Skip to main content

Home/ Groups/ Common Core Standards Resources
anonymous

Teaching Channel: Videos, Lesson Plans and Other Resources for Teachers - 3 views

  •  
    Common Core video lesson vignettes of what CCSS look like in action
anonymous

Math_Standards/Summary_PD_CCSSMath.pdf - 2 views

  •  
    Summary of PD recommendations formal report (CCSS Math)
anonymous

Consortia Provide Preview of Common Assessments - 4 views

  • sample items being drafted for those exams offer early ideas of what lies ahead.
  • “What we are starting to see here are tests that really get at a deeper understanding on the part of students, not just superficial knowledge,” said Robert L. Linn, an assessment expert and professor emeritus of education at the University of Colorado at Boulder who reviewed a sampling of the consortia’s materials.
  • Mr. Linn predicted that even with sample items to guide them, vendors will find it tough to develop tasks and questions that fully reflect the aims of the two state groups
  • ...14 more annotations...
  • “Where the real difficulty comes up is when you actually develop the items,” he said. “It will be a challenge for vendors to come up with items that meet these specifications. They are used to writing items for state tests that do not get at this depth of knowledge.”
  • Comprehension, Not Guesswork
  • “To perform well on these kinds of assessment items, just having good test-taking skills will not be enough of an edge to perform well,” said Mr. Kaase, who now runs a Jackson-based consulting company that works with states and districts on testing, curriculum, and accountability issues.
  • Materials developed by PARCC, too, illustrate for vendors item types that require a grasp of the topic, said Mr. Kaase. One, for instance, asks 4th graders to plot the following numbers along a number line: 2, 5/4, 3x1/2, 3/4+3/4, and 2-1/10.
  • “You have to understand the meaning of the numbers and how they relate in order to answer this,” Mr. Kaase said.
  • Mr. Pack, who is a teacher-leader for PARCC, helping colleagues deepen their knowledge of the group’s work. “I was a little concerned at first blush, because they’re really complex. But they’re good math problems. They’re above the level of what we’re currently doing, but they’re attainable.”
  • He pointed to one illustrative example in PARCC’s materials that tries to gauge students’ fluency in division and multiplication. It offers five equations, such as 54÷9=24÷6, and asks 3rd graders to specify whether each is true or false.
  • “I like that it does multiple assessments in one item,” he said. “It asks kids to work each of those problems easily and be comfortable with it, which is what fluency is.”
  • PARCC expects to release sample items in English/language arts and math later this month, including prototypes developed under contract with the Institute for Learning at the University of Pittsburgh and the Charles A. Dana Center at the University of Texas at Austin.
  • Many milestones lie ahead before the consortia can deliver fully populated banks of test items. In the coming months, both groups will conduct sessions in which items are tried out with students and their feedback is obtained. Smarter
  • Both consortia will conduct trials next year before full-fledged field tests in spring 2014.
  • Even as sample items are crafted to help guide vendors on item-writing, the consortia and their partners caution that the item-development process is lengthy and full of revisions.
  • Jeffrey Nellhaus, PARCC’s assessment director, said he was acutely aware that the “field is hungry to see” how the goals of the common standards will be “made manifest” in assessment items, and is eager to examine the prototype items the consortium will get from the two research universities.
  • As officials from the Dana Center cautioned in an overview of the PARCC project, “Prototyping is for learning, and it can be messy.”
anonymous

Early Reaction to 'Publishers' Criteria' for Math Common Core - Curriculum Matters - Ed... - 2 views

  • "I really like the bit about visual design that isn't distracting or chaotic," Findell said. "I've opened too many textbooks that are like walking into a video arcade. ... You want the graphics there to support the mathematical ideas, rather than just being, 'Wow, what a cool picture.' Skip to the next page."
  • Special Populations Findell said "one of the most important contributions" of the publishers' criteria was clearly stating that instructional materials should be consistent with the common core's call to provide all students the opportunity to learn and meet the same standards. As the document explains, "Thus, an overarching criterion for materials and tools is that they provide supports for special populations such as students with disabilities, English-language learners, and gifted students." Findell told me: "We have an unfortunate history in this country of identifying some students as not yet ready for grade-level instruction and then giving them something less—often much less. In other words, we notice students who are behind, and we slow them down. We usually do it out of compassion, but the consequences are devastating for students." So he said a "crucial message" about common-core implementation is that all students receive grade-level instruction, even if some students need additional support.
Colleen Broderick

12 Must Read Articles on the Common Core | - 2 views

  •  
    Great collection for those implementing the common core - common core is not a curriculum
Colleen Broderick

