Skip to main content

Home/ EDUC 300/ Group items tagged computers

Rss Feed Group items tagged

Tiffany King

learning_theories_full_version - 1 views

  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • ...22 more annotations...
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • The following tutorial consists of five learning modules. Each module describes a learning theory and how that learning theory can be applied to improving online teaching and training materials. Each module features: a description of a well known learning theory; a practical example of how the theory and related strategies can be applied to a particular instructional objective or web-design problem; and a list of related pedagogical and web-design strategies as researched in the literature. This tutorial has been designed for MDDE 621 students studying in the Masters of Distance Education program at Athabasca University.
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learn
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles.
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles.
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Simplify navigation.
  • Create effective menus.
  • Include indexes, table of contents, and search capabilities.
  • Pedagogical Practices and Practical Web-Design Strategies
  • Clearly identify content with appropriate headings and titles.
  • Place most important information on the top-left. Important information should go to the top-left.
  • Web is (Fahy 1999, 181-182): Easy to get lost in (users can get confused bouncing around from one link to the next) Unstructured Non-interactive (although this is changing) Complex (the amount of information on the Web is mind-boggling) Time-consuming (because it is non-linear and invites exploration. NOTE: Research by Thaler [1997, as cited in Fahy 1999, 181] shows that "employees in a 1997 survey reported spending an average of 90 minutes per day visiting sites unrelated to their jobs").
Diane Gusa

Productivity and online learning redux - 2 views

  • Instructional MOOCs (xMOOCs) have basically removed learner support, at least in terms of human (instructor) support, but this has resulted in a very low number of MOOC learners passing end-of-course assessments of learning. Indeed, prior research into credit-based learning has established that instructor online ‘presence’ is a critical factor in retaining students. So far, it has proved difficult to scale up learner support on a massive scale, except through the use of computer technology, such as automated feedback. However, Carey and Trick (2013) and indeed faculty at elite institutions who are offering xMOOCs (see Thrun and ‘the Magic of the Campus‘) have argued that such computer support does not support ‘the learning that matters most’.
  • computer-based approaches to learner support to date has been inadequate for formal assessment of higher order learning skills such as original, critical or strategic thinking, evaluation of strategies or alternative explanations.
  • In cMOOCs that are more like communities of practice and thus contain many participants with already high levels of expertise, that expertise and judgement can be provided by the participants themselves
  • ...3 more annotations...
  • ‘disruptive’ innovation, where a new technology results in sweeping away old ways of doing something.
  • Thus knowledge management becomes more important than mere access to knowledge. If we look at xMOOCs though we have taken a new technology – video lecture capture and Internet transmission – and applied it to an outdated model of teaching. True innovation requires a change of process or method as well as a change of technology.
  • .Content is only one component of teaching (and an increasingly less important component); other components such as learner support and assessment are even more important. Care is needed then because changes in methods of online content development and delivery could have negative knock-on cost and productivity consequences in other areas of course delivery, such as learner support and assessment. I
Tiffany King

Assessing teaching presence in a computer conferencing context (Terry Anderson) - Acade... - 1 views

  • “it is the teacher’s responsibility to precipitate andfacilitate learning that has purpose and is focused on essential concepts and worthwhile goals”
  • However, it is only through active interventionof a teacher that a powerful communications tool such as collaborative computer conferencing[11], or cooperative learning [12] becomes a useful instructional and learning resource.
  • We concur with Laurillard, Stratfold, Lukin, Plowman and Taylor [17] that the teacher’s task is to create anarrative path through the mediated instruction and activity set such that students are aware of theexplicit and implicit learning goals and activities in which they participate.
Nicole Frescura

Student perception of collaborative learning, social presence, and satisfaction - 1 views

"To better understand their perceptions of collaborative learning, social presence, and satisfaction, this study aims to analyze the experiences of learners in computer-mediated communication (CMC)...

Module 2

started by Nicole Frescura on 04 Jul 12 no follow-up yet
Doris Stockton

AJET 26(3) Drexler (2010) - The networked student model for construction of personal le... - 0 views

