Skip to main content

Home/ Chem 109H Fall08/ Group items tagged protein

Rss Feed Group items tagged

Becky Kriger

Polypeptides and Proteins - 0 views

  • A peptide (def) is two or more amino acids joined together by peptide bonds, and a polypeptide (def) is a chain of many amino acids. A protein contains one or more polypeptides. Therefore, proteins (def) are long chains of amino acids held together by peptide bonds.
  • The secondary structure (def) of the protein is due to hydrogen bonds that form between the oxygen atom of one amino acid and the nitrogen atom of another. This gives the protein or polypeptide the two-dimensional form of an alpha-helix or a beta-pleated sheet (see Fig. 4).
  • Amino acids (def) are the building blocks for proteins. All amino acids contain an amino or NH2 group and a carboxyl (acid) or COOH group. There are 20 different amino acids commonly found in proteins
  • ...5 more annotations...
  • To form polypeptides and proteins, amino acids are joined together by peptide bonds (def), in which the amino or NH2 of one amino acid bonds to the carboxyl (acid) or COOH group of another amino acid as shown in (see Fig. 2). Animation showing the formation of a peptide bond.
  • The actual order of the amino acids in the protein is called its primary structure (def) (see Fig. 3) and is determined by DNA.
  • it is commonly said that the order of deoxyribonucleotide bases (def) in a gene determines the amino acid sequence of a particular protein. Since certain amino acids can interact with other amino acids in the same protein, this primary structure ultimately determines the final shape and therefore the chemical and physical properties of the protein.
  • In globular proteins such as enzymes, the long chain of amino acids becomes folded into a three-dimensional functional shape or tertiary structure (def).
  • In some cases, such as with antibody molecules and hemoglobin, several polypeptides may bond together to form a quaternary structure (def) (see Fig 6).
Becky Kriger

Biodegradable plastics made from corn - 0 views

  • Biodegradable plastics have already been created by using proteins from plants such as corn or soy. But they were not strong enough to be used by the industry. Now, researchers at Iowa State University have found a way to reinforce these biorenewable plastics. They are using high-powered ultrasonics to reinforce the plastics with nanoclays.
  • But how biodegradable plastics can be made with corn proteins? Grewell keeps a plastic model of a molecule looking like a ball. That's about the shape of a soy or corn protein […] Then he unfolded the model into a long, straight loop. That's what happens when researchers add some glycerin — a byproduct of biodiesel production – and some water to the molecule.
  • Nanoclays are clays from the smectite family which have a unique morphology: they form platelets about 1 nanometer thick and 100 nanometers in diameter. Below is an example of the structure of one nanoclay raw material named montmorillonite.
  • ...1 more annotation...
  • Apparently, it's difficult to use these nanoclays. So the researchers turned to "high-powered ultrasonics — high-frequency sound waves too high for human hearing – to separate and disperse the platelets."
Becky Kriger

The Science of Nylon - Spinning the Elements - 0 views

  • Nylon was developed as a synthetic substitute for silk.
  • Silk is a protein. Like all proteins, it is a polypeptide, and it has a structure something like this:
Becky Kriger

Polypeptides - 0 views

  • Polypeptides are chains of amino acids. Proteins are made up of one or more polypeptide molecules.
  • One end of every polypeptide, called the amino terminal or N-terminal, has a free amino group. The other end, with its free carboxyl group, is called the carboxyl terminal or C-terminal.
  • he sequence of amino acids in a polypeptide is dictated by the codons in the messenger RNA (mRNA) molecules from which the polypeptide was translated. The sequence of codons in the mRNA was, in turn, dictated by the sequence of codons in the DNA from which the mRNA was transcribed. The schematic below shows the N-terminal at the upper left and the C-terminal at the lower right.
Becky Kriger

