The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be.
[Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)