The Totally Amazing Appendix A « Six Trait Gurus - 1 views

  •  
    Text types in beautiful, clear language
anonymous

2011_12_06_Gearing_Up - 1 views

  •  
    excellent outline of the k-8 PD topics in common core that will help guide districts in planning targeted PD for the transition to the common core state standards in mathematics
anonymous

The Common Core Math Standards : Education Next - 1 views

  • Are the Common Core math standards “fewer, higher, and clearer” than most state standards today?
  • The Fordham Institute reviewed them last year and found them so.
  • It does not say that Common Core standards are fewer
  • ...42 more annotations...
  • Fordham’s review does not unequivocally say the standards are higher, either. They may be higher than some state standards but they are certainly lower than the best of them
  • Nor are the Common Core standards necessarily clearer.
  • Andrew Porter, dean of the University of Pennsylvania’s Graduate School of Education
  • conclusion was stark: Those who hope that the Common Core standards represent greater focus for U.S. education will be disappointed by our answers. Only one of our criteria for measuring focus found that the Common Core standards are more focused than current state standards…Some state standards are much more focused and some much less focused than is the Common Core, and this is true for both subjects. We also used international benchmarking to judge the quality of the Common Core standards, and the results are surprising both for mathematics and for [ELA].… High-performing countries’ emphasis on “perform procedures” runs counter to the widespread call in the United States for a greater emphasis on higher-order cognitive demand.
  • with only somewhat less redundancy in the middle grades
  • There is much to criticize about them, and there are several sets of standards, including those in California, the District of Columbia, Florida, Indiana, and Washington, that are clearly better.
  • Where this gap is most obvious, and most important, is in laying the foundation for college readiness in mathematics early, by grade 6 or 7. Judging by state standards, few people see a connection between elementary school mathematics and college math, let alone really understand how the foundation is built.
  • et Common Core is vastly superior—not just a little bit better, but vastly superior—to the standards in more than 30 states.
  • the standards don’t rank in terms of quality in the middle 20 percent of state standards, but, instead, fall in the top 20 percent.
  • Fewer than 15 states are explicit about the need for students to know the single-digit number facts (think multiplication tables) to the point of instant recall. States love to have kids figure out many ways to add, subtract, multiply, and divide, but often leave off the capstone standard of fluency with the standard algorithms (traditional step-by-step procedures for the addition, subtraction, multiplication, and division of whole numbers).
  • only 15 states mention common denominators. Common Core does a pretty good job with arithmetic, even a very good job with fractions.
  • do the math standards resemble those recommended by the National Council of Teachers of Mathematics (NCTM)
  • There will always be people who think that calculators work just fine and there is no need to teach much arithmetic, thus making career decisions for 4th graders that the students should make for themselves in college. Downplaying the development of pencil and paper number sense might work for future shoppers, but doesn’t work for students headed for Science, Technology, Engineering, and Mathematics (STEM) fields.
  • There will always be the anti-memorization crowd who think that learning the multiplication facts to the point of instant recall is bad for a student, perhaps believing that it means students can no longer understand them. Of course this permanently slows students down, plus it requires students to think about 3rd-grade mathematics when they are trying to solve a college-level problem.
  • There will always be the standard algorithm deniers
  • Some seem to believe it is easier to teach “high-level critical thinking” than it is to teach the standard algorithms with understanding. The standard algorithms for adding, subtracting, multiplying, and dividing whole numbers are the only rich, powerful, beautiful theorems you can teach elementary school kids, and to deny kids these theorems is to leave kids unprepared. Avoiding hard mathematics with young students does not prepare them for hard mathematics when they are older.
  • You learn Mathematical Practices just like the name implies; you practice mathematics with content.
  • At present, it seems that the majority of people in power think the three pages of Mathematical Practices in Common Core, which they sometimes think is the “real” mathematics, are more important than the 75 pages of content standards, which they sometimes refer to as the “rote” mathematics
  • NCTM followed shortly with its 2006 Curriculum Focal Points, a document that finally focused on what mathematics is all about: mathematics. Since then, NCTM seems to have regressed, as evidenced by its 2009 publication Focus in High School Mathematics, a document that is full of high-minded prose yet contains little rigor or specificity.
  • The Common Core mathematics standards are grade-by-grade‒specific and hence are more detailed than the NCTM 2000 standards, but they do resemble them in setting their sights lower than our international competitors, by, for example, locking algebra into the high school curriculum.
  • And they contain inexplicable holes even when compared to the much shorter NCTM Curriculum Focal Points, the major one being the absence of fraction conversion among their multiple representations (simple, decimal, percent). Other puzzling omissions include geometry basics such as derivation of area of general triangles or the concept of pi. One can argue those can be inferred, but the same can be said regarding all those state standards we acknowledge as “bad”—that all those missing pieces “can be inferred.”