Biopolymers and Bioplastics - 0 views

  • Biopolymers are polymers which are present in, or created by, living organisms. These include polymers from renewable resources that can be polymerized to create bioplastics. Bioplastics are plastics manufactured using biopolymers, and are biodegradable.
  • There are two main types of biopolymers: those that come from living organisms; and, those which need to be polymerized but come from renewable resources. Both types are used in the production of bioplastics
  • Biopolymer Natural Source What is it? Cellulose Wood, cotton, corn, wheat, and others This polymer is made up of glucose. It is the main component of plant cell walls. Soy protein Soybeans Protein which naturally occurs in the soy plant. Starch Corn, potatoes, wheat, tapioca, and others This polymer is one way carbohydrates are stored in plant tissue. It is a polymer made up of glucose. It is not found in animal tissues. Polyesters Bacteria These polyesters are created through naturally occurring chemical reactions that are carried out by certain types of bacteria.
  • ...9 more annotations...
  • Biopolymer Natural Source What is it? Lactic Acid Beets, corn, potatoes, and others Produced through fermentation of sugar feedstocks, such as beets, and by converting starch in corn, potatoes, or other starch sources. It is polymerized to produce polylactic acid -- a polymer that is used to produce plastic. Triglycerides Vegetable oils These form a large part of the storage lipids found in plant and animal cells. Vegetable oils are one possible source of triglycerides that can be polymerized into plastics.
  • Using Fermentation to Produce Plastics Fermentation, used for hundreds of years by humans, is even more powerful when coupled with new biotechnology techniques.
  • Today, fermentation can be carried out with genetically engineered microorganisms, specially designed for the conditions under which fermentation takes place,
  • Fermentation, in fact, is the process by which bacteria can be used to create polyesters. Bacteria called Ralstonia eutropha are used to do this. The bacteria use the sugar of harvested plants, such as corn, to fuel their cellular processes. The by-product of these cellular processes is the polymer.
  • Lactic acid is fermented from sugar, much like the process used to directly manufacture polymers by bacteria. However, in this fermentation process, the final product of fermentation is lactic acid, rather than a polymer. After the lactic acid is produced, it is converted to polylactic acid using traditional polymerization processes.
  • Plants are becoming factories for the production of plastics. Researchers created a Arabidopis thaliana plant through genetic engineering. The plant contains the enzymes used by bacteria to create plastics. Bacteria create the plastic through the conversion of sunlight into energy. The researchers have transferred the gene that codes for this enzyme into the plant, as a result the plant produces plastic through its cellular processes. The plant is harvested and the plastic is extracted from it using a solvent. The liquid resulting from this process is distilled to separate the solvent from the plastic.
  • Currently, fossil fuel is still used as an energy source during the production process. This has raised questions by some regarding how much fossil fuel is actually saved by manufacturing bioplastics. Only a few processes have emerged that actually use less energy in the production process.
  • Energy use is not the only concern when it comes to biopolymers and bioplastics. There are also concerns about how to balance the need to grow plants for food, and the need to grow plants for use as raw materials. Agricultural space needs to be shared. Researchers are looking into creating a plant that can be used for food, but also as feedstock for plastic production.
  • Biopolymers and bioplastics are the main components in creating a sustainable plastics industry. These products reduce the dependence on non-renewable fossil fuels, and are easily biodegradable. Together, this greatly limits the environmental impacts of plastic use and manufacture. Also, characteristics such as being biodegradable make plastics more acceptable for long term use by society. It is likely that in the long term, these products will mean plastics will remain affordable, even as fossil fuel reserves diminish.
Becky Kriger

Chemistry - Condensation polymer - 0 views

  • Condensation polymers are any class of polymer formed through a condensation reaction, as opposed to addition polymers which involve the reaction of unsaturated monomers. Types of condensation polymer include polyamides and polyesters.
  • The carboxylic acids and amines link to form peptide bonds, also known as amide groups. Proteins are condensation polymers made from amino acid monomers. Carbohydrates are also condensation polymers made from sugar monomers such as glucose and galactose.
  • Condensation Polymers, unlike Addition polymers are bio-degradable. The peptide or ester bonds between monomers can be hydrolysed by acid catalysts or bacterial enzymes breaking the polymer chain into smaller pieces.
Becky Kriger

