Skip to main content

Home/ COSEE-West/ Group items tagged force

Rss Feed Group items tagged

Gwen Noda

Winds of Change - 0 views

  •  
    Winds of Change Jane Qiu Antarctica does not respond to global warming uniformly like a giant ice cube. Changing wind patterns are an unsung force shaping Antarctica's future. Retreating sea ice and stronger winds have caused seawater to mix more deeply, a process that churns sunlight-dependent phytoplankton into the ocean's depths. As a result, phytoplankton biomass has declined by 12% over the past 30 years. Higher on the food chain, that means fewer krill and fish larvae. These creatures are also getting hammered by the loss of sea ice, which hides them from predators. The complex interplay between air, sea, and ice has emerged as a central theme underlying climate change in Antarctica. Shifting wind patterns and corresponding ocean changes can explain climate responses across the continent.
Gwen Noda

The Ten Best Ocean Stories of 2012 | Surprising Science - 0 views

  •  
    December 18, 2012 The Ten Best Ocean Stories of 2012 | | | Share on redditReddit | Share on diggDigg | Share on stumbleuponStumble | Share on emailEmail | More Sharing ServicesMore Two market squids mating 2012 was a big year for squid science. Photo Credit: © Brian Skerry, www.brianskerry.com Despite covering 70 percent of the earth's surface, the ocean doesn't often make it into the news. But when it does, it makes quite a splash (so to speak). Here are the top ten ocean stories we couldn't stop talking about this year, in no particular order. Add your own in the comments! 2012: The Year of the Squid From the giant squid's giant eyes (the better to see predatory sperm whales, my dear), to the vampire squid's eerie diet of remains and feces, the strange adaptations and behavior of these cephalopods amazed us all year. Scientists found a deep-sea squid that dismembers its own glowing arm to distract predators and make a daring escape. But fascinating findings weren't relegated to the deep: at the surface, some squids will rocket themselves above the waves to fly long distances at top speeds. James Cameron Explores the Deep Sea Filmmaker James Cameron has never shied away from marine movie plots (See: Titanic, The Abyss), but this year he showed he was truly fearless, becoming the first person to hit the deepest point on the seafloor (35,804 feet) in a solo submarine. While he only managed to bring up a single mud sample from the deepest region, he found thriving biodiversity in the other deep-sea areas his expedition explored, including giant versions of organisms found in shallow water. Schooling sardines form a "bait ball." Small fish, such as these schooling sardines, received well-deserved attention for being an important part of the food chain in 2012. Photo Credit: © Erwin Poliakoff, Flickr Small Fish Make a Big Impact Forage fish-small, schooling fish that are gulped down by predators-should be left in the ocean for larger fish, marin
Gwen Noda

Climate Change, Keystone Predation, and Biodiversity Loss - 0 views

  •  
    "Abstract Climate change can affect organisms both directly via physiological stress and indirectly via changing relationships among species. However, we do not fully understand how changing interspecific relationships contribute to community- and ecosystem-level responses to environmental forcing. I used experiments and spatial and temporal comparisons to demonstrate that warming substantially reduces predator-free space on rocky shores. The vertical extent of mussel beds decreased by 51% in 52 years, and reproductive populations of mussels disappeared at several sites. Prey species were able to occupy a hot, extralimital site if predation pressure was experimentally reduced, and local species richness more than doubled as a result. These results suggest that anthropogenic climate change can alter interspecific interactions and produce unexpected changes in species distributions, community structure, and diversity. "
Gwen Noda

Future CO2 Emissions and Climate Change from Existing Energy Infrastructure - 0 views

  •  
    "Slowing climate change requires overcoming inertia in political, technological, and geophysical systems. Of these, only geophysical warming commitment has been quantified. We estimated the commitment to future emissions and warming represented by existing carbon dioxide-emitting devices. We calculated cumulative future emissions of 496 (282 to 701 in lower- and upper-bounding scenarios) gigatonnes of CO2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1° to 1.4°C) above the pre-industrial era and atmospheric concentrations of CO2 less than 430 parts per million. Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO2-emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives. "
Gwen Noda

