Skip to main content

Home/ COSEE-West/ Group items tagged Indian Ocean

Rss Feed Group items tagged

Gwen Noda

Random Samples - 0 views

  •  
    Isles of Abundance Britain has taken another step toward designating the world's largest marine reserve around the Chagos Islands, a group of 55 coral protrusions in the Indian Ocean. The government announced the end of a 4-month public comment period on 5 March and is expected to reach a final decision by May. The Chagos contain half of the Indian Ocean's remaining healthy reefs. The waters are said to be among the cleanest on Earth, allowing corals to grow in deep water less vulnerable to global warming. The islands are located in the equatorial "tuna belt," which hosts what a Royal Zoological Society of London report called one of the "most exploited, badly enforced fisheries in the world." A total ban on fishing in the 544,000-square-kilometer zone, an area the size of France, would make it an even larger protected area than the current record-holder, the 360,000-km2 Papahanaumokuakea Marine National Monument in the northwestern Hawaiian Islands. The Pew Environment Group has spearheaded a 3-year campaign for creation of a Chagos reserve. It would be "literally an island of abundance in a sea of depletion," says Pew's Jay Nelson. The islands are uninhabited except for the U.S. Navy base on Diego Garcia. Some 1500 Chagossians were deported to Mauritius in the 1970s for military security.
Gwen Noda

Aerosols Altered Asian Monsoons - 0 views

  •  
    Aerosols Altered Asian Monsoons Summer monsoons provide much of the water for farming on the Indian subcontinent, but the pattern of rain shifted dramatically during the last half of the 20th century. In a study appearing online 29 September in Science, researchers pin the blame on soot and other aerosols from human activities. From 1951 to 1999, central-northern India became drier while Pakistan, northwestern India, and southern India got wetter. To determine whether these changes were due to natural variability or human interference (greenhouse gases or aerosols), climate scientists Massimo Bollasina, Yi Ming, and V. Ramaswamy of the Geophysical Fluid Dynamics Laboratory/NOAA in Princeton, New Jersey, compared the history of rainfall with simulations that singled out each climate "forcing" factor to observe its impact. Although greenhouse gases would have increased rainfall over north-central India, the aerosols, they found, caused the "very pronounced drying trend," Ming says. Here's why: Under normal conditions, the northern hemisphere receives more energy from the sun from June to September; that imbalance drives the ocean-atmosphere circulation that powers the monsoons. But atmospheric aerosols shaded the northern hemisphere relative to the southern hemisphere, altering the energy balance between the two-weakening the circulation and altering where the rain falls.
1 - 5 of 5
Showing 20 items per page