Plastics - 0 views

  • lastics are synthetic materials, which means that they are artificial, or manufactured.
  • he building blocks for making plastics are small organic molecules - molecules that contain carbon along with other substances. They generally come from oil (petroleum) or natural gas, but they can also come from other organic materials such as wood fibers, corn, or banana peels! Each of these small molecules is known as a monomer ("one part") because it's capable of joining with other monomers to form very long molecule chains called polymers ("many parts")
  • 1. Crude oil, the unprocessed oil that comes out of the ground, contains hundreds of different hydrocarbons, as well as small amounts of other materials. The job of an oil refinery is to separate these materials and also to break down (or "crack) large hydrocarbons into smaller ones. 2. A petrochemical plant receives refined oil containing the small monomers they need and creates polymers through chemical reactions. 3. A plastics factory buys the end products of a petrochemical plant - polymers in the form of resins - introduces additives to modify or obtain desirable properties, then molds or otherwise forms the final plastic products.
  • ...13 more annotations...
  • One such molecule is the ethylene monomer, the starting point for a variety of plastics. Ethylene is a small hydrocarbon consisting of four hydrogen atoms and two carbon atoms.
  • Polymerization is often started by combining the monomers through the use of a catalyst - a substance that aids a chemical reaction without undergoing any permanent chemical change itself. During the chemical reaction, hundreds or thousands of monomers combine to form a polymer chain, and millions of polymer chains are formed at the same time. The mass of polymers that results is known as a resin.
  • Polyethylene is made from just ethylene monomers - but it's also possible to create polymers from two or more different monomers. You can make hundreds of different polymers depending on which monomers and catalysts you use.
  • Cellulose, the basic component of plant cell walls is a polymer, and so are all the proteins produced in your body and the proteins you eat. Another famous example of a polymer is DNA - the long molecule in the nuclei of your cells that carries all the genetic information about you.
  • lastics are classified into two categories according to what happens to them when they're heated to high temperatures. Thermoplastics keep their plastic properties: They melt when heated, then harden again when cooled. Thermosets, on the other hand, are permanently "set" once they're initially formed and can't be melted. If they're exposed to enough heat, they'll crack or become charred.
  • Thermoplastics have long, linear polymer chains that are only weakly chemically bonded, or connected, to each other. When a thermoplastic object is heated, these bonds are easily broken, which makes the polymers able to glide past each other like strands of freshly cooked spaghetti. That's why thermoplastics can readily be remolded. The weak bonds between the polymers reform when the plastic object is cooled, which enable it to keep its new shape.
  • The linear chains are crosslinked - strongly chemically bonded. This prevents a thermoplastic object from being melted and reformed.
  • The most common method for making plastics is molding. To make a thermoplastic object, plastic granules known as resin are forced into a mold under high heat and pressure. When the material has cooled down, the mold is opened and the plastic object is complete. When making plastic fibers, the molten resin is sprayed through a strainer with tiny holes.
  • Thermosets are produced in two steps: 1. Linear polymers are formed. 2. The linear polymers are forced into a mold where "curing" takes place. This may involve heating, pressure, and the addition of catalysts. During this process, a cross-linked or networked structure forms, creating a permanently hard object that is no longer meltable or moldable.
  • For most applications, the ideal polymer is a long, straight chain with a highly regular molecular structure. Early synthetic polymers, however, often exhibited odd little branches and other irregularities. In the 1950s, German chemist Karl Ziegler (1898–1973) discovered that an entirely different type of catalyst - a combination of aluminum compounds with other metallic compounds - could solve some of these annoying problems and increase the length of a polymer chain, producing superior plastics.
  • olymers often have short side chains, which can occur on either side of the main chain. If side branches occur randomly to the left or right, the polymer has an irregular structure. Italian chemist Giulio Natta (1903–1979) discovered that some Ziegler catalysts led to a uniform structure in which all the side branches are on the same side.
  • Firstly, there is an environmental impact from plastics production; however the plastics industry has worked hard to reduce energy and water use, as well as waste generation during the manufacturing processes.
  • Secondly, during their lives, plastic products can save energy and reduce carbon dioxide emissions in a variety of ways. For example, they're lightweight, so transporting them is energy efficient. And plastic parts in cars and airplanes reduce the weight of those vehicles and therefore less energy is needed to operate them and lower emissions are created.
Becky Kriger

