Skip to main content

Home/ beyondwebct/ Group items tagged activity

Rss Feed Group items tagged

37More

Convenience, Communications, and Control: How Students Use Technology | Resources | EDU... - 0 views

  • They are characterized as preferring teamwork, experiential activities, and the use of technology
  • Doing is more important than knowing, and learning is accomplished through trial and error as opposed to a logical and rule-based approach.2 Similarly, Paul Hagner found that these students not only possess the skills necessary to use these new communication forms, but there is an ever increasing expectation on their part that these new communication paths be used
  • Much of the work to date, while interesting and compelling, is intuitive and largely based on qualitative data and observation.
  • ...34 more annotations...
  • There is an inexorable trend among college students to universal ownership, mobility, and access to technology.
  • Students were asked about the applications they used on their electronic devices. They reported that they use technology first for educational purposes, followed by communication.
    • Barbara Lindsey
       
      All self-reported. Would have been powerful if could have actually tracked a representative sample and compared actual use with reported use.
  • presentation software was driven primarily by the requirements of the students' major and the curriculum.
  • Communications and entertainment are very much related to gender and age.
  • From student interviews, a picture emerged of student technology use driven by the demands of the major and the classes that students take. Seniors reported spending more time overall on a computer than do freshmen, and they reported greater use of a computer at a place of employment. Seniors spent more hours on the computer each week in support of their educational activities and also more time on more advanced applications—spreadsheets, presentations, and graphics.
  • Confirming what parents suspect, students with the lowest grade point averages (GPAs) spend significantly more time playing computer games; students with the highest GPAs spend more hours weekly using the computer in support of classroom activities. At the University of Minnesota, Crookston, students spent the most hours on the computer in support of classroom activities. This likely reflects the deliberate design of the curriculum to use a laptop extensively. In summary, the curriculum's technology requirements are major motivators for students to learn to use specialized software.
  • The interviews indicated that students are skilled with basic office suite applications but tend to know just enough technology functionality to accomplish their work; they have less in-depth application knowledge or problem solving skills.
  • According to McEuen, student technology skills can be likened to writing skills: Students come to college knowing how to write, but they are not developed writers. The analogy holds true for information technology, and McEuen suggested that colleges and universities approach information technology in the same way they approach writing.6
  • he major requires the development of higher-level skill sets with particular applications.
    • Barbara Lindsey
       
      Not really quantitative--self-reported data back by selected qualitative interviews
  • The comparative literature on student IT skill self-assessment suggests that students overrate their skills; freshmen overrate their skills more than seniors, and men overrate their skills more than women.7 Our data supports these conclusions. Judy Doherty, director of the Student Technologies Resource Group at Colgate University, remarked on student skill assessment, "Students state in their job applications that they are good if not very good, but when tested their skills are average to poor, and they need a lot of training."8
  • Mary Jane Smetanka of the Minneapolis–St. Paul Star Tribune reported that some students are so conditioned by punch-a-button problem solving on computers that they approach problems with a scattershot impulsiveness instead of methodically working them through. In turn, this leads to problem-solving difficulties.
  • We expected to find that the Net Generation student prefers classes that use technology. What we found instead is a bell curve with a preference for a moderate use of technology in the classroom (see Figure 1).
    • Barbara Lindsey
       
      More information needs to be given to find out why--may be tool and method not engaging.
  • It is not surprising that if technology is used well by the instructor, students will come to appreciate its benefits.
  • A student's major was also an important predictor of preferences for technology in the classroom (see Table 3), with engineering students having the highest preference for technology in the classroom (67.8 percent), followed by business students (64.3 percent).
  • Humanities 7.7% 47.9% 40.2
  • he highest scores were given to improved communications, followed by factors related to the management of classroom activities. Lower impact activities had to do with comprehension of classroom materials (complex concepts).
  • I spend more time engaged in course activities in those courses that require me to use technology.
  • The instructors' use of technology in my classes has increased my interest in the subject matter. 3.25 Classes that use information technology are more likely to focus on real-world tasks and examples.
  • Interestingly, students do not feel that use of information technology in classes greatly increases the amount of time engaged with course activities (3.22 mean).12 This is in direct contrast to faculty perceptions reported in an earlier study, where 65 percent of faculty reported they perceived that students spend more time engaged with course materials
  • Only 12.7 percent said the most valuable benefit was improved learning; 3.7 percent perceived no benefit whatsoever. Note that students could only select one response, so more than 12.7 percent may have felt learning was improved, but it was not ranked highest. These findings compare favorably with a study done by Douglas Havelka at the University of Miami in Oxford, Ohio, who identified the top six benefits of the current implementation of IT as improving work efficiency, affecting the way people behave, improving communications, making life more convenient, saving time, and improving learning ability.14
    • Barbara Lindsey
       
      Would have been good to know exactly what kinds of technologies were meant here.
  • Our data suggest that we are at best at the cusp of technologies being employed to improve learning.
  • The interactive features least used by faculty were the features that students indicated contributed the most to their learning.
  • he students in this study called our attention to performance by noting an uneven diffusion of innovation using this technology. This may be due, in part, to faculty or student skill. It may also be due to a lack of institutional recognition of innovation, especially as the successful use of course management systems affects or does not affect faculty tenure, promotion, and merit decisions
  • we found that many of the students most skilled in the use of technology had mixed feelings about technology in the classroom.
  • What we found was that many necessary skills had to be learned at the college or university and that the motivation for doing so was very much tied to the requirements of the curriculum. Similarly, the students in our survey had not gained the necessary skills to use technology in support of academic work outside the classroom. We found a significant need for further training in the use of information technology in support of learning and problem-solving skills.
  • Course management systems were used most by both faculty and students for communication of information and administrative activities and much less in support of learning.
  • In 1997, Michael Hooker proclaimed, "higher education is on the brink of a revolution." Hooker went on to note that two of the greatest challenges our institutions face are those of "harnessing the power of digital technology and responding to the information revolution."18 Hooker and many others, however, did not anticipate the likelihood that higher education's learning revolution would be a journey of a thousand miles rather than a discrete event. Indeed, a study of learning's last great revolution—the invention of moveable type—reveals, too, a revolution conducted over centuries leading to the emergence of a publishing industry, intellectual property rights law, the augmentation of customized lectures with textbooks, and so forth.
  • Both the ECAR study on faculty use of course management systems and this study of student experiences with information technology concluded that, while information technology is indeed making important inroads into classroom and learning activities, to date the effects are largely in the convenience of postsecondary teaching and learning and do not yet constitute a "learning revolution." This should not surprise us. The invention of moveable type enhanced, nearly immediately, access to published information and reduced the time needed to produce new publications. This invention did not itself change literacy levels, teaching styles, learning styles, or other key markers of a learning revolution. These changes, while catalyzed by the new technology, depended on slower social changes to institutions. I believe that is what we are witnessing in higher education today.
  • The institutions chosen represent a nonrepresentative mix of the different types of higher education institution in the United States, in terms of Carnegie class as well as location, source of funding, and levels of technology emphasis. Note, however, that we consider our findings to be instructive rather than conclusive of student experiences at different types of Carnegie institutions.
  • Qualitative data were collected by means of focus groups and individual interviews. We interviewed undergraduate students, administrators, and individuals identified as experts in the field of student technology use in the classroom. Student focus groups and interviews of administrators were conducted at six of the thirteen schools participating in the study.
23More

Jean Lave, Etienne Wenger and communities of practice - 1 views

  • Supposing learning is social and comes largely from of our experience of participating in daily life? It was this thought that formed the basis of a significant rethinking of learning theory in the late 1980s and early 1990s by two researchers from very different disciplines - Jean Lave and Etienne Wenger. Their model of situated learning proposed that learning involved a process of engagement in a 'community of practice'. 
  • When looking closely at everyday activity, she has argued, it is clear that 'learning is ubiquitous in ongoing activity, though often unrecognized as such' (Lave 1993: 5).
  • Communities of practice are formed by people who engage in a process of collective learning in a shared domain of human endeavour: a tribe learning to survive, a band of artists seeking new forms of expression, a group of engineers working on similar problems, a clique of pupils defining their identity in the school, a network of surgeons exploring novel techniques, a gathering of first-time managers helping each other cope. In a nutshell: Communities of practice are groups of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. (Wenger circa 2007)
    • Barbara Lindsey
       