  • Personal learning suggests learner autonomy and increased self regulation (Atwell, 2007; Aviram et al., 2008). However, increased responsibility and control on the part of the learner do not necessarily equate to learner motivation (Dede, 1996). Students engaging in networked learning research must be more self-directed. Not only are they navigating a number of web-based applications for the first time, they are also required to take an active role in the learning process by making decisions about how to search, where to search, and why certain content meets a learning objective.
  • Teachers, on the other hand, are challenged to provide an appropriate balance between structure and learner autonomy in order to facilitate self-directed, personalised learning (Beaudoin, 1990; McLoughlin & Lee, 2010).
  • The role of a teacher within a student-centered approach to instruction is that of a facilitator or coach (Wang, 2006). "He or she supports the students in their search and supply of relevant material, coordinates the students' presentations of individual milestones of their projects, moderates discussions, consults in all kinds of problem-solving and seeking for solutions, lectures on topics that are selected in plenary discussions with the students and conforms to the curriculum" (Motschnig-Pitrik & Holzinger, 2002, p. 166).
  • ...17 more annotations...
  • Figure 1: The Networked Teacher (Couros, 2008)
  • ouros (2008) developed a model of the networked teacher that represents an educator's professional personal learning environment (PLE). A teacher is better equipped to facilitate networked learning if he or she has experienced the construction of such a model first hand. The significant connections in Couros' view of the network include colleagues, popular media, print and digital resources, the local community, blogs, wikis, video conferencing, chat/IRC, social networking services, online communities, social bookmarking, digital photo sharing, and content development communities (Couros, 2008).
  • Networked teacher model
  • In a traditional classroom setting, the teacher has primary control over the content. He or she selects or designs the curriculum. Networked learning gives students the ability and the control to connect with subject matter experts in virtually any field.
  • Figure 2: The Networked Student
  • The networked student follows a constructivist approach to learning. He or she constructs knowledge based on experiences and social interactions (Jonassen et al., 2003). Constructivism encourages "greater participation by students in their appropriation of scholarly knowledge" (Larochelle et al., 1998).
  • Technology supports this appropriation as a collection of tools that promote knowledge construction, an information vehicle for exploring knowledge, an active learning tool, a social medium to promote conversing, and an intellectual partner to facilitate reflection (Jonassen et al., 2003)
  • Developing a model of the networked student The Networked Student Model adapts Couros' vision for teacher professional development in a format that is applicable to the K-12 student. It includes four primary categories, each with many components evident in the networked teacher version (Figure 2).
  • That connection expands to include access to resources and creative artifacts. Computers and mobile devices continue to broaden access to all types of information and learning sources. As quickly as content becomes available, web applications are released to assist in the management of that content
  • The networked student constructs a personal learning environment one node at a time. Once these connections are formed, they must be revisited and built upon to facilitate further learning. The personal learning environment lives beyond time spent in a classroom
  • With so much information to manage, it is increasingly difficult to stay abreast of changes in a given field, much less track implications arising from related fields. Really Simple Syndication (RSS) allows learners to subscribe to changing content and makes tracking changes easier.
  • Ultimately, meaningful learning occurs with knowledge construction, not reproduction; conversation, not reception; articulation, not repetition; collaboration, not competition; and reflection, not prescription (Jonassen et al., 2003).
  • Construction of a personal learning environment does not necessarily facilitate comprehension or deep understanding. Learning potential exists in what the student does with the compilation of content and how it is synthesised. The networked student model is one of inquiry, or the process of "exploring problems, asking questions, making discoveries, achieving new understanding and fulfilling personal curiosity" (National Science Foundation, as quoted by Chang & Wang, 2009, p. 169).
  • Principles of connectivism equate to fundamentals of learning in a networked world. The design of the teacher-facilitated, student-created personal learning environment in this study adheres to constructivist and connectivist principles with the goal of developing a networked student who will take more responsibility for his or her learning while navigating an increasingly complex content base.
  • Nine out of 15 students indicated that time management was the most difficult aspect of the course. Yet, of the fifteen students participating in the project, thirteen were able to manage weekly assignments per the schedule. Two students fell behind and expressed frustration at the amount of work required to catch up. Teacher intervention was required to facilitate their successful completion of the course. They were given a daily list of tasks designed to scaffold the time management aspects of the project. Time management issues were less associated with construction of the personal learning environment and more concerned with the blended format of the delivery. It was an adjustment for students to manage work outside of class even though they enjoyed the freedom of attending a formal class meeting only 3 out of 5 days a week.
  • Achieving the delicate balance between teacher control and student autonomy is an ongoing challenge when facilitating student use of new technologies for self-regulated learning (McLoughlin & Lee, 2010). Motivation, self direction, and technical aptitude are key considerations for implementing a networked student design. The students constructing personal learning environments in this test case were successful in the contemporary issues course.
  • spite of the challenges highlighted above, the Networked Student Model offers a design and framework through which teachers can explore a student-centered, 21st century approach to learning. It further provides a foundation for constructing a personal learning environment with potential to expand as new learning avenues emerge. The student is challenged to synthesise diverse and extensive digital materials, connect to others interacting in respectful and meaningful ways, self-regulate an active approach to learning, and develop an option for life long learning that applies to virtually any curricular area. Once a student has learned how to construct a personal learning environment, he or she is left with a model of learning that extends beyond the classroom walls, one in which the learner assumes full control. Regardless of teacher control, the students' success will depend on how well they have been prepared in the processes that support learning in an ever changing, increasingly networked world.
  •  
    I have highlighted many sections that pertain to student centered online learning.
1 - 8 of 8
Showing 20 items per page