Skip to main content

Home/ COSEE-West/ Group items tagged central

Rss Feed Group items tagged

Gwen Noda

ScienceDirect.com - Earth-Science Reviews - Recognising ocean acidification in deep tim... - 0 views

  •  
    "Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary Sarah E. GreeneCorresponding author contact information, 1, E-mail the corresponding author, Rowan C. Martindale1, E-mail the corresponding author, Kathleen A. Ritterbush E-mail the corresponding author, David J. Bottjer E-mail the corresponding author, Frank A. Corsetti E-mail the corresponding author, William M. Berelson E-mail the corresponding author Department of Earth Sciences, University of Southern California, Los Angeles, California, USA 90089 Received 22 July 2011. Accepted 17 March 2012. Available online 5 April 2012. While demonstrating ocean acidification in the modern is relatively straightforward (measure increase in atmospheric CO2 and corresponding ocean chemistry change), identifying palaeo-ocean acidification is problematic. The crux of this problem is that the rock record is a constructive archive while ocean acidification is essentially a destructive (and/or inhibitory) phenomenon. This is exacerbated in deep time without the benefit of a deep ocean record. Here, we discuss the feasibility of, and potential criteria for, identifying an acidification event in deep time. Furthermore, we investigate the evidence for ocean acidification during the Triassic-Jurassic (T-J) boundary interval, an excellent test case because 1) it occurs in deep time, beyond the reach of deep sea drilling coverage; 2) a potential trigger for acidification is known; and 3) it is associated with one of the 'Big Five' mass extinctions which disproportionately affected modern-style invertebrates. Three main criteria suggest that acidification may have occurred across the T-J transition. 1) The eruption of the Central Atlantic Magmatic Province (CAMP) and the associated massive and rapid release of CO2 coincident with the end-Triassic mass extinction provide a suitable trigger for an acidification event (
Gwen Noda

NOAA awards grant to advance harmful algal bloom warnings to protect public and animal ... - 0 views

  •  
    Scientists researching harmful algal bloom "hot spots" off southern and central California have been awarded $821,673 for the first year of an anticipated 5-year $4,076,929 project to investigate methods that could provide early warning detection of the toxic blooms, also known as red tides. The research is being conducted in partnership with two U.S. Integrated Ocean Observing System partners - the Central and Northern California Ocean Observing System and the Southern California Coastal Ocean Observing System. The teams will combine the detection and monitoring of the toxic blooms with ocean models that can forecast ocean conditions, potentially leading to bloom predictions.
Gwen Noda

Aerosols Altered Asian Monsoons - 0 views

  •  
    Aerosols Altered Asian Monsoons Summer monsoons provide much of the water for farming on the Indian subcontinent, but the pattern of rain shifted dramatically during the last half of the 20th century. In a study appearing online 29 September in Science, researchers pin the blame on soot and other aerosols from human activities. From 1951 to 1999, central-northern India became drier while Pakistan, northwestern India, and southern India got wetter. To determine whether these changes were due to natural variability or human interference (greenhouse gases or aerosols), climate scientists Massimo Bollasina, Yi Ming, and V. Ramaswamy of the Geophysical Fluid Dynamics Laboratory/NOAA in Princeton, New Jersey, compared the history of rainfall with simulations that singled out each climate "forcing" factor to observe its impact. Although greenhouse gases would have increased rainfall over north-central India, the aerosols, they found, caused the "very pronounced drying trend," Ming says. Here's why: Under normal conditions, the northern hemisphere receives more energy from the sun from June to September; that imbalance drives the ocean-atmosphere circulation that powers the monsoons. But atmospheric aerosols shaded the northern hemisphere relative to the southern hemisphere, altering the energy balance between the two-weakening the circulation and altering where the rain falls.
Gwen Noda