      How many courses have you yourself taken that incorporate this definition of CoP as one of its goals? 
  • ...18 more annotations...
  • Over time, this collective learning results in practices that reflect both the pursuit of our enterprises and the attendant social relations. These practices are thus the property of a kind of community created over time by the sustained pursuit of a shared enterprise. It makes sense, therefore to call these kinds of communities communities of practice. (Wenger 1998: 45)
  • Rather than looking to learning as the acquisition of certain forms of knowledge, Jean Lave and Etienne Wenger have tried to place it in social relationships – situations of co-participation.
  • The fact that they are organizing around some particular area of knowledge and activity gives members a sense of joint enterprise and identity. For a community of practice to function it needs to generate and appropriate a shared repertoire of ideas, commitments and memories. It also needs to develop various resources such as tools, documents, routines, vocabulary and symbols that in some way carry the accumulated knowledge of the community.
  • The interactions involved, and the ability to undertake larger or more complex activities and projects though cooperation, bind people together and help to facilitate relationship and trust
  • The characteristics of communities of practice According to Etienne Wenger (c 2007), three elements are crucial in distinguishing a community of practice from other groups and communities: The domain. A community of practice is is something more than a club of friends or a network of connections between people. 'It has an identity defined by a shared domain of interest. Membership therefore implies a commitment to the domain, and therefore a shared competence that distinguishes members from other people' (op. cit.). The community. 'In pursuing their interest in their domain, members engage in joint activities and discussions, help each other, and share information. They build relationships that enable them to learn from each other' (op. cit.). The practice. 'Members of a community of practice are practitioners. They develop a shared repertoire of resources: experiences, stories, tools, ways of addressing recurring problems—in short a shared practice. This takes time and sustained interaction' (op. cit.).
    • Barbara Lindsey
       
      What are your thoughts on the importance of these three domains? Are they important in a course? In a degree program? As part of your professional practice?
  • Initially people have to join communities and learn at the periphery. The things they are involved in, the tasks they do may be less key to the community than others.
  • One of the implications for schools, as Barbara Rogoff and her colleagues suggest is that they must prioritize 'instruction that builds on children's interests in a collaborative way'. Such schools need also to be places where 'learning activities are planned by children as well as adults, and where parents and teachers not only foster children's learning but also learn from their own involvement with children' (2001: 3). Their example in this area have particular force as they are derived from actual school practice.
  • It not so much that learners acquire structures or models to understand the world, but they participate in frameworks that that have structure. Learning involves participation in a community of practice. And that participation 'refers not just to local events of engagement in certain activities with certain people, but to a more encompassing process of being active participants in the practices of social communities and constructing identities in relation to these communities' (Wenger 1999: 4).
  • What is more, and in contrast with learning as internalization, ‘learning as increasing participation in communities of practice concerns the whole person acting in the world’ (Lave and Wenger 1991: 49). The focus is on the ways in which learning is ‘an evolving, continuously renewed set of relations’ (ibid.: 50). In other words, this is a relational view of the person and learning (see the discussion of selfhood).
  • 'the purpose is not to learn from talk as a substitute for legitimate peripheral participation; it is to learn to talk as a key to legitimate peripheral participation'. This orientation has the definite advantage of drawing attention to the need to understand knowledge and learning in context. However, situated learning depends on two claims: It makes no sense to talk of knowledge that is decontextualized, abstract or general. New knowledge and learning are properly conceived as being located in communities of practice (Tennant 1997: 77).
  • There is a risk, as Jean Lave and Etienne Wenger acknowledge, of romanticizing communities of practice.
  • 'In their eagerness to debunk testing, formal education and formal accreditation, they do not analyse how their omission [of a range of questions and issues] affects power relations, access, public knowledge and public accountability' (Tennant 1997: 79).
  • Perhaps the most helpful of these explorations is that of Barbara Rogoff and her colleagues (2001). They examine the work of an innovative school in Salt Lake City and how teachers, students and parents were able to work together to develop an approach to schooling based around the principle that learning 'occurs through interested participation with other learners'.
  • Learning is in the relationships between people. As McDermott (in Murphy 1999:17) puts it: Learning traditionally gets measured as on the assumption that it is a possession of individuals that can be found inside their heads… [Here] learning is in the relationships between people. Learning is in the conditions that bring people together and organize a point of contact that allows for particular pieces of information to take on a relevance; without the points of contact, without the system of relevancies, there is not learning, and there is little memory. Learning does not belong to individual persons, but to the various conversations of which they are a part.
  • Learning is, thus, not seen as the acquisition of knowledge by individuals so much as a process of social participation. The nature of the situation impacts significantly on the process.
  • learning involves a deepening process of participation in a community of practice
  • Acknowledging that communities of practice affect performance is important in part because of their potential to overcome the inherent problems of a slow-moving traditional hierarchy in a fast-moving virtual economy. Communities also appear to be an effective way for organizations to handle unstructured problems and to share knowledge outside of the traditional structural boundaries. In addition, the community concept is acknowledged to be a means of developing and maintaining long-term organizational memory. These outcomes are an important, yet often unrecognized, supplement to the value that individual members of a community obtain in the form of enriched learning and higher motivation to apply what they learn. (Lesser and Storck 2001)
  • Educators need to reflect on their understanding of what constitutes knowledge and practice. Perhaps one of the most important things to grasp here is the extent to which education involves informed and committed action.
32More

Learning Spaces | EDUCAUSE - 0 views

  • Net Gen students are facile at multitasking
    • Barbara Lindsey
       
      The research shows that no one can multitask effectively... See John Medina and Brain Rules, for example.
  • Workers anticipated having a single profession for the duration of their working lives. Education was based on a factory-like, "one size fits all" model. Talent was developed by weeding out those who could not do well in a monochromatic learning environment.
    • Barbara Lindsey
       
