2×2 case. Along the way we'll rediscover a forgotten determinant identity and tackle some quadruple sums. This is joint work with Greg Martin.
arithwsun arithwsun

aa8325.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

sol18.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

Andrew Granville's Publications - 0 views

  •  
    Introduction to Additive Combinatorics
arithwsun arithwsun

[math/0603450] Pseudo Random test of prime numbers - 0 views

  • Pseudo Random test of prime numbers Authors: Wang Liang; Huang Yan (Submitted on 18 Mar 2006) Abstract: The prime numbers look like a randomly chosen sequence of natural numbers, but there is still no strict theory to determine 'Randomness'. In these years, cryptography has developed a battery of statistical tests for randomness. In this paper, we just apply these methods to study the distribution of primes. Here the binary sequence constructed by second difference of primes is used as samples. We find this sequence can't reach all the 'random standard' of FIPS 140-1/2, but still show obvious random feature. The interesting self-similarity is also observed in this sequence. These results add the evidence that prime numbers is a chaos system.
arithwsun arithwsun

Recent Perspectives in Random Matrix Theory and Number Theory - Cambridge University Pr... - 0 views

  • In recent years the application of random matrix techniques to analytic number theory has been responsible for major advances in this area of mathematics. As a consequence it has created a new and rapidly developing area of research. The aim of this book is to provide the necessary grounding both in relevant aspects of number theory and techniques of random matrix theory, as well as to inform the reader of what progress has been made when these two apparently disparate subjects meet. This volume of proceedings is addressed to graduate students and other researchers in both pure mathematics and theoretical physics. The contributing authors, who are among the world leading experts in this area, have taken care to write self-contained lectures on subjects chosen to produce a coherent volume.• Self-contained lectures by world-leading experts in the field • The volume is integrated, indexed and cross-referenced • This title covers the most important and recent advances in the subjectContents1. Introduction; 2. Prime number theory and the Riemann zeta-function; 3. Notes on pair correlation of zeros and prime numbers; 4. Notes on eigenvalue distributions for the classical compact groups; 5. Compound nucleus resonances, random matrices and quantum chaos; 6. Families of L-functions and 1-level densities; 7. Basic analytic number theory; 8. Applications of mean value theorems to the theory of the Riemann zeta function; 9. L-functions and the characteristic polynomials of random matrices; 10. Mock gaussian behaviour; 11. Some specimens of L-functions; 12. Computational methods and experiments in analytic number theory.
arithwsun arithwsun

Harman :Metric number theory - 0 views

  •  
    Harman, Glyn (4-WALC-
    Metric number theory.
    LondonMathematical
    The Clarendon Press, Oxford
    ISBN 0-19-850083-1
arithwsun arithwsun

Read This: Stalking the Riemann Hypothesis - 0 views

  • The connections between the zeros of the zeta-function and random matrix theory have become the most active and exciting threads of research in the hunt for the Riemann hypothesis. Rockmore devotes four chapters at the end of his book to various aspects of this research. He discusses the work of Sarnak and Katz on analogous results for function fields. He also discusses work of Tracy, Widom, and Deift that connects the distribution of eigenvalues of random matrices to properties of permutations. This chapter has the engaging title "God May Not Play Dice, but What About Cards?"
arithwsun arithwsun

MIT OpenCourseWare | Mathematics | 18.785 Analytic Number Theory, Spring 2007 | Home - 0 views

  • This course is an introduction to analytic number theory, including the use of zeta functions and L-functions to prove distribution results concerning prime numbers (e.g., the prime number theorem in arithmetic progressions).
1 - 20 of 21 Next ›
Showing 20 items per page