Skip to main content

Home/ COSEE-West/ Group items tagged abundance

Rss Feed Group items tagged

Gwen Noda

Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen De... - 0 views

  •  
    "Published Online September 22 2011 Science 28 October 2011: Vol. 334 no. 6055 pp. 505-509 DOI: 10.1126/science.1206583 Report Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition Tae-Wook Kim1, Kitack Lee1,*, Raymond G. Najjar2, Hee-Dong Jeong3, Hae Jin Jeong4 + Author Affiliations 1School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 790−784, Korea. 2Department of Meteorology, The Pennsylvania State University, University Park, PA 16802, USA. 3East Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Gangneung, 210-861, Korea. 4School of Earth and Environmental Sciences, Seoul National University, Seoul, 151−747, Korea. ↵*To whom correspondence should be addressed. E-mail: ktl@postech.ac.kr Abstract The relative abundance of nitrate (N) over phosphorus (P) has increased over the period since 1980 in the marginal seas bordering the northwestern Pacific Ocean, located downstream of the populated and industrialized Asian continent. The increase in N availability within the study area was mainly driven by increasing N concentrations and was most likely due to deposition of pollutant nitrogen from atmospheric sources. Atmospheric nitrogen deposition had a high temporal correlation with N availability in the study area (r = 0.74 to 0.88), except in selected areas wherein riverine nitrogen load may be of equal importance. The increase in N availability caused by atmospheric deposition and riverine input has switched extensive parts of the study area from being N-limited to P-limited. "
Gwen Noda

Random Samples - 0 views

  •  
    Isles of Abundance Britain has taken another step toward designating the world's largest marine reserve around the Chagos Islands, a group of 55 coral protrusions in the Indian Ocean. The government announced the end of a 4-month public comment period on 5 March and is expected to reach a final decision by May. The Chagos contain half of the Indian Ocean's remaining healthy reefs. The waters are said to be among the cleanest on Earth, allowing corals to grow in deep water less vulnerable to global warming. The islands are located in the equatorial "tuna belt," which hosts what a Royal Zoological Society of London report called one of the "most exploited, badly enforced fisheries in the world." A total ban on fishing in the 544,000-square-kilometer zone, an area the size of France, would make it an even larger protected area than the current record-holder, the 360,000-km2 Papahanaumokuakea Marine National Monument in the northwestern Hawaiian Islands. The Pew Environment Group has spearheaded a 3-year campaign for creation of a Chagos reserve. It would be "literally an island of abundance in a sea of depletion," says Pew's Jay Nelson. The islands are uninhabited except for the U.S. Navy base on Diego Garcia. Some 1500 Chagossians were deported to Mauritius in the 1970s for military security.
Gwen Noda

The Carbon Cycle - 0 views

  •  
    The Carbon Cycle What Goes Around Comes Around by John Arthur Harrison, Ph.D. Carbon is the fourth most abundant element in the universe, and is absolutely essential to life on earth. In fact, carbon constitutes the very definition of life, as its presence or absence helps define whether a molecule is considered to be organic or inorganic. Every organism on Earth needs carbon either for structure, energy, or, as in the case of humans, for both. Discounting water, you are about half carbon. Additionally, carbon is found in forms as diverse as the gas carbon dioxide (CO2), and in solids like limestone (CaCO3), wood, plastic, diamonds, and graphite.
Gwen Noda

Eliminating Land Based Discharges of Marine Debris in California: A Plan of Action from... - 0 views

  •  
    Produced by: Plastic Debris, Rivers to Sea Project Algalita and California Coastal Commission Funding provided by the State Water Resources Control Board June 2006 pdf document, 91 pages Introduction - The California Marine Debris Action Plan of 1990 - A State Mandate to Eliminate Marine Debris is Necessary - The Plastic Debris, Rivers to Sea Project - The Action Plan - The Actions Recommended in this Plan - Process and Prioritization Part I: Marine Debris - Sources, Composition, and Quantities - What is Marine Debris? - Land versus Ocean Sources - Abundance of Plastic in the Marine Environment - Quantities of Plastic Debris Increasing Significantly in Oceans - Sources and Composition of Debris Found on Beaches - Trash and Debris in Stormwater and Urban Runoff - Other Research Characterizing Trash in Urban Runoff - Distribution and Composition of Marine Debris on California's Coast Part II: Marine Debris - Impacts - Ingestion and Entanglement - Ecosystem Impacts - Debris as a Transport Mechanism for Toxics and Invasive Species - Economic Impacts Part III: Current Efforts to Address Land-Based Discharges of Marine Debris - Federal Programs and Initiatives - State Programs and Initiatives - Regional Programs and Initiatives - Local Government Programs and Initiatives - National Public Interest Groups - California Public Interest Groups and Associations - Industry Initiatives
Gwen Noda

Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain - 0 views

  •  
    "Nitrogen (N2)-fixing microorganisms (diazotrophs) are an important source of biologically available fixed N in terrestrial and aquatic ecosystems and control the productivity of oligotrophic ocean ecosystems. We found that two major groups of unicellular N2-fixing cyanobacteria (UCYN) have distinct spatial distributions that differ from those of Trichodesmium, the N2-fixing cyanobacterium previously considered to be the most important contributor to open-ocean N2 fixation. The distributions and activity of the two UCYN groups were separated as a function of depth, temperature, and water column density structure along an 8000-kilometer transect in the South Pacific Ocean. UCYN group A can be found at high abundances at substantially higher latitudes and deeper in subsurface ocean waters than Trichodesmium. These findings have implications for the geographic extent and magnitude of basin-scale oceanic N2 fixation rates. "
Gwen Noda

Stock Assessment 101 Series: Part 1-Data Required for Assessing U.S. Fish Stocks :: NOA... - 0 views

  •  
    Stock Assessment 101 Series: Part 1-Data Required for Assessing U.S. Fish Stocks
1 - 7 of 7
Showing 20 items per page