      Also part and parcel of hegemonic educational practices which served to reinforce the existing social and economic paradigm.
  • Knowing now means using a well-organized set of facts to find new information and to solve novel problems. In 1900, learning consisted largely of memorization; today it relies chiefly on understanding.
  • ...25 more annotations...
  • learners construct knowledge by understanding new information building on their current understanding and expertise. Constructivism contradicts the idea that learning is the transmission of content to a passive receiver. Instead, it views learning as an active process, always based on the learner's current understanding or intellectual paradigm. Knowledge is constructed by assimilating new information into the learner's knowledge paradigm. A learner does not come to a classroom or a course Web site with a mind that is a tabula rasa, a blank slate. Each learner arrives at a learning "site" with some preexisting level of understanding.
  • Learning science research also highlights the importance of learner engagement, or as the American Psychological Association describes it, intentional learning.1 This means that learners must have a "metaperspective" from which to view and assess their own learning, which is often referred to as metacognition.2 An active learning environment provides the opportunity to assess one's own learning, enabling learners to make decisions about the course, as well as reflect on and assess their progress. In the past, the measure of learning was the final grade (a summative measure). But a final grade is merely a measure of the student's performance on tests. It does not measure the learning that did—or did not—take place. To encourage learning, summative testing or assessments must be combined with formative assessments. Formative assessment is not directly associated with the final grade; it helps learners understand their learning and make decisions about next steps based on that understanding.
  • research indicating that learning is encouraged when it includes social components such as debate or direct engagement with peers and experts. Learning is strengthened through social interactions, interpersonal relations, and communication with others.
  • Research indicates that learners need to be active with respect to their own learning process and assessment. Net Gen students' goal and achievement orientation comes into play here: that achievement focus can be directed toward quizzes and exercises that assist learners in evaluating their progress toward learning goals.
  • Obviously not all forms of learning must be social or team-based. In a variety of learning contexts, individual work is important. It may well be that Net Gen students' strengths are also their weaknesses. The expectation for fast-paced, rapidly shifting interaction coupled with a relatively short attention span may be counterproductive in many learning contexts. Repetition and steady, patient practice—key to some forms of mastery—may prove difficult for Net Gen students. Designing courses for them necessitates balancing these strengths and weaknesses.
  • We should not neglect the informal for the formal, or assume that Net Gen students somehow will figure out the virtual space on their own. We should connect what happens in the classroom with what happens in informal and virtual spaces.
  • Simply installing wireless access points and fresh carpeting isn't enough if done in isolation; such improvements pay real dividends only if they are in concert with the institution's overall teaching and learning objectives. It is the vision that generates the design principles that will, in turn, be used to make key decisions about how learning spaces are configured.
  • The vision and design principles should emphasize the options students have as active participants in the learning process. Design principles should include terms such as analyze, create, criticize, debate, present, and classify—all directed at what the space enables the students to do. For example, students should be able to present materials to the class. Outside class, they should have access to applications and materials that directly support analysis of data, text, and other media. Forums for discussion and critical debate, both real and virtual, are key to encouraging learning and will be looked for by Net Gen students.
  • Learning spaces should accommodate the use of as many kinds of materials as possible and enable the display of and access to those materials by all participants. Learning space needs to provide the participants—instructors and students alike—with interactive tools that enable exploration, probing, and examination. This might include a robust set of applications installed on the computer that controls the room's displays, as well as a set of communication tools. Since the process of examination and debate leads to discovery and the construction of new knowledge, it could be important to equip spaces with devices that can capture classroom discussion and debate, which can be distributed to all participants for future reference and study.
  • the end of the class meeting marks a transition from one learning mode to another.
  • This lecture hall is of relatively recent vintage; its seats and paired tables make it much easier to deploy and use her "tools," which include printouts of the day's reading, as well as a small laptop computer. Her fellow students are doing likewise. Each of them is using some device to access the course's Web site—some with laptops, others with tablet computers, still others with handheld computers. Using wireless connections, they all access the course's Web site and navigate to the site's "voting" page.
  • a "magic wand," a radio-frequency controller that enables her to operate her computer—as well as many of the classroom's functions—wirelessly, from any point in the room. She can capture anything she writes on the blackboard and make it available to her students on the course Web site. Freed from needing to take extensive notes, the students are able to participate more fully in the class discussion. Finally, the professor is carrying a small recorder that captures her lecture, digitizes the audio, and uploads it to the course Web site for the students to review when they prepare for finals.
  • Sandra launches the classroom's screen sharing application. Within a few seconds, her computer's screen is projected on the room's main screen. The class discussion focuses on this diagram, and the professor, using a virtual pencil, is able to make notes on the diagram. The diagram and notes are captured and placed on the class Web site for review.
  • Soon the debate gets stuck; the students can't resolve the issue. The professor goes to the podium, types briefly, and then asks the students to go to a URL to see a question and to choose the answer they feel is correct. The students access the Web page from laptops, handhelds, or wireless IP-based phones. In two minutes they have completed the poll and submitted their responses. The results are quickly tabulated and displayed. The wide diversity of opinion surprises everyone. The professor reframes the issue, without giving the answer, and the students continue to discuss it. She repeats the poll; this time there is more agreement among the students, enabling her to move the discussion forward.
    • Barbara Lindsey
       
      Could you see being able to do this? Would this work for you?
  • She goes to the podium computer and clicks on a few links, and soon a videoconferencing session is displayed on the right-hand screen. She has arranged to have a colleague of hers "drop in" on the class to discuss a point that is in the colleague's particular area of expertise. The class has a conversation with the expert, who is at large research institution more than 500 miles away. Students listen to the expert's comments and are able to pose questions using one of the three cordless microphones available to the class. On the left-hand screen, the visiting professor shows some images and charts that help explain the concepts under discussion.
  • the other students in her class have signed up for most of the slots, conferring with friends using chat programs to ensure that they sign up for the same lab slots.
  • The discussion pocket is the college's term for a small, curved space with a table and bench to accommodate a meeting of four or five people. Found outside the newer classrooms, they are handy for informal, spontaneous discussions. Sandra's group moves into the pocket and for the next 15 minutes continue their "spill over" discussion of the class.
    • Barbara Lindsey
       
      How does this change perceptions of when and where learning begins and ends?
  • hey are able to have an audio chat; Sandra's friend is in her dorm room, and Sandra is in a remote corner of the library where conversation will not disturb others. As their discussion progresses, they go to the course's Web site and launch the virtual whiteboard to diagram some concepts. They develop a conceptual diagram—drawing, erasing, and revising it until they agree the diagram is correct. They both download a copy. Sandra volunteers to work on polishing the diagram and will leave a copy of the final diagram in her share folder in her online portfolio "locker
  • The underlying theme remains the same, however: cultivating learning practices consistent with learning theory and aligned with the habits and expectations of Net Gen students
  • For most higher education institutions, the lecture hall will not disappear; the challenge is to develop a new generation of lecture hall, one that enables Net Gen students and faculty to engage in enlivened, more interactive experiences. If the lecture hall is integrated with other spaces—physically as well as virtually—it will enable participants to sustain the momentum from the class session into other learning contexts. The goal is not to do away with the traditional classroom, but rather to reinvent and to integrate it with the other learning spaces, moving toward a single learning environment.
  • Learning theory is central to any consideration of learning spaces; colleges and universities cannot afford to invest in "fads" tailored to the Net Gen student that might not meet the needs of the next generation.
  • For example, start with the Net Gen students' focus on goals and achievement. That achievement orientation ties to learning theory's emphasis on metacognition, where learners assess their progress and make active decisions to achieve learning goals. Learning space design could support this by providing contact with people who can provide feedback: tutors, consultants, and faculty. This could, in turn, be supported in the IT environment by making formative self-tests available, as well as an online portfolio, which would afford students the opportunity to assess their overall academic progress.
  • As institutions create an anywhere, anytime IT infrastructure, opportunities arise to tear down silos and replace them with a more ubiquitous learning environment. Using laptops and other networked devices, students and faculty are increasingly able to carry their entire working environment with them. To capitalize on this, campus organizations must work collaboratively to create a more integrated work environment for the students and faculty, one that better serves the mobile Net Gen students as well as a faculty faced with the initial influx of these students into their ranks
  • One of the key variables is the institution itself. Learning spaces are institutional in scope—their implementation involves the institution's culture, tradition, and mission.
  • The starting point for rethinking learning spaces to support Net Gen students begins with an underlying vision for the learning activities these spaces should support. This vision should be informed by learning theory, as well as by recognition of the characteristics of the students and faculty who use these spaces.
8More

Consensus: Podcasting Has No 'Inherent' Pedagogic Value -- Campus Technology - 1 views

  • "Podcasting does not contain any inherent value. It is only valuable inasmuch as it helps the instructor and students reach their educational goals, by facilitating thoughtful, engaging learning activities that are designed to work in support of those goals."
    • Barbara Lindsey
       
      You are on a job interview. You've been asked if and how you would use podcasting with your students. How would you respond?
    • Inas Ayyoub
       
      As a language teacher , I would highly be interested in using podcasting with my students. The point here comes to not only ask students to download certain podcasts to repeat words and have an all time accessable materials to improve pronunciation and study vocabs. The ability to link what students listen to on the podcasts with post activities to be performed in the classroom that help them even go beyond what that podcast has to offer, is one key to do that. So, using podcasting hould be highly planned and integrated in a way that serves our desired outcomes that will lead at the end to empower students to create or add podcasts that serve that as well.
    • Barbara Lindsey
       
      Inas-this is a wonderful example of extending the learning outside the classroom and then bringing it back into the classroom to reinforce and advance students' competencies. If you were on an interview, you might want to give a specific example. Could you think of one?
    • Celeste Arrieta
       
      ...and how the tool is connected to the class goal so it can be meaningful for the learning experience. Personally, I used them frequently as "realia" sources to develop other activities.
    • Celeste Arrieta
       
      I can't find my sticky notes for this web site. I did it 3 times. If you can see any of them, please let me know. Thanks
  • ...1 more annotation...
  • "The answer to that question depends entirely on the educational context, including goals and appropriate learning activities, and on how the tool is implemented,"
    • Celeste Arrieta
       