Winds of Change - 0 views

  •  
    Winds of Change Jane Qiu Antarctica does not respond to global warming uniformly like a giant ice cube. Changing wind patterns are an unsung force shaping Antarctica's future. Retreating sea ice and stronger winds have caused seawater to mix more deeply, a process that churns sunlight-dependent phytoplankton into the ocean's depths. As a result, phytoplankton biomass has declined by 12% over the past 30 years. Higher on the food chain, that means fewer krill and fish larvae. These creatures are also getting hammered by the loss of sea ice, which hides them from predators. The complex interplay between air, sea, and ice has emerged as a central theme underlying climate change in Antarctica. Shifting wind patterns and corresponding ocean changes can explain climate responses across the continent.
Gwen Noda

Time to Adapt to a Warming World, But Where's the Science? - 0 views

  •  
    "Science 25 November 2011: Vol. 334 no. 6059 pp. 1052-1053 DOI: 10.1126/science.334.6059.1052 * News Focus Adaptation to Climate Change Adaptation to Climate Change Time to Adapt to a Warming World, But Where's the Science? 1. Richard A. Kerr With dangerous global warming seemingly inevitable, users of climate information-from water utilities to international aid workers-are turning to climate scientists for guidance. But usable knowledge is in short supply. Figure View larger version: * In this page * In a new window Adapt to that. Climate will change, but decision-makers want to know how, where, and when. "CREDIT: KOOS VAN DER LENDE/NEWSCOM" DENVER, COLORADO-The people who brought us the bad news about climate change are making an effort to help us figure out what to do about it. As climate scientists have shown, continuing to spew greenhouse gases into the atmosphere will surely bring sweeping changes to the world-changes that humans will find it difficult or impossible to adapt to. But beyond general warnings, there is another sort of vital climate research to be done, speakers told 1800 attendees at a meeting here last month. And so far, they warned, researchers have delivered precious little of the essential new science. At the meeting, subtitled "Climate Research in Service to Society,"* the new buzzword was "actionable": actionable science, actionable information, actionable knowledge. "There's an urgent need for actionable climate information based on sound science," said Ghassem Asrar, director of the World Climate Research Programme, the meeting's organizer based in Geneva, Switzerland. What's needed is not simply data but processed information that an engineer sizing a storm-water pipe to serve for the next 50 years or a farmer in Uganda considering irrigating his fields can use to make better decisions in a warming world. Researchers preparing for the next international climate assessment, due in 2013, delive
Gwen Noda

Galaxy Zoo Volunteers Share Pain and Glory of Research - 0 views

  •  
    Science 8 July 2011: Vol. 333 no. 6039 pp. 173-175 Galaxy Zoo Volunteers Share Pain and Glory of Research 1. Daniel Clery A project to "crowdsource" galactic classifications has paid off in ways the astronomers who started it never expected. Figure View larger version: * In this page * In a new window Space oddity. Greenish "voorwerp" spotted by a Dutch volunteer still intrigues scientists. "CREDIT: NASA, ESA, W. KEEL (UNIVERSITY OF ALABAMA), AND THE GALAXY ZOO TEAM" The automated surveys that are becoming increasingly common in astronomy are producing an embarrassment of riches for researchers. Projects such as the Sloan Digital Sky Survey (SDSS) are generating so much data that, in some cases, astronomers don't know what to do with them all. SDSS has compiled a list of more than 1 million galaxies. To glean information about galaxy evolution, however, astronomers need to know what type of galaxy each one is: spiral, barred spiral, elliptical, or something else. At present, the only reliable way to classify galaxies is to look at each one. But the SDSS list is so long that all the world's astronomers working together couldn't muster enough eyeballs for the task. Enter the "wisdom of crowds." An online effort called Galaxy Zoo, launched in 2007, set a standard for citizen-scientist participation projects. Zealous volunteers astonished the project's organizers by classifying the entire catalog years ahead of schedule. The results have brought real statistical rigor to a field used to samples too small to support firm conclusions. But that's not all. Buoyed by the curiosity and dedication of the volunteers, the Galaxy Zoo team went on to ask more-complicated classification questions that led to studies they hadn't thought possible. And in an online discussion forum on the Galaxy Zoo Web site, volunteers have pointed to anomalies that on closer inspection have turned out to be genuinely new astronomical objects. "I'm incredibly impres
1 - 18 of 18
Showing 20 items per page