Skip to main content

Home/ change11/ Group items tagged intelligence

Rss Feed Group items tagged

Lone Guldbrandt Tønnesen

#Change11 Social Media Literacies and Multiple Intelligences | Learner Weblog - 2 views

  •  The use of Personal Learning Environment (PLE) might better align with this MI way of thinking, where the learner would decide which of those capacities he or she has would be of interests for development.
  •  
    Great point in the end about learning managment systems
Yukon syl

MIT - Collective Intelligence - Communication Forum - 2 views

  •  
    "A conversation about the theory and practice of collective intelligence, with emphasis on Wikipedia, other instances of aggregated intellectual work and on recent innovative applications in business. "
  •  
    although this focuses in a different way than this week's position paper, the notion of collective information, learning, sharing,etc. has been around for a while. Going to follow up and see what some of these speakers have written about in the meantime (since 2007)
Allan Quartly

FlipSnack | WebTool Mashup - 0 views

  •  
    Blooms Taxonomy vs Intelligences - in a mashup of Web 2.0
Lone Guldbrandt Tønnesen

Stanford's open courses raise questions about true value of elite education | Inside Hi... - 4 views

  • Search form |  Follow us: Get Daily E-mail Thursday, December 15, 2011 Home NewsAssessment and Accountability Health Professions Retirement Issues Students and Violence Surveys Technology Adjuncts Admissions Books and Publishing Community Colleges Diversity For-Profit Higher Ed International Religious Colleges Student Aid and Loans Teaching and Learning ViewsIntellectual Affairs The Devil's Workshop Technology Blog UAlma Mater College Ready Writing menu-3276 menu-path-taxonomy-term-835 od
  • This made Stanford the latest of a handful of elite American universities to pull back the curtain on their vaunted courses, joining the Massachusetts Institute of Technology’s OpenCourseWare project, Yale University’s Open Yale Courses and the University of California at Berkeley’s Webcast.Berkeley, among others. The difference with the Stanford experiment is that students are not only able to view the course materials and tune into recorded lectures for CS221: Introduction to Artificial Intelligence; they are also invited to take in-class quizzes, submit homework assignments, and gather for virtual office hours with the course’s two rock star instructors — Peter Norvig, a research executive at Google who used to build robots for NASA, and Sebastian Thrun, a professor of computer science at Stanford who also works for Google, designing cars that drive themselves. (M.I.T., Yale and Berkeley simply make the course materials freely available, without offering the opportunity to interact with the professors or submit assignments to be graded.)
  • MOOCs question the value of teaching as an economic value point.”
  • ...5 more annotations...
  • Based on the success of Norvig and Thrun’s experiment, the university’s computer science department is planning to broadcast eight additional courses for free in the spring, most focusing on high-level concepts that require participants already to have a pretty good command of math and science.
  • It raises the question: Whose certification matters, for what purposes?
  • For one, the professors can only evaluate non-enrolled students via assessments that can be graded automatically.
  • it can be difficult to assess skills without being able to administer project-based assignments
  • With a player like Stanford doing something like this, they’re bringing attention to the possibilities of the Web for expanding open education
Allan Quartly