      ...and how the tool is connected to the class goal so it can be meaningful for the learning experience. Personally, I used them frequently as "realia" sources to develop other activities.
1More

How We Made An Excellent Speaking Activity Even Better | Larry Ferlazzo's Websites of t... - 0 views

  •  
    A great way to scaffold a speaking activity for language learners.
12More

createthefuture - The Future of Learning 10 Years On - 0 views

  • The purpose of educational institutions, therefore, is not merely to create and distribute learning opportunities and resources, but also to facilitate a student’s participation in a learning environment…
  • The purpose of educational institutions, therefore, is not merely to create and distribute learning opportunities and resources, but also to facilitate a student’s participation in a learning environment – a game, a community, a profession – through the provision of the materials that will assist him or her to, in a sense, see the world in the same way as an accomplished expert; and this is accomplished not merely by presenting learning materials to the learner, but by facilitating the engagement of the learner in conversations with members of that community of experts.
  • In the end, what will be evaluated is a complex portfolio of a student’s online activities.
  • ...9 more annotations...
  • … it is important to understand that place independence means that real learning will occur in real environments, with the contributions of the students not being some artifice designed strictly for practice, but an actual contribution to the business or enterprise in question.
  • Current online learning efforts are based on the idea that learning will occur in a certain online place – a learning management system, say – or will be conducted using certain software tools.
  • … a field trip to a local stream or forest would be seen as a once-a-semester activity, because it would otherwise consume too much class time, it could now become (for some students) a once-a-day activity, with what used to be classroom activities designed around the field trips.
  • as Wenger says, “... the school is not the privileged locus of learning. It is not a self-contained, closed world in which students acquire knowledge to be applied outside, but a part of a broader learning system. The class is not the primary learning event. It is life itself that is the main learning event.”
  • education is fundamentally a process of communication; learning, by contrast, is fundamentally a process of growth
  • Traditional learning composed of classes and cohorts operates more as a group than as a network … Classes are closed; there is a clear barrier between members and non-members. … In the case of informal learning, however, the structure is much looser. People pursue their own objectives in their own way, while at the same time initiating and sustaining an ongoing dialogue with others pursuing similar objectives.
  • In traditional learning, success is achieved not merely by passing the test but in some way being recognized as having achieved expertise. A test-only system is a coarse system of measurement for a complex achievement. (NOTE: See Frank Smith's The Book of Learning and Forgetting)
  • Despite the efforts of educators and individuals to create (often lavish and complex) learning environments for students, this will in the long run not be necessary. Learners will create their own communities, their own environments. At most, the educator needs to ensure that the tools are there for students to use, and that the channels of communication, from student to student, from community to community, are open.
  • … it is probably inevitable that the domains of ‘learning’ and ‘testing’ will separate. In the future it may even be thought of as quaint that those responsible for the fostering of learning were also those responsible for evaluating whether or not learning actually happened. People who are in some way able to demonstrate their ability – through a portfolio system, for example, are able to circumvent the need for testing altogether.
37More

Dr. Mashup; or, Why Educators Should Learn to Stop Worrying and Love the Remix | EDUCAU... - 0 views

  • A classroom portal that presents automatically updated syndicated resources from the campus library, news sources, student events, weblogs, and podcasts and that was built quickly using free tools.
  • Increasingly, it's not just works of art that are appropriated and remixed but the functionalities of online applications as well.
  • mashups involve the reuse, or remixing, of works of art, of content, and/or of data for purposes that usually were not intended or even imagined by the original creators.
  • ...31 more annotations...
  • hat, exactly, constitutes a valid, original work? What are the implications for how we assess and reward creativity? Can a college or university tap the same sources of innovative talent and energy as Google or Flickr? What are the risks of permitting or opening up to this activity?
    • Barbara Lindsey
       
      Good discussion point
  • Remix is the reworking or adaptation of an existing work. The remix may be subtle, or it may completely redefine how the work comes across. It may add elements from other works, but generally efforts are focused on creating an alternate version of the original. A mashup, on the other hand, involves the combination of two or more works that may be very different from one another. In this article, I will apply these terms both to content remixes and mashups, which originated as a music form but now could describe the mixing of any number of digital media sources, and to data mashups, which combine the data and functionalities of two or more Web applications.
  • Harper's article "The Ecstasy of Influence," the novelist Jonathan Lethem imaginatively reviews the history of appropriation and recasts it as essential to the act of creation.3
  • Lethem's article is a must-read for anyone with an interest in the history of ideas, creativity, and intellectual property. It brilliantly synthesizes multiple disciplines and perspectives into a wonderfully readable and compelling argument. It is also, as the subtitle of his article acknowledges, "a plagiarism." Virtually every passage is a direct lift from another source, as the author explains in his "Key," which gives the source for every line he "stole, warped, and cobbled together." (He also revised "nearly every sentence" at least slightly.) Lethem's ideas noted in the paragraph above were appropriated from Siva Vaidhyanathan, Craig Baldwin, Richard Posner, and George L. Dillon.
  • Reading Walter Benjamin's highly influential 1936 essay "The Work of Art in the Age of Mechanical Reproduction,"4 it's clear that the profound effects of reproductive technology were obvious at that time. As Gould argued in 1964 (influenced by theorists such as Marshall McLuhan5), changes in how art is produced, distributed, and consumed in the electronic age have deep effects on the character of the art itself.
  • Yet the technology developments of the past century have clearly corresponded with a new attitude toward the "aura" associated with a work of invention and with more aggressive attitudes toward appropriation. It's no mere coincidence that the rise of modernist genres using collage techniques and more fragmented structures accompanied the emergence of photography and audio recording.
  • Educational technologists may wonder if "remix" or "content mashup" are just hipper-sounding versions of the learning objects vision that has absorbed so much energy from so many talented people—with mostly disappointing results.
  • The question is, why should a culture of remix take hold when the learning object economy never did?
  • when most learning object repositories were floundering, resource-sharing services such as del.icio.us and Flickr were enjoying phenomenal growth, with their user communities eagerly contributing heaps of useful metadata via simple folksonomy-oriented tagging systems.
  • the standards/practices relationship implicit in the learning objects model has been reversed. With only the noblest of intentions, proponents of learning objects (and I was one of them) went at the problem of promoting reuse by establishing an arduous and complex set of interoperability standards and then working to persuade others to adopt those standards. Educators were asked to take on complex and ill-defined tasks in exchange for an uncertain payoff. Not surprisingly, almost all of them passed.
  • Discoverable Resources
  • Educators might justifiably argue that their materials are more authoritative, reliable, and instructionally sound than those found on the wider Web, but those materials are effectively rendered invisible and inaccessible if they are locked inside course management systems.
  • It's a dirty but open secret that many courses in private environments use copyrighted third-party materials in a way that pushes the limits of fair use—third-party IP is a big reason why many courses cannot easily be made open.
  • The potential payoff for using open and discoverable resources, open and transparent licensing, and open and remixable formats is huge: more reuse means that more dynamic content is being produced more economically, even if the reuse happens only within an organization. And when remixing happens in a social context on the open web, people learn from each other's process.
  • Part of making a resource reusable involves making the right choices for file formats.
  • To facilitate the remixing of materials, educators may want to consider making the source files that were used to create a piece of multimedia available along with the finished result.
  • In addition to choosing the right file format and perhaps offering the original sources, another issue to consider when publishing content online is the critical question: "Is there an RSS feed available?" If so, conversion tools such as Feed2JS (http://www.feed2JS.org) allow for the republication of RSS-ified content in any HTML Web environment, including a course management system, simply by copying and pasting a few lines of JavaScript code. When an original source syndicated with RSS is updated, that update is automatically rendered anywhere it has been republished.
  • Jack Schofield
  • Guardian Unlimited
  • "An API provides an interface and a set of rules that make it much easier to extract data from a website. It's a bit like a record company releasing the vocals, guitars and drums as separate tracks, so you would not have to use digital processing to extract the parts you wanted."1
  • What's new about mashed-up application development? In a sense, the factors that have promoted this approach are the same ones that have changed so much else about Web culture in recent years. Essential hardware and software has gotten more powerful and for the most part cheaper, while access to high-speed connectivity and the enhanced quality of online applications like Google Docs have improved to the point that Tim O'Reilly and others can talk of "the emergent Internet operating system."15 The growth of user-centered technologies such as blogs have fostered a DIY ("do it yourself") culture that increasingly sees online interaction as something that can be personalized and adapted on the individual level. As described earlier, light syndication and service models such as RSS have made it easier and faster than ever to create simple integrations of diverse media types. David Berlind, executive editor of ZDNet, explains: "With mashups, fewer technical skills are needed to become a developer than ever. Not only that, the simplest ones can be done in 10 or 15 minutes. Before, you had to be a pretty decent code jockey with languages like C++ or Visual Basic to turn your creativity into innovation. With mashups, much the same way blogging systems put Web publishing into the hands of millions of ordinary non-technical people, the barrier to developing applications and turning creativity into innovation is so low that there's a vacuum into which an entire new class of developers will be sucked."16
  • The ability to "clone" other users' mashups is especially exciting: a newcomer does not need to spend time learning how to structure the data flows but can simply copy an existing framework that looks useful and then make minor modifications to customize the result.19
    • Barbara Lindsey
       