Polysaccharides: Their Structure and Function - 0 views

  • Polysaccharides are the complex carbohydrates. They are made up of chains of monosaccharides (the sugars) which are linked together by glycosidic bonds, which are formed by the condensation reaction
  • Cellulose is a major component of plant cell walls. It is an unbranched polymer with about ten thousand glucose units per chain. Hydroxyl groups (-OH) project out from each chain, forming hydrogen bonds with neighbouring chains which creates a rigid cross-linking between the chains, making cellulose the strong support material that it is.
  • Chitin is closely related in structure to cellulose, also being an unbranched polysaccharide. However, instead of the hydroxyl groups (-OH), the chains have the following structure –NH.CO.CH3 replacing it. Large amounts of chitin is found in the cuticles of arthropods, with smaller amounts being found in sponges, molluscs and annelids.
  • ...6 more annotations...
  • Polysaccharides make ideal storage molecules for energy for a number of reasons; a) they are large, this makes them insoluble in water and therefore they exert no osmotic or chemical effect on the cell; b) they fold into compact shapes; c) they are easily converted into the required sugars when needed.
  • Glycogen is a branched polysaccharide found in nearly all animal cells and in certain protozoa and algae.
  • In humans and other vertebrates it is principally stored in the liver and muscles and is the main form of stored carbohydrate in the body, acting as a reservoir of glucose
  • Starch is similar to glycogen, however it is found in plant cells, protists and certain bacteria.
  • The starch granules are made up of two polysaccharides, amylose and amylopectin. Amylose is an unbranched molecule made up of several thousand glucose units, coiled helically into a more compact shape. Amylopectin is also compact but has a branched structure and is made up of twice as many glucose units as amylose.
  • For example, peptidoglycans, which are a combination of protein and polysaccharide and are found in the cell wall of certain bacteria. Glycolipids, a combination of polysaccharides and lipids are found in the cell membrane.
Becky Kriger

Polysaccharides - Chemistry Encyclopedia - 0 views

  • Polysaccharides are long polymers of monosaccharides and their derivatives. Unlike proteins or nucleic acids, these polymers can be either linear or branched, and they can contain only one type of monosaccharide (homopolysaccharides), or more than one (heteropolysaccharides)
  • Starch is a homopolysaccharide and has two forms: amylopectin and α-amylose. In nature, starch is approximately 10 to 30 percent α-amylose.
  • Starch is the main energy reserve in plants; glycogen is the main energy reserve in animals
  • ...10 more annotations...
  • In contrast to amylopectin, which comprises 70 to 90 percent of natural starch, α-amylose is a branching polysaccharide.
  • Branches occur at every twelve to thirty residues along a chain of α (1→4) linked glucoses. As a result, amylopectin has one reducing end and many nonreducing ends.
  • Amylopectin and α-amylose are broken down by the enzyme amylase. In animals, salivary α-amylase begins the digestion process in the mouth. Pancreatic α-amylase continues the process in the intestine.
  • Glycogen is the energy storage carbohydrate in animals. Glycogen is found mainly in the liver (where it is responsible for up to 10 percent of liver mass) and skeletal muscle (1 to 2 percent of skeletal muscle mass)
  • However, glycogen branches more abundantly than amylopectin, with branches at every eight to twelve residues. As a result, it has many more nonreducing ends. Glycogen is broken down at these nonreducing ends by the enzyme glycogen phosphorylase to release glucose for energy.
  • The primary structural homopolysaccharides are cellulose and chitin. Cellulose, a major component of plant cell walls, is the most abundant natural polymer on Earth.
  • Like α-amylose, cellulose is a linear polysaccharide composed entirely of glucose. However, in cellulose the glucose residues occur in β(1→4) linkage rather than α (1→4) (see Figure 1).
  • In addition, individual cellulose strands can form hydrogen bonds with one another to provide additional strength. Most animals, including humans, lack the enzymes necessary to dissolve α(1→4) linkages and so cannot digest cellulose
  • The animals that can (such as ruminants) do so via a symbiosis with bacteria that secrete cellulose-degrading enzymes.
  • The second most abundant polymer on Earth is chitin. Chitin comprises much of the exoskeletons of crustaceans, insects, and spiders, as well as the cell walls of fungi. Structurally, chitin is very similar to cellulose, except that its basic monosaccharide is N-acetylglucosamine
Becky Kriger

