Skip to main content

Home/ Diigo In Education/ Group items tagged engineering student mathematics science learning

Rss Feed Group items tagged

Martin Burrett

STEM across the school - 12 views

  •  
    "The importance of offering a broad curriculum within the school system cannot be over-stated, allowing students to explore a range of topics that spark their interest, and potentially inspire them to follow a career path that can have a positive impact on their lives, society and the environment. STEM activities (built around Science, Technology, Engineering and Mathematics) offer a broad range of opportunities, opening up the potential of enquiry based learning that is relevant to the world we live in. Many education systems globally place a great emphasis on a STEM curriculum for all students, no matter of age, race, gender or ability, but what STEM based activities work best in your setting, helping students see the world differently, and potentially inspiring to enter STEM careers of the future?"
Melissa Middleton

http://www.iste.org/Content/NavigationMenu/Advocacy/Top_Ten_in_10.htm - 87 views

  • Establish technology in education as the backbone of school improvement
  • Leverage education technology as a gateway for college and career readiness
  • Ensure technology expertise is infused throughout our schools and classrooms.
  • ...2 more annotations...
  • Continuously upgrade educators' classroom technology skills as a pre-requisite of "highly effective" teaching
  • Home Advocacy Top Ten in '10: ISTE's Education Technology Priorities for 2010 Through a common focus on boosting student achievement and closing the achievement gap, policymakers and educators alike are now reiterating their commitment to the sorts of programs and instructional efforts that can have maximum effect on instruction and student outcomes. This commitment requires a keen understanding of both past accomplishment and strategies for future success. Regardless of the specific improvement paths a state or school district may chart, the use of technology in teaching and learning is non-negotiable if we are to make real and lasting change.  With growing anticipation for Race to the Top (RttT) and Investing in Innovation (i3) awards in 2010, states and school districts are seeing increased attention on educational improvement, backed by financial support through these grants. As we think about plans for the future, the International Society for Technology in Education (ISTE) has identified 10 priorities essential for making good on this commitment in 2010: 1. Establish technology in education as the backbone of school improvement . To truly improve our schools for the long term and ensure that all students are equipped with the knowledge and skills necessary to achieve in the 21st century, education technology must permeate every corner of the learning process. From years of research, we know that technology can serve as a primary driver for systemic school improvement, including school leadership, an improved learning culture and excellence in professional practice. We must ensure that technology is at the foundation of current education reform efforts, and is explicit and clear in its role, mission, and expected impact. 2. Leverage education technology as a gateway for college and career readiness . Last year, President Obama established a national goal of producing the highest percentage of college graduates in the world by the year 2020. To achieve this goal in the next 10 years, we must embrace new instructional approaches that both increase the college-going rates and the high school graduation rates. By effectively engaging learning through technology, teachers can demonstrate the relevance of 21st century education, keeping more children in the pipeline as they pursue a rigorous, interesting and pertinent PK-12 public education. 3. Ensure technology expertise is infused throughout our schools and classrooms.  In addition to providing all teachers with digital tools and content we must ensure technology experts are integrated throughout all schools, particularly as we increase focus and priority on STEM (science-technology-engineering-mathematics) instruction and expand distance and online learning opportunities for students. Just as we prioritize reading and math experts, so too must we place a premium on technology experts who can help the entire school maximize its resources and opportunities. To support these experts, as well as all educators who integrate technology into the overall curriculum, we must substantially increase our support for the federal Enhancing Education Through Technology (EETT) program.  EETT provides critical support for on-going professional development, implementation of data-driven decision-making, personalized learning opportunities, and increased parental involvement. EETT should be increased to $500 million in FY2011. 4. Continuously upgrade educators' classroom technology skills as a pre-requisite of "highly effective" teaching . As part of our nation's continued push to ensure every classroom is led by a qualified, highly effective teacher, we must commit that all P-12 educators have the skills to use modern information tools and digital content to support student learning in content areas and for student assessment. Effective teachers in the 21st Century should be, by definition, technologically savvy teachers. 5. Invest in pre-service education technology
Clayton Mitchell

Active learning increases student performance in science, engineering, and mathematics - 56 views

  •  
    Active learning increases student performance in STEM by as much as 55%
smilex3md

How I Rewired My Brain to Become Fluent in Math - Issue 17: Big Bangs - Nautilus - 2 views

  • By championing the importance of understanding, teachers can inadvertently set their students up for failure as those students blunder in illusions of competence. As one (failing) engineering student recently told me: “I just don’t see how I could have done so poorly. I understood it when you taught it in class.” My student may have thought he’d understood it at the time, and perhaps he did, but he’d never practiced using the concept to truly internalize it. He had not developed any kind of procedural fluency or ability to apply what he thought he understood.
  • Time after time, professors in mathematics and the sciences have told me that building well-ingrained chunks of expertise through practice and repetition was absolutely vital to their success. Understanding doesn’t build fluency; instead, fluency builds understanding. In fact, I believe that true understanding of a complex subject comes only from fluency.
  •  
    "How I Rewired My Brain to Become Fluent in Math Sorry, education reformers, it's still memorization and repetition we need."
1 - 5 of 5
Showing 20 items per page