      This is the idea behind the MIT repository--remixing content to suit local needs.
  • As with content remixing, open access to materials is not just a matter of some charitable impulse to share knowledge with the world; it is a core requirement for participating in some of the most exciting and innovative activity on the Web.
  • "My Maps" functionality
  • For those still wondering what the value proposition is for offering an open API, Google's development process offers a compelling example of the potential rewards.
    • Barbara Lindsey
       
      Wikinomics
  • Elsewhere, it is difficult to point to significant activity suggesting that the mashup ethos is taking hold in academia the way it is on the wider Web.
  • Yet for the most part, the notion of the data mashup and the required openness is not even a consideration in discussions of technology strategy in higher educational institutions. "Data integration" across campus systems is something that is handled by highly skilled professionals at highly skilled prices.
  • Revealing how a more adventurous and inclusive online development strategy might look on campus, Raymond Yee recently posted a comprehensive proposal for his university (UC Berkeley), in which he outlined a "technology platform" not unlike the one employed by Amazon.com (http://aws.amazon.com/)—resources and access that would be invaluable for the institution's programmers as well as for outside interests to build complementary services.
  • All too often, college and university administrators react to this type of innovation with suspicion and outright hostility rather than cooperation.
  • those of us in higher education who observe the successful practices in the wider Web world have an obligation to consider and discuss how we might apply these lessons in our own contexts. We might ask if the content we presently lock down could be made public with a license specifying reasonable terms for reuse. When choosing a content management system, we might consider how well it supports RSS syndication. In an excellent article in the March/April 2007 issue of EDUCAUSE Review, Joanne Berg, Lori Berquam, and Kathy Christoph listed a number of campus activities that could benefit from engaging social networking technologies.26
  • What might happen if we allow our campus innovators to integrate their practices in these areas in the same way that social networking application developers are already integrating theirs? What is the mission-critical data we cannot expose, and what can we expose with minimal risk? And if the notion of making data public seems too radical a step, can APIs be exposed to selected audiences, such as on-campus developers or consortia partners?
1More

Teraknor: Active participation, Active support - 0 views

  •  
    Reflections on distance learning
11More

Actually Going to Class? How 20th-Century. - Technology - The Chronicle of Higher Educa... - 0 views

  • Mr. Somade told me recently that "the general idea is that if I don't have to come to class, I don't want to come to class—and technology is giving students more and more reason not to come."
  • In an era when students can easily grab material online, including lectures by gifted speakers in every field, a learning environment that avoids courses completely—or seriously reshapes them—might produce a very effective new form of college.
    • Barbara Lindsey
       
      How do you respond to this?
  • much of what students rate as the most valuable part of their learning experience at college these days takes place outside the traditional classroom, citing data from the National Survey of Student Engagement, an annual study based at Indiana University at Bloomington. Four of the eight "high-impact" learning activities identified by survey participants required no classroom time at all: internships, study-abroad programs, senior thesis or other "capstone" projects, or the mundane-sounding "undergraduate research," meaning working with faculty members on original research, much as graduate students do.
  • ...5 more annotations...
  • At the start of each session, Mr. Campbell gave the 11 students a strange kind of pop quiz. For one thing, it was anonymous, so no grades were given. And rather than ask questions about the content of the homework, he asked students to detail how much time and effort they spent preparing for class. Among the questions: Did you talk to a classmate about the assignment? And how many hours did you spend on the reading?
  • The scores started low—between 4 and 5, meaning the students did far less than the assigned homework. Something happened as the term progressed, though, as students bought into the concept
  • "The commenting and linking are crucial," he says, "as those activities are essential parts of being in the real blogosphere."
  • If the core activity at college shifts away from the classroom and into practical activities, do students even need to come to a campus?
  • "There is definitely a broader array of options available to students who wish to forgo the commute to class altogether in exchange for online classes that essentially provide the same content that professors regurgitate to students in lecture."
    • Barbara Lindsey
       
      What would George Siemens (Teaching in Social and Technological Networks) say to this?
  •  
    fall 2011 syllabus
2More

Facilitating Learner Voice and Presence in the Classroom Using Mobile Devices... - 1 views

  • What follows are the mobile activities I used in this course to get to know the learners, have them get to know one another, and build a sense of community.
    • Barbara Lindsey
       
      Could any of these activities be used in your classes? How would they enhance the learning already going on? Any concerns about any of these activities?
3More

Using Mobile Devices and Technology to Enhance Emotional Intelligence « User ... - 2 views

  • These students, as a group, are classified as lower income students.  None of their devices had the capability to download apps.  What this says to me as the educator is that when I am designing activities that use the students own devices in my BYOD classroom, that they cannot include the use of apps.  They have camera, email, texting, internet capabilities, but no way to use apps. 
  • As you can see the uploaded images created a personalized feelings poster.  Students were provided with scenarios and asked to locate on the Interactive White Board which of these displayed images that they created best represented how they would feel in that situation.
    • Barbara Lindsey
       
      Could you imagine using this activity with your students and if so, how would you modify it?
1More

Richard Schmidt on Vimeo - 0 views

  •  
    Prof Schmidt talks about the pros and cons of various language learning methods. Series includes Mimi Met and L2 activities 
7More

10 Rules of Teaching in this Century -- Campus Technology - 0 views

  • the knowledge developed during the course does not pre-exist the course. Second, since the knowledge of the course does not exist before the course (because you and the students develop the knowledge during the course), your chief challenge is to manage the process of knowledge discovery.
  • Now, because learning resources and opportunities are infinite, make the move: Don’t just tell students the key knowledge in your field, but help them discover it through problem-based active learning. Change your curriculum from a list of what you will say to a list of essential problems (or questions) that students will address, with your guidance, throughout the semester.
  • It may well be better to re-state learning outcomes in terms of essential problems and the research associated with those essential problems, and build rubrics based on the problems within a problem-based learning structure.
  • ...3 more annotations...
  • Move most assessment activity away from testing and toward evaluation of student evidence of learning.
  • In the new paradigm of active and varied learning, testing is less appropriate but assessing student evidence is more appropriate.
  • You, as a faculty member, must be as adept as your students in using Web-based applications, and there is no better way to learn the new breed of applications than to use them yourself for important professional purposes.
  •  
    Talks about how we now can really walk the walk and have a learner-centered environment and the technologies nec. to support that.
1More

How do students become thoughtful - 0 views

  •  
    Jigsaw puzzle activity
32More

Minds on Fire: Open Education, the Long Tail, and Learning 2.0 (EDUCAUSE Review) | EDUC... - 0 views