Chemical of the Week -- Polymers - 0 views

  •  Polymers are substances whose molecules have high molar masses and are composed of a large number of repeating units. There are both naturally occurring and synthetic polymers. Among naturally occurring polymers are proteins, starches, cellulose, and latex. Synthetic polymers are produced commercially on a very large scale and have a wide range of properties and uses. The materials commonly called plastics are all synthetic polymers.
  •    Polymers are formed by chemical reactions in which a large number of molecules called monomers are joined sequentially, forming a chain.
  • If all atoms in the monomers are incorporated into the polymer, the polymer is called an addition polymer. If some of the atoms of the monomers are released into small molecules, such as water, the polymer is called a condensation polymer.
  • ...27 more annotations...
  • Polyethylene terephthalate (PET), or polyethylene terephthalic ester (PETE), is a condensation polymer produced from the monomers ethylene glycol, HOCH2CH2OH, a dialcohol, and dimethyl terephthalate, CH3O2C–C6H4–CO2CH3, a diester. By the process of transesterification, these monomers form ester linkages between them, yielding a polyester
  • PETE fibers are manufactured under the trade names of Dacron and Fortrel.
  • Pleats and creases can be permanently heat set in fabrics containing polyester fibers, so-called permanent press fabrics. PETE can also be formed into transparent sheets and castings.
  • Transparent 2-liter carbonated beverage bottles are made from PETE.
  • ne form of PETE is the hardest known polymer and is used in eyeglass lenses.
  •      Polyethylene is perhaps the simplest polymer, composed of chains of repeating –CH2– units. It is produced by the addition polymerization of ethylene, CH2=CH2 (ethene)
  • HDPE is hard, tough, and resilient. Most HDPE is used in the manufacture of containers, such as milk bottles and laundry detergent jugs.
  • LDPE is relatively soft, and most of it is used in the production of plastic films, such as those used in sandwich bags.
  • Polymerization of vinyl chloride, CH2=CHCl (chloroethene), produces a polymer similar to polyethylene, but having chlorine atoms at alternate carbon atoms on the chain.
  • About two-thirds of the PVC produced annually is used in the manufacture of pipe. It is also used in the production of “vinyl” siding for houses and clear plastic bottles.
  • is used to form flexible articles such as raincoats and shower curtains.
  • This polymer is produced by the addition polymerization of propylene, CH2=CHCH3 (propene). Its molecular structure is similar to that of polyethylene, but has a methyl group (–CH3) on alternate carbon atoms of the chain.
  • olypropylene is used extensively in the automotive industry for interior trim, such as instrument panels, and in food packaging, such as yogurt containers. It is formed into fibers of very low absorbance and high stain resistance, used in clothing and home furnishings, especially carpeting.
  • Styrene, CH2=CH–C6H5, polymerizes readily to form polystyrene (PS), a hard, highly transparent polymer.
  • A large portion of production goes into packaging. The thin, rigid, transparent containers in which fresh foods, such as salads, are packaged are made from polystyrene. Polystyrene is readily foamed or formed into beads. These foams and beads are excellent thermal insulators and are used to produce home insulation and containers for hot foods. Styrofoam is a trade name for foamed polystyrene.
