Skip to main content

Home/ ErgodicPNT/ Group items tagged density

Rss Feed Group items tagged

arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
arithwsun arithwsun

The Large Sieve and its Applications - Cambridge University Press - 0 views

  • Among the modern methods used to study prime numbers, the ‘sieve’ has been one of the most efficient. Originally conceived by Linnik in 1941, the ‘large sieve’ has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.• Explores new and surprising applications of the large sieve method, an important technique of analytic number theory • Presents applications in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory • Motivated, clear and self-contained discussions introduce readers to a technique previously confined to one fieldContentsPreface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (τ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.
arithwsun arithwsun

The mean distance to the nth neighbour in a uniform distribution of random points - 0 views

  • Abstract. We study different ways of determining the mean distance rn between a reference point and its nth neighbour among random points distributed with uniform density in a D-dimensional Euclidean space. First, we present a heuristic method; though this method provides only a crude mathematical result, it shows a simple way of estimating rn. Next, we describe two alternative means of deriving the exact expression of rn: we review the method using absolute probability and develop an alternative method using conditional probability. Finally, we obtain an approximation to rn from the mean volume between the reference point and its nth neighbour and compare it with the heuristic and exact results.
arithwsun arithwsun

[math/0703749] Arithmetic structures in random sets - 0 views

  • We extend two well-known results in additive number theory, S\'ark\"ozy's theorem on square differences in dense sets and a theorem of Green on long arithmetic progressions in sumsets, to subsets of random sets of asymptotic density 0. Our proofs rely on a restriction-type Fourier analytic argument of Green and Green-Tao.
arithwsun arithwsun

Recent Perspectives in Random Matrix Theory and Number Theory - Cambridge University Pr... - 0 views

  • In recent years the application of random matrix techniques to analytic number theory has been responsible for major advances in this area of mathematics. As a consequence it has created a new and rapidly developing area of research. The aim of this book is to provide the necessary grounding both in relevant aspects of number theory and techniques of random matrix theory, as well as to inform the reader of what progress has been made when these two apparently disparate subjects meet. This volume of proceedings is addressed to graduate students and other researchers in both pure mathematics and theoretical physics. The contributing authors, who are among the world leading experts in this area, have taken care to write self-contained lectures on subjects chosen to produce a coherent volume.• Self-contained lectures by world-leading experts in the field • The volume is integrated, indexed and cross-referenced • This title covers the most important and recent advances in the subjectContents1. Introduction; 2. Prime number theory and the Riemann zeta-function; 3. Notes on pair correlation of zeros and prime numbers; 4. Notes on eigenvalue distributions for the classical compact groups; 5. Compound nucleus resonances, random matrices and quantum chaos; 6. Families of L-functions and 1-level densities; 7. Basic analytic number theory; 8. Applications of mean value theorems to the theory of the Riemann zeta function; 9. L-functions and the characteristic polynomials of random matrices; 10. Mock gaussian behaviour; 11. Some specimens of L-functions; 12. Computational methods and experiments in analytic number theory.
1 - 7 of 7
Showing 20 items per page