Aerosols Altered Asian Monsoons - 0 views

  •  
    Aerosols Altered Asian Monsoons Summer monsoons provide much of the water for farming on the Indian subcontinent, but the pattern of rain shifted dramatically during the last half of the 20th century. In a study appearing online 29 September in Science, researchers pin the blame on soot and other aerosols from human activities. From 1951 to 1999, central-northern India became drier while Pakistan, northwestern India, and southern India got wetter. To determine whether these changes were due to natural variability or human interference (greenhouse gases or aerosols), climate scientists Massimo Bollasina, Yi Ming, and V. Ramaswamy of the Geophysical Fluid Dynamics Laboratory/NOAA in Princeton, New Jersey, compared the history of rainfall with simulations that singled out each climate "forcing" factor to observe its impact. Although greenhouse gases would have increased rainfall over north-central India, the aerosols, they found, caused the "very pronounced drying trend," Ming says. Here's why: Under normal conditions, the northern hemisphere receives more energy from the sun from June to September; that imbalance drives the ocean-atmosphere circulation that powers the monsoons. But atmospheric aerosols shaded the northern hemisphere relative to the southern hemisphere, altering the energy balance between the two-weakening the circulation and altering where the rain falls.
Gwen Noda

Polar Bears Rooted in Ireland - 0 views

  •  
    Polar Bears Rooted in Ireland Polar bears and brown bears were separate species by 110,000 years ago. But new genetic studies of fossils and modern bears have revealed some hanky-panky 45,000 years ago, when polar bears interbred with now-extinct Irish brown bears. Hybridization with brown bears is a concern today because declining sea ice cover is forcing polar bears to extend their range and come into contact with brown bears. To understand the implications of hybridization, Beth Shapiro, an evolutionary biologist at Pennsylvania State University, University Park, and her colleagues compared mitochondrial DNA from 8000-year-old polar bear fossils, modern samples of polar bears, and ancient Irish bear fossils. Figure "CREDIT: FOTOSEARCH (2)" Modern polar bear mitochondrial DNA was most similar to that of the extinct Irish brown bear, whereas extinct polar bears had different mitochondria. Thus modern polar bears come from Europe, not islands between Alaska and Siberia, as had been previously thought, the researchers reported in Current Biology. The finding shows that interbreeding occurred during past episodes of climate change didn't destroy a species. "The big question for conservation of polar bears is if hybridization occurs rapidly and in combination with other stressors, will that hybridization have more of a negative effect now than it did in the past," says Andrew Whiteley, a geneticist at the University of Massachusetts, Amherst. http://scim.ag/_polarbears
Gwen Noda

Three Historic Blowouts - 0 views

  •  
    Three Historic Blowouts 1. Lauren Schenkman Figure Mexico 1979 "CREDIT: NOAA" The decade from 1969 to 1979 witnessed three massive spills from offshore oil wells around the world. Here is how they compare in size and impact. IXTOC 1 The biggest well-related spill was triggered on 3 June 1979, when a lack of drilling mud allowed oil and gas to shoot up through the 3.6-km-deep IXTOC 1 exploratory well, about 80 km offshore in the southern Gulf of Mexico. The initial daily outflow of 30,000 barrels of oil was eventually reduced to 10,000 barrels. The well was finally capped more than 9 months later. Mexico's state-owned oil company, PEMEX, treated the approximately 3.5-million-barrel spill with dispersants. U.S. officials had a 2-month head start to reduce impacts to the Texas coastline. Figure North Sea 1977 "CREDIT: WALLY FONG/AP PHOTO" Ekofisk The first major spill in the North Sea resulted in the release of 202,000 barrels of oil about 250 km off the coast of Norway. The 22 April 1977 blowout caused oil to gush from an open pipe 20 m above the sea surface. The well was capped after a week. Between 30% and 40% of the spill evaporated almost immediately. Rough waters broke up the slick before it reached shore. Figure Santa Barbara 1969 "CREDIT: BETTMANN/CORBIS" Santa Barbara A blown well 1 km below the sea floor and 9 km off the coast of Santa Barbara, California, spewed out a total of 100,000 barrels of oil. The initial eruption occurred on 28 January 1969, and the well was capped by mud and cement on 7 February, but the pressure forced oil through sea floor fissures until December. The oil contaminated 65 km of coastline. At least 3700 birds are known to have died, and commercial fishing in the area was closed until April.
1 - 12 of 12
Showing 20 items per page