  • eflon is a trade name of polytetrafluoroethylene, PTFE. It is formed by the addition polymerization of tetrafluoroethylene, CF2=CF2 (tetrafluoroethene). PTFE is distinguished by its complete resistance to attack by virtually all chemicals and by its slippery surface. It maintains its physical properties over a large temperature range, -270° to 385°C. These properties make it especially useful for components that must operate under harsh chemical conditions and at temperature extremes. Its most familiar household use is as a coating on cooking utensils.
  • his important class of polymers is formed by the addition polymerization of an diisocyanate (whose molecules contain two –NCO groups) and a dialcohol (two –OH groups).
  • Polyurethane is spun into elastic fibers, called spandex, and sold under the trade name Lycra. Polyurethane can also be foamed. Soft polyurethane foams are used in upholstery, and hard foams are used structurally in light aircraft wings and sail boards.
  • Polyamides are a group of condensation polymers commonly known as nylon. Nylon is made from two monomers, one a dichloride and the other a diamine.
  • Nylon can be readily formed into fibers that are strong and long wearing, making them well suited for use in carpeting, upholstery fabric, tire cords, brushes, and turf for athletic fields. Nylon is also formed into rods, bars, and sheets that are easily formed and machined.
  • Polyacrylamide is a condensation polymer with an unusual and useful property.
  • This produces a network of polymer chains, rather like a tiny sponge. The free, unlinked amide groups, because they contain –NH2 groups, can form hydrogen bonds with water. This gives the tiny cross linked sponges a great affinity for water. Polyacrylamide can absorb many times its mass in water. T
  • his property is useful in a variety of applications, such as in diapers and in potting soil. The polyacrylamide will release the absorbed water if a substance that interferes with hydrogen bonding is added. Ionic substances, such as salt, cause polyacrylamide to release its absorbed water.
  • Over the past few decades, the use of polymers in disposable consumer goods has grown tremendously. This growth is proving to be taxing on the waste disposal system, consuming a large fraction of available landfill space.
  • To help sort wastes by type of polymer, most disposable polymeric goods are labeled with a recycling code: three arrows around a number above the polymer's acronym. These are intended to help consumers separate the waste polymers according to type before disposing of them. In the city of Madison, currently only type 1 (PETE) and type 2 (HDPE) polymers are being recycled – see below. The recycling of polymers is not a closed loop, where a material is reformed into new products repeatedly, such as in the case with aluminum. Most polymeric materials are recycled only once, and the product made of recycled polymer is discarded after use
  • General Rules Remove and discard all lids or caps. Rinse all containers. Remove and discard sprayer tops. CRUSH all plastic bottles to save space. No 5 gallon pails. No containers with metal handles.
  • What can be Recycled?Plastic Code Number Recyclable Containers Soda Bottles Water Bottles Juice Bottles Cooking Oil Bottles Soap/Detergent Bottles Shampoo Bottles Clear Liquor Bottles Food Jars (Peanut Butter etc.) Plastic Code Number Recyclable Containers Milk Bottles Water Bottles Juice Bottles Cooking Oil Containers Windshield Washer Fluid Bottles Shampoo Bottles Butter/Margarine Tubs Cottage Cheese Containers Ice Cream Containers Without Metal Handles Baby Wipe Containers Do NOT Recycle This Plastic 1. Automotive Product Containers Including: Motor Oil Bottles Anti-Freeze Containers Gasoline and Oil Additive Bottles 2. Brown Liquor Bottles 3. All Containers Marked With The Following Codes:            
1 - 10 of 10
Showing 20 items per page