Teaching in Social and Technological Networks « Connectivism - 6 views

  • How can we achieve clear outcomes through distributed means?
  • How can we achieve learning targets when the educator is no longer able to control the actions of learners?
  • A curatorial teacher acknowledges the autonomy of learners, yet understands the frustration of exploring unknown territories without a map.
  • ...17 more annotations...
  • A curator is an expert learner. Instead of dispensing knowledge, he creates spaces in which knowledge can be created, explored, and connected.
  • Learning is an eliminative process. By determining what doesn’t belong, a learner develops and focuses his understanding of a topic. The teacher assists in the process by providing one stream of filtered information. The student is then faced with making nuanced selections based on the multiple information streams he encounters. The singular filter of the teacher has morphed into numerous information streams, each filtered according to different perspectives and world views.
  • Course content is similarly fragmented. The textbook is now augmented with YouTube videos, online articles, simulations, Second Life builds, virtual museums, Diigo content trails, StumpleUpon reflections, and so on.
  • Fragmentation of content and conversation is about to disrupt this well-ordered view of learning. Educators and universities are beginning to realize that they no longer have the control they once (thought they) did.
  • However, in order for education to work within the larger structure of integrated societal systems, clear outcomes are still needed.
  • How can we achieve clear outcomes through distributed means? How can we achieve learning targets when the educator is no longer able to control the actions of learners?
  • Thoughts, ideas, or messages that the teacher amplifies will generally have a greater probability of being seen by course participants.
  • Each RT amplifies the message much like an electronic amplifier increases the amplitude of audio or video transmitters.
  • A curatorial teacher acknowledges the autonomy of learners, yet understands the frustration of exploring unknown territories without a map. A curator is an expert learner. Instead of dispensing knowledge, he creates spaces in which knowledge can be created, explored, and connected.
  • In CCK08/09, Stephen and I produced a daily newsletter where we highlighted discussions, concepts, and resources that we felt were important. As the course progressed, many students stated they found this to be a valuable resource -a centering point of sorts.
  • Today’s social web is no different – we find our way through active exploration. Designers can aid the wayfinding process through consistency of design and functionality across various tools, but ultimately, it is the responsibility of the individual to click/fail/recoup and continue.
  • Fortunately, the experience of wayfinding is now augmented by social systems. Social structures are filters. As a learner grows (and prunes) her personal networks, she also develops an effective means to filter abundance. The network becomes a cognitive agent in this instance – helping the learner to make sense of complex subject areas by relying not only on her own reading and resource exploration, but by permitting her social network to filter resources and draw attention to important topics. In order for these networks to work effectively, learners must be conscious of the need for diversity and should include nodes that offer critical or antagonistic perspectives on all topic areas. Sensemaking in complex environments is a social process.
  • After all, why should we do the heavy cognitive work when technology is uniquely suited to analyzing and generating patterns?
  • I’d like a learning system that functions along the lines of RescueTime – actively monitoring what I’m doing – but then offers suggestions of what I should (or could) be doing additionally. Or a system that is aware of my email exchanges over the last several years and can provide relevant information based on the development of my thinking and work. With the rise of social media, and with it the attention organizations pay to how their brand is being represented, monitoring services such as Viral Heat are promising. Imagine a course where the fragmented conversations and content are analyzed (monitored) through a similar service. Instead of creating a structure of the course in advance of the students starting (the current model), course structure emerges through numerous fragmented interactions. “Intelligence” is applied after the content and interactions start, not before. This is basically what Google did for the web – instead of fully defined and meta-described resources in a database, organized according to subject areas (i.e. Yahoo at the time), intelligence was applied at the point of search. Aggregation should do the same – reveal the content and conversation structure of the course as it unfolds, rather than defining it in advance.
  • Filtering resources is an important educator role, but as noted already, effective filtering can be done through a combination of wayfinding, social sensemaking, and aggregation. But expertise still matters. Educators often have years or decades of experience in a field. As such, they are familiar with many of the concepts, pitfalls, confusions, and distractions that learners are likely to encounter. As should be evident by now, the educator is an important agent in networked learning. Instead of being the sole or dominant filter of information, he now shares this task with other methods and individuals.
  • By determining what doesn’t belong, a learner develops and focuses his understanding of a topic. The teacher assists in the process by providing one stream of filtered information. The student is then faced with making nuanced selections based on the multiple information streams he encounters. The singular filter of the teacher has morphed into numerous information streams, each filtered according to different perspectives and world views.
  • Given that coherence and lucidity are key to understanding our world, how do educators teach in networks? For educators, control is being replaced with influence. Instead of controlling a classroom, a teacher now influences or shapes a network.
  •  
    Unpacking the role of the teacher in connectivism
anonymous

Why You Must Define the So-What of Learning - 6 views

  • If employees or students believe learning occurs only in an annual classroom course, amphitheater lectures or the annual array of mandatory e-learning offerings, how does that unleash the collective intelligence hidden throughout the workforce? An organization’s definition of learning must include formal, informal and social modalities to ensure employees are being counted on to contribute their intellect, ideas and knowledge back to the ecosystem.
  • Let’s first start with by defining learning, such that employees and students are aware they don’t have to wait for a course to learn. They don’t have to search the LMS as the only viable way in which to increase their knowledge.
Tai Arnold

Learner Weblog | Education and Learning weblog - 2 views

    • Tai Arnold
       
      Re Emotional Intelligence
  • I am also unsure whether the affective domains are addressed in the theory, or included in George proposed principles of Connectivism or Stephen’s proposed properties of networks.
tim mcnamara