  • But at the same time that the world has become flatter, it has also become “spikier”: the places that are globally competitive are those that have robust local ecosystems of resources supporting innovation and productiveness.2
  • various initiatives launched over the past few years have created a series of building blocks that could provide the means for transforming the ways in which we provide education and support learning. Much of this activity has been enabled and inspired by the growth and evolution of the Internet, which has created a global “platform” that has vastly expanded access to all sorts of resources, including formal and informal educational materials. The Internet has also fostered a new culture of sharing, one in which content is freely contributed and distributed with few restrictions or costs.
  • the most visible impact of the Internet on education to date has been the Open Educational Resources (OER) movement, which has provided free access to a wide range of courses and other educational materials to anyone who wants to use them. The movement began in 2001 when the William and Flora Hewlett and the Andrew W. Mellon foundations jointly funded MIT’s OpenCourseWare (OCW) initiative, which today provides open access to undergraduate- and graduate-level materials and modules from more than 1,700 courses (covering virtually all of MIT’s curriculum). MIT’s initiative has inspired hundreds of other colleges and universities in the United States and abroad to join the movement and contribute their own open educational resources.4 The Internet has also been used to provide students with direct access to high-quality (and therefore scarce and expensive) tools like telescopes, scanning electron microscopes, and supercomputer simulation models, allowing students to engage personally in research.
  • ...29 more annotations...
  • most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learning. What do we mean by “social learning”? Perhaps the simplest way to explain this concept is to note that social learning is based on the premise that our understanding of content is socially constructed through conversations about that content and through grounded interactions, especially with others, around problems or actions. The focus is not so much on what we are learning but on how we are learning.5
  • This perspective shifts the focus of our attention from the content of a subject to the learning activities and human interactions around which that content is situated. This perspective also helps to explain the effectiveness of study groups. Students in these groups can ask questions to clarify areas of uncertainty or confusion, can improve their grasp of the material by hearing the answers to questions from fellow students, and perhaps most powerfully, can take on the role of teacher to help other group members benefit from their understanding (one of the best ways to learn something is, after all, to teach it to others).
  • This encourages the practice of what John Dewey called “productive inquiry”—that is, the process of seeking the knowledge when it is needed in order to carry out a particular situated task.
  • ecoming a trusted contributor to Wikipedia involves a process of legitimate peripheral participation that is similar to the process in open source software communities. Any reader can modify the text of an entry or contribute new entries. But only more experienced and more trusted individuals are invited to become “administrators” who have access to higher-level editing tools.8
  • by clicking on tabs that appear on every page, a user can easily review the history of any article as well as contributors’ ongoing discussion of and sometimes fierce debates around its content, which offer useful insights into the practices and standards of the community that is responsible for creating that entry in Wikipedia. (In some cases, Wikipedia articles start with initial contributions by passionate amateurs, followed by contributions from professional scholars/researchers who weigh in on the “final” versions. Here is where the contested part of the material becomes most usefully evident.) In this open environment, both the content and the process by which it is created are equally visible, thereby enabling a new kind of critical reading—almost a new form of literacy—that invites the reader to join in the consideration of what information is reliable and/or important.
  • But viewing learning as the process of joining a community of practice reverses this pattern and allows new students to engage in “learning to be” even as they are mastering the content of a field.
  • Mastering a field of knowledge involves not only “learning about” the subject matter but also “learning to be” a full participant in the field. This involves acquiring the practices and the norms of established practitioners in that field or acculturating into a community of practice.
  • Another interesting experiment in Second Life was the Harvard Law School and Harvard Extension School fall 2006 course called “CyberOne: Law in the Court of Public Opinion.” The course was offered at three levels of participation. First, students enrolled in Harvard Law School were able to attend the class in person. Second, non–law school students could enroll in the class through the Harvard Extension School and could attend lectures, participate in discussions, and interact with faculty members during their office hours within Second Life. And at the third level, any participant in Second Life could review the lectures and other course materials online at no cost. This experiment suggests one way that the social life of Internet-based virtual education can coexist with and extend traditional education.
  • Digital StudyHall (DSH), which is designed to improve education for students in schools in rural areas and urban slums in India. The project is described by its developers as “the educational equivalent of Netflix + YouTube + Kazaa.”11 Lectures from model teachers are recorded on video and are then physically distributed via DVD to schools that typically lack well-trained instructors (as well as Internet connections). While the lectures are being played on a monitor (which is often powered by a battery, since many participating schools also lack reliable electricity), a “mediator,” who could be a local teacher or simply a bright student, periodically pauses the video and encourages engagement among the students by asking questions or initiating discussions about the material they are watching.
  • John King, the associate provost of the University of Michigan
  • For the past few years, he points out, incoming students have been bringing along their online social networks, allowing them to stay in touch with their old friends and former classmates through tools like SMS, IM, Facebook, and MySpace. Through these continuing connections, the University of Michigan students can extend the discussions, debates, bull sessions, and study groups that naturally arise on campus to include their broader networks. Even though these extended connections were not developed to serve educational purposes, they amplify the impact that the university is having while also benefiting students on campus.14 If King is right, it makes sense for colleges and universities to consider how they can leverage these new connections through the variety of social software platforms that are being established for other reasons.
  • The project’s website includes reports of how students, under the guidance of professional astronomers, are using the Faulkes telescopes to make small but meaningful contributions to astronomy.
  • “This is not education in which people come in and lecture in a classroom. We’re helping students work with real data.”16
  • HOU invites students to request observations from professional observatories and provides them with image-processing software to visualize and analyze their data, encouraging interaction between the students and scientists
  • The site is intended to serve as “an open forum for worldwide discussions on the Decameron and related topics.” Both scholars and students are invited to submit their own contributions as well as to access the existing resources on the site. The site serves as an apprenticeship platform for students by allowing them to observe how scholars in the field argue with each other and also to publish their own contributions, which can be relatively small—an example of the “legitimate peripheral participation” that is characteristic of open source communities. This allows students to “learn to be,” in this instance by participating in the kind of rigorous argumentation that is generated around a particular form of deep scholarship. A community like this, in which students can acculturate into a particular scholarly practice, can be seen as a virtual “spike”: a highly specialized site that can serve as a global resource for its field.
  • I posted a list of links to all the student blogs and mentioned the list on my own blog. I also encouraged the students to start reading one another's writing. The difference in the writing that next week was startling. Each student wrote significantly more than they had previously. Each piece was more thoughtful. Students commented on each other's writing and interlinked their pieces to show related or contradicting thoughts. Then one of the student assignments was commented on and linked to from a very prominent blogger. Many people read the student blogs and subscribed to some of them. When these outside comments showed up, indicating that the students really were plugging into the international community's discourse, the quality of the writing improved again. The power of peer review had been brought to bear on the assignments.17
  • for any topic that a student is passionate about, there is likely to be an online niche community of practice of others who share that passion.
  • Finding and joining a community that ignites a student’s passion can set the stage for the student to acquire both deep knowledge about a subject (“learning about”) and the ability to participate in the practice of a field through productive inquiry and peer-based learning (“learning to be”). These communities are harbingers of the emergence of a new form of technology-enhanced learning—Learning 2.0—which goes beyond providing free access to traditional course materials and educational tools and creates a participatory architecture for supporting communities of learners.
  • We need to construct shared, distributed, reflective practicums in which experiences are collected, vetted, clustered, commented on, and tried out in new contexts.
  • An example of such a practicum is the online Teaching and Learning Commons (http://commons.carnegiefoundation.org/) launched earlier this year by the Carnegie Foundation for the Advancement of Teaching
  • The Commons is an open forum where instructors at all levels (and from around the world) can post their own examples and can participate in an ongoing conversation about effective teaching practices, as a means of supporting a process of “creating/using/re-mixing (or creating/sharing/using).”20
  • The original World Wide Web—the “Web 1.0” that emerged in the mid-1990s—vastly expanded access to information. The Open Educational Resources movement is an example of the impact that the Web 1.0 has had on education.
  • But the Web 2.0, which has emerged in just the past few years, is sparking an even more far-reaching revolution. Tools such as blogs, wikis, social networks, tagging systems, mashups, and content-sharing sites are examples of a new user-centric information infrastructure that emphasizes participation (e.g., creating, re-mixing) over presentation, that encourages focused conversation and short briefs (often written in a less technical, public vernacular) rather than traditional publication, and that facilitates innovative explorations, experimentations, and purposeful tinkerings that often form the basis of a situated understanding emerging from action, not passivity.
  • In the twentieth century, the dominant approach to education focused on helping students to build stocks of knowledge and cognitive skills that could be deployed later in appropriate situations. This approach to education worked well in a relatively stable, slowly changing world in which careers typically lasted a lifetime. But the twenty-first century is quite different.
  • We now need a new approach to learning—one characterized by a demand-pull rather than the traditional supply-push mode of building up an inventory of knowledge in students’ heads. Demand-pull learning shifts the focus to enabling participation in flows of action, where the focus is both on “learning to be” through enculturation into a practice as well as on collateral learning.
  • The demand-pull approach is based on providing students with access to rich (sometimes virtual) learning communities built around a practice. It is passion-based learning, motivated by the student either wanting to become a member of a particular community of practice or just wanting to learn about, make, or perform something. Often the learning that transpires is informal rather than formally conducted in a structured setting. Learning occurs in part through a form of reflective practicum, but in this case the reflection comes from being embedded in a community of practice that may be supported by both a physical and a virtual presence and by collaboration between newcomers and professional practitioners/scholars.
  • The building blocks provided by the OER movement, along with e-Science and e-Humanities and the resources of the Web 2.0, are creating the conditions for the emergence of new kinds of open participatory learning ecosystems23 that will support active, passion-based learning: Learning 2.0.
  • As a graduate student at UC-Berkeley in the late 1970s, Treisman worked on the poor performance of African-Americans and Latinos in undergraduate calculus classes. He discovered the problem was not these students’ lack of motivation or inadequate preparation but rather their approach to studying. In contrast to Asian students, who, Treisman found, naturally formed “academic communities” in which they studied and learned together, African-Americans tended to separate their academic and social lives and studied completely on their own. Treisman developed a program that engaged these students in workshop-style study groups in which they collaborated on solving particularly challenging calculus problems. The program was so successful that it was adopted by many other colleges. See Uri Treisman, “Studying Students Studying Calculus: A Look at the Lives of Minority Mathematics Students in College,” College Mathematics Journal, vol. 23, no. 5 (November 1992), pp. 362–72, http://math.sfsu.edu/hsu/workshops/treisman.html.
  • In the early 1970s, Stanford University Professor James Gibbons developed a similar technique, which he called Tutored Videotape Instruction (TVI). Like DSH, TVI was based on showing recorded classroom lectures to groups of students, accompanied by a “tutor” whose job was to stop the tape periodically and ask questions. Evaluations of TVI showed that students’ learning from TVI was as good as or better than in-classroom learning and that the weakest students academically learned more from participating in TVI instruction than from attending lectures in person. See J. F. Gibbons, W. R. Kincheloe, and S. K. Down, “Tutored Video-tape Instruction: A New Use of Electronics Media in Education,” Science, vol. 195 (1977), pp. 1136–49.
64More