  • How do the Common Core math standards compare to those in use in the world’s highest-performing nations?
  • the Common Core standards are not on par with those of the highest-performing nations.
  • Professor R. James Milgram of Stanford, the only professional mathematician on the Common Core Validation Committee, wrote when he declined to sign off on the Common Core standards: This is where the problem with these standards is most marked. While the difference between these standards and those of the top states at the end of eighth grade is perhaps somewhat more than one year, the difference is more like two years when compared to the expectations of the high achieving countries—particularly most of the nations of East Asia.
  • Professor William McCallum, one of the three main writers of the Common Core mathematics standards, speaking at the annual conference of mathematics societies in 2010, said, While acknowledging the concerns about front-loading demands in early grades, [McCallum] said that the overall standards would not be too high, certainly not in comparison [with] other nations, including East Asia, where math education excels.
  • Jonathan Goodman, a professor of mathematics at the Courant Institute at New York University,
  • “The proposed Common Core standard is similar in earlier grades but has significantly lower expectations with respect to algebra and geometry than the published standards of other countries.”
  • The enrollment requirements of four-year state colleges overwhelmingly consist of at least three years of high school mathematics including algebra 1, algebra 2, and geometry, or beyond. Yet Common Core’s “college readiness” definition omits content typically considered part of algebra 2 (and geometry), such as complex numbers, vectors, trigonometry, polynomial identities, the Binomial Theorem, logarithms, logarithmic and exponential functions, composite and inverse functions, matrices, ellipses and hyperbolae, and a few more.
  • What should we make, then, of a recent study purporting to “validate” that Common Core standards indeed reflect college readiness?
  • Look at California’s standards for example. They are great standards and have been unchanged for over a decade, but many in math education hate them. They think they are all about rote mathematics, but I think such people have little understanding of mathematics.
  • We, in this country, are still not on the same page about what content is most important, even if everyone says they’ll take Common Core. Without a unified, concerted effort to teach real mathematics, there isn’t much chance of catching up.
  • In other countries, if you say “learn to multiply whole numbers,” no one questions how this should be done; students should learn and understand the standard algorithm. In the U.S., even if you say “learn to multiply whole numbers with the standard algorithm,” some people will declare wiggle room and try to avoid the standard algorithm.
  • What, then, are your main areas of disagreement?
  • Ze’ev refers to Andrew Porter’s work to support his argument that Common Core lacks focus.
  • he says that 39.55 percent of grades 3‒6 coarse-grained topics for the states are on Number Sense and Operations, but Common Core gets 55.47 percent. To me, that says that Common Core focuses on arithmetic in grades where arithmetic should be the focus, and that the states did not focus on arithmetic.
  • If Common Core is mediocre, then mediocre is being set at a high standard. There are many states that set a very different, and much lower, standard for mediocre.
  • I would take these interview comments with a grain of salt. Everyone is an expert.
  • I can tell you that Ze’ev had not taught and I don’t think has spent any amount of time in the classroom. I served on a committee with Ze’ev evaluating questions for the California Standards Test.
  • Ze’ev is correct. I thought this long ago. It’s too vague and there is too much wiggle room. The wiggling will be in the downward direction. In fact, they don’t have to wiggle very much. Everyday Math will add a few more units and Math Boxes about standard algorithms, and then they will continue to trust the spiral.
  • BY FAR the majority of the population did not “get” math when it was taught using the methods and approaches these pompous mathematicians propose. Like so many uninformed “experts” they think that if we just teach math the way they learned it every things will be smooth sailing. But we taught math their way for a very, very long time and we failed. And that’s when the world hd very little technology, far less problems to solve, and agriculture and manufacturing ruled the world. But the world has changed fellas. And we now have scientific research that debunks the didactic, direct, one-way approach to learning math. For one thing we’ve learned that the brain doesn’t learn for the long term the way they propose. Their methods work to pass tests in the short run, but do little to instill knowledge retention and application of the mathematics in solving real problems. If their approaches to learning math worked, we wouldn’t have a very large segment of the adult population, including a lot of elementary teachers, saying things like, I never got math, I hate math, math is too hard.
  • Thankfully, we’re finally moving toward an educational system that honors the mathematical practices on which the CCSS were developed.
  • Bottom line… We need to ensure that our students are getting a solid foundation at the early grades to ensure that they are able to engross themselves in deeper, more abstract problems in the future. This, I believe will be enhanced by the common core although I would agree that the standards themselves do not fix the issues.
‹ Previous 21 - 40 Next › Last »
Showing 20 items per page