1.1. Connecting learning objects to instructional design theory: A definition, a metaph... - 9 views

  • The purpose of this chapter is to introduce an instructional technology concept known commonly as the “learning object.” First a review of the literature is presented as groundwork for a working definition of the term “learning object.” A brief discussion of instructional design theory is followed by an attempt to connect the learning objects approach to existing instructional design theory, and the general lack of such connective efforts is contrasted with the financial and technical activity generated by the learning objects notion.
  • What is a learning object?
  • An instructional technology called “learning objects” (LTSC, 2000a) currently leads other candidates for the position of technology of choice in the next generation of instructional design, development, and delivery, due to its potential for reusability, generativity, adaptability, and scalability (Hodgins, 2000; Urdan & Weggen, 2000; Gibbons, Nelson, & Richards, 2000).
  • ...48 more annotations...
  • grounded in the object-oriented paradigm of computer science.
  • build small (relative to the size of an entire course) instructional components that can be reused a number of times in different learning contexts
  • Moreover, those who incorporate learning objects can collaborate on and benefit immediately from new versions. These are significant differences between learning objects and other instructional media that have existed previously.
  • Supporting the notion of small, reusable chunks of instructional media, Reigeluth and Nelson (1997) suggest that when teachers first gain access to instructional materials, they often break the materials down into their constituent parts.
  • if instructors received instructional resources as individual components, this initial step of decomposition could be bypassed
  • The Learning Technology Standards Committee chose the term “learning objects” (possibly from Wayne Hodgins’ 1994 use of the term in the title of the CedMA working group called “Learning Architectures, API’s, and Learning Objects”)
  • provided a working definition
  • Learning Objects are defined here as any entity, digital or non-digital, which can be used, re-used or referenced during technology supported learning. Examples of technology-supported learning include computer-based training systems, interactive learning environments, intelligent computer-aided instruction systems, distance learning systems, and collaborative learning environments. Examples of Learning Objects include multimedia content, instructional content, learning objectives, instructional software and software tools, and persons, organizations, or events referenced during technology supported learning (LOM, 2000).
  • The proliferation of definitions for the term “learning object” makes communication confusing and difficult.
  • It would seem that there are almost as many definitions of the term as there are people employing it.
  • In addition to the various definitions of the term “learning object,” other terms that imply the general intention to take an object-oriented approach to computer-assisted instruction confuse the issue further.
  • Depressingly, while each of these is something different, they all conform to the Learning Technology Standards Committee’s  “learning object” definition. An in depth discussion of the precise meanings of each of these terms would not add to the main point of this discussion: the field is still struggling to come to grips with the question, “What is a learning object?”
  • At the same time, the creation of yet another term only seems to add to the confusion. While the creation of a satisfactory definition of the term learning object will probably consume the better part of the author’s career, a working definition must be presented before the discussion can proceed.
  • Therefore, this chapter will define a learning object as “any digital resource that can be reused to support learning.”
  • This definition includes anything that can be delivered across the network on demand, be it large or small.
  • This definition of learning object, “any digital resource that can be reused to support learning,” is proposed for two reasons.
  • The definition adopted for this chapter emphasizes the purposeful use (by either an instructional designer, an instructor, or a student) of these objects to support learning
  • Second, the proposed definition is based on the LTSC definition (and defines a proper subset of learning objects as defined by the LTSC), making issues of compatibility of learning object as defined within this chapter and learning object as defined by the LTSC explicit
  • With that compatibility made explicit, the proposed definition differs from the LTSC definition in two important ways.
  • First, the definition explicitly rejects non-digital
  • The definition also drops the phrase "technology supported" which is now implicit, because all learning objects are digital.
  • Second, the phrase "to support" has been substituted in place of "during" in the LTSC definition. Use of an object "during" learning doesn't connect its use to learning
  • First, the definition is sufficiently narrow to define a reasonably homogeneous set of things: reusable digital resources. At the same time, the definition is broad enough to include the estimated 15 terabytes of information available on the publicly accessible Internet (Internet Newsroom, 1999).
  • Armed with a working definition of the term learning object, the discussion of the instructional use of learning objects can proceed.
  • Instructional design theory and learning objects
  • Reigeluth
  • [I]nstructional design theories are design oriented, they describe methods of instruction and the situations in which those methods should be used, the methods can be broken into simpler component methods, and the methods are probabilistic. (p. 7).s11 {margin-left:0; line-height:2.400000; text-indent:36;}
  • Because the very definition of “theory” in some fields is “descriptive,” design theories are commonly confused with other types of theories that they are not, including learning theory and curriculum theory (Reigeluth, 1999a).
  • The following discussion takes a step in this direction, by recasting two of the largest issues in the learning objects area – combination and granularity – in instructional design terms
  • Combination
  • there is astonishingly little conversation around the instructional design implications of learning objects.
  • item (d) in the Learning Objects Metadata Working Group’s PAR (LOM, 2000) reads as follows:
  • To enable computer agents to automatically and dynamically compose personalized lessons for an individual learner
  • at this point a brief discussion of metadata, the focus of the Learning Object Metadata Working Group’s efforts, is necessary.
  • Metadata, literally “data about data,” is descriptive information about a resource
  • he Learning Objects Metadata Working Group is working to create metadata for learning objects (such as Title, Author, Version, Format, etc.) so that people and computers will be able to find objects by searching
  • ​The problem with 7(d) arose when people began to actually consider what it meant for a computer to “automatically and dynamically compose personalized lessons.”
  • his meant taking individual learning objects and combining them in a way that made instructional sense, or in instructional design terminology, “sequencing” the learning objects.
  • The problem was that no instructional design information was included in the metadata specified by the current version of the Learning Objects Metadata Working Group standard.
  • ​The lack of instructional design discussion at this standards-setting level of conversation about learning objects is disturbing, because it might indicate a trend.
  • Once technology or software that does not support an instructionally-grounded approach to learning object sequencing is completed and shipped to the average teacher, why would he or she respond any differently
  • Wiley (1999) called this “the new CAI – ‘Clip Art Instruction’” (p. 6).
  • Discussion of the problem of combining learning objects in terms of “sequencing” leads to another connection between learning objects and instructional design theory.
  • Granularity
  • The most difficult problem facing the designers of learning objects is that of “granularity” (Wiley, et al., 1999).
  • How big should a learning object be?
  • Reuse is the core of the learning object notion, as generativity, adaptivity, and other –ivities are all facilitated by the property of reuse.
  • designating every individual graphic and paragraph of text within a curriculum a “learning object” can be prohibitively expensive
  •  
    Chapter 1
1 - 9 of 9
Showing 20 items per page