Planning for Neomillennial Learning Styles: Implications for Investments in Technology ... - 0 views

  • Research indicates that each of these media, when designed for education, fosters particular types of interactions that enable—and undercut—various learning styles.
    • Barbara Lindsey
       
      How much do we know about our students' learning styles? How do we know this?
  • Over the next decade, three complementary interfaces will shape how people learn
  • The familiar "world to the desktop." Provides access to distant experts and archives and enables collaborations, mentoring relationships, and virtual communities of practice. This interface is evolving through initiatives such as Internet2. "Alice in Wonderland" multiuser virtual environments (MUVEs). Participants' avatars (self-created digital characters) interact with computer-based agents and digital artifacts in virtual contexts. The initial stages of studies on shared virtual environments are characterized by advances in Internet games and work in virtual reality. Ubiquitous computing. Mobile wireless devices infuse virtual resources as we move through the real world. The early stages of "augmented reality" interfaces are characterized by research on the role of "smart objects" and "intelligent contexts" in learning and doing.
  • ...48 more annotations...
  • This immersion in virtual environments and augmented realities shapes participants' learning styles beyond what using sophisticated computers and telecommunications has fostered thus far, with multiple implications for higher education.
  • Beyond actional and symbolic immersion, advances in interface technology are now creating virtual environments and augmented realities that induce a psychological sense of sensory and physical immersion.
  • The research on virtual reality Salzman and I conducted on frames of reference found that the exocentric and the egocentric FORs have different strengths for learning. Our studies established that learning ideally involves a "bicentric" perspective alternating between egocentric and exocentric FORs.
    • Barbara Lindsey
       
      Could we make the argument that this is one of the main goals of language programs?
  • But what is so special about the egocentric perspectives and situated learning now enabled by emerging media? After all, each of us lives with an egocentric perspective in the real world and has many opportunities for situated learning without using technology. One attribute that makes mediated immersion different and powerful is the ability to access information resources and psychosocial community distributed across distance and time, broadening and deepening experience. A second important attribute is the ability to create interactions and activities in mediated experience not possible in the real world, such as teleporting within a virtual environment, enabling a distant person to see a real-time image of your local environment, or interacting with a (simulated) chemical spill in a busy public setting. Both of these attributes are actualized in the Alice-in-Wonderland interface.
  • Notion of place is layered/blended/multiple; mobility and nomadicity prevalent among dispersed, fragmented, fluctuating habitats (for example, coffeehouses near campus)
  • Guided social constructivism and situated learning as major forms of pedagogy
  • he defining quality of a learning community is that there is a culture of learning, in which everyone is involved in a collective effort of understanding. There are four characteristics that such a culture must have: (1) diversity of expertise among its members, who are valued for their contributions and given support to develop, (2) a shared objective of continually advancing the collective knowledge and skills, (3) an emphasis on learning how to learn, and (4) mechanisms for sharing what is learned. If a learning community is presented with a problem, then the learning community can bring its collective knowledge to bear on the problem. It is not necessary that each member assimilate everything that the community knows, but each should know who within the community has relevant expertise to address any problem. This is a radical departure from the traditional view of schooling, with its emphasis on individual knowledge and performance, and the expectation that students will acquire the same body of knowledge at the same time.26
  • Peer-developed and peer-rated forms of assessment complement faculty grading, which is often based on individual accomplishment in a team performance context  Assessments provide formative feedback on instructional effectiveness
  • Multipurpose habitats—creating layered/blended/personalizable places rather than specialized locations (such as computer labs)
  • o the extent that some of these ideas about neomillennial learning styles are accurate, campuses that make strategic investments in physical plant, technical infrastructure, and professional development along the dimensions suggested will gain a considerable competitive advantage in both recruiting top students and teaching them effectively.
  • Net Generation learning styles stem primarily from the world-to-the-desktop interface; however, the growing prevalence of interfaces to virtual environments and augmented realities is beginning to foster so-called neomillennial learning styles in users of all ages.
    • Barbara Lindsey
       
      What is the timeline?
  • Immersion is the subjective impression that one is participating in a comprehensive, realistic experience.
  • Inducing a participant's symbolic immersion involves triggering powerful semantic associations via the content of an experience.
    • Barbara Lindsey
       
      Felice's Utopian City
  • The capability of computer interfaces to foster psychological immersion enables technology-intensive educational experiences that draw on a powerful pedagogy: situated learning.
  • The major schools of thought cited are behaviorist theories of learning (presentational instruction), cognitivist theories of learning (tutoring and guided learning by doing), and situated theories of learning (mentoring and apprenticeships in communities of practice).
    • Barbara Lindsey
       
      What kinds of learning environments do you prefer and what kinds do you create for your students?
  • Situated learning requires authentic contexts, activities, and assessment coupled with guidance from expert modeling, mentoring, and "legitimate peripheral participation."8 As an example of legitimate peripheral participation, graduate students work within the laboratories of expert researchers, who model the practice of scholarship. These students interact with experts in research as well as with other members of the research team who understand the complex processes of scholarship to varying degrees. While in these laboratories, students gradually move from novice researchers to more advanced roles, with the skills and expectations for them evolving.
  • Potentially quite powerful, situated learning is much less used for instruction than behaviorist or cognitivist approaches. This is largely because creating tacit, relatively unstructured learning in complex real-world settings is difficult.
    • Barbara Lindsey
       
      Not too far in the future!
  • However, virtual environments and ubiquitous computing can draw on the power of situated learning by creating immersive, extended experiences with problems and contexts similar to the real world.9 In particular, MUVEs and real-world settings augmented with virtual information provide the capability to create problem-solving communities in which participants can gain knowledge and skills through interacting with other participants who have varied levels of skills, enabling legitimate peripheral participation driven by intrinsic sociocultural forces.
  • Situated learning is important in part because of the crucial issue of transfer. Transfer is defined as the application of knowledge learned in one situation to another situation and is demonstrated if instruction on a learning task leads to improved performance on a transfer task, typically a skilled performance in a real-world setting
    • Barbara Lindsey
       
      One of the most difficult skills to master.
  • Moreover, the evolution of an individual's or group's identity is an important type of learning for which simulated experiences situated in virtual environments or augmented realities are well suited. Reflecting on and refining an individual identity is often a significant issue for higher education students of all ages, and learning to evolve group and organizational identity is a crucial skill in enabling innovation and in adapting to shifting contexts.
  • Immersion is important in this process of identity exploration because virtual identity is unfettered by physical attributes such as gender, race, and disabilities.
    • Barbara Lindsey
       
      Don't agree with this. We come to any environment with our own baggage and we do not interact in a neutral social context.
  • Thanks to out-of-game trading of in-game items, Norrath, the virtual setting of the MMOG EverQuest, is the seventy-seventh largest economy in the real world, with a GNP per capita between that of Russia and Bulgaria. One platinum piece, the unit of currency in Norrath, trades on real world exchange markets higher than both the Yen and the Lira (Castronova, 2001).14
  • Multiple teams of students can access the MUVE simultaneously, each individual manipulating an avatar which is "sent back in time" to this virtual environment. Students must collaborate to share the data each team collects. Beyond textual conversation, students can project to each other "snapshots" of their current individual point of view (when someone has discovered an item of general interest) and also can "teleport" to join anyone on their team for joint investigation. Each time a team reenters the world, several months of time have passed in River City, so learners can track the dynamic evolution of local problems.
  • In our research on this educational MUVE based on situated learning, we are studying usability, student motivation, student learning, and classroom implementation issues. The results thus far are promising: All learners are highly motivated, including students typically unengaged in classroom settings. All students build fluency in distributed modes of communication and expression and value using multiple media because each empowers different types of communication, activities, experiences, and expressions. Even typically low-performing students can master complex inquiry skills and sophisticated content. Shifts in the pedagogy within the MUVE alter the pattern of student performance.
    • Barbara Lindsey
       
      Would like to see research on this.
  • Research shows that many participants value this functionality and choose to access the Web page after leaving the museum.
    • Barbara Lindsey
       
      More could be done with this.
  • Participants in these distributed simulations use location-aware handheld computers (with GPS technology), allowing users to physically move throughout a real-world location while collecting place-dependent simulated field data, interviewing virtual characters, and collaboratively investigating simulated scenarios.
    • Barbara Lindsey
       
      Much better
  • Initial research on Environmental Detectives and other AR-based educational simulations demonstrates that this type of immersive, situated learning can effectively engage students in critical thinking about authentic scenarios.
  • Students were most effective in learning and problem-solving when they collectively sought, sieved, and synthesized experiences rather than individually locating and absorbing information from some single best source.
    • Barbara Lindsey
       
      How does this 'fit' learning goals and teaching styles in our program?
  • Rheingold's forecasts draw on lifestyles seen at present among young people who are high-end users of new media
  • Rather than having core identities defined through a primarily local set of roles and relationships, people would express varied aspects of their multifaceted identities through alternate extended experiences in distributed virtual environments and augmented realities.
    • Barbara Lindsey
       
      How is this different from current experiences for individuals working within/across different social groups and boundaries?
  • one-third of U.S. households now have broadband access to the Internet. In the past three years, 14 million U.S. families have linked their computers with wireless home networks. Some 55 percent of Americans now carry cell phones
  • Mitchell's forecasts25 are similar to Rheingold's in many respects. He too envisions largely tribal lifestyles distributed across dispersed, fragmented, fluctuating habitats: electronic nomads wandering among virtual campfires. People's senses and physical agency are extended outward and into the intangible, at considerable cost to individual privacy. Individual identity is continuously reformed via an ever-shifting series of networking with others and with tools. People express themselves through nonlinear, associational webs of representations rather than linear "stories" and co-design services rather than selecting a precustomized variant from a menu of possibilities.
  • More and more, though, people of all ages will have lifestyles involving frequent immersion in both virtual and augmented reality. How might distributed, immersive media be designed specifically for education, and what neomillennial learning styles might they induce?
  • Mediated immersion creates distributed learning communities, which have different strengths and limits than location-bound learning communities confined to classroom settings and centered on the teacher and archival materials.27
  • Neomillenial Versus Millennial Learning Styles
  • Emphasis is placed on implications for strategic investments in physical plant, technology infrastructure, and professional development.
  • such as textbooks linked to course ratings by students)
  • Mirroring": Immersive virtual environments provide replicas of distant physical settings
  • Middleware, interoperability, open content, and open source
  • Finding information Sequential assimilation of linear information stream
  • Student products generally tests or papers Grading centers on individual performance
  • These ideas are admittedly speculative rather than based on detailed evidence and are presented to stimulate reaction and dialogue about these trends.
  • f we accept much of the analysis above
    • Barbara Lindsey
       
      But have they made the case for its educational value?
  • students of all ages with increasingly neomillennial learning styles will be drawn to colleges and universities that have these capabilities. Four implications for investments in professional development also are apparent. Faculty will increasingly need capabilities in:
  • Some of these shifts are controversial for many faculty; all involve "unlearning" almost unconscious beliefs, assumptions, and values about the nature of teaching, learning, and the academy. Professional development that requires unlearning necessitates high levels of emotional/social support in addition to mastering the intellectual/technical dimensions involved. The ideal form for this type of professional development is distributed learning communities so that the learning process is consistent with the knowledge and culture to be acquired. In other words, faculty must themselves experience mediated immersion and develop neomillennial learning styles to continue teaching effectively as the nature of students alters.
  • Differences among individuals are greater than dissimilarities between groups, so students in any age cohort will present a mixture of neomillennial, millennial, and traditional learning styles
  • The technologies discussed are emerging rather than mature, so their final form and influences on users are not fully understood. A substantial number of faculty and administrators will likely dismiss and resist some of the ideas and recommendations presented here.
27More

Teaching in Social and Technological Networks « Connectivism - 0 views

  • Students are not confined to interacting with only the ideas of a researcher or theorist. Instead, a student can interact directly with researchers through Twitter, blogs, Facebook, and listservs. The largely unitary voice of the traditional teacher is fragmented by the limitless conversation opportunities available in networks. When learners have control of the tools of conversation, they also control the conversations in which they choose to engage.
  • Traditional courses provide a coherent view of a subject. This view is shaped by “learning outcomes” (or objectives).
  • This cozy comfortable world of outcomes-instruction-assessment alignment exists only in education. In all other areas of life, ambiguity, uncertainty, and unkowns reign.
  • ...21 more annotations...
  • However, in order for education to work within the larger structure of integrated societal systems, clear outcomes are still needed.
  • How can we achieve learning targets when the educator is no longer able to control the actions of learners?
  • I’ve come to view teaching as a critical and needed activity in the chaotic and ambiguous information climate created by networks. In the future, however, the role of the teacher, the educator, will be dramatically different from the current norm. Views of teaching, of learner roles, of literacies, of expertise, of control, and of pedagogy are knotted together. Untying one requires untying the entire model.
  • Most likely, a teacher will be one of the more prominent nodes in a learner’s network. Thoughts, ideas, or messages that the teacher amplifies will generally have a greater probability of being seen by course participants.
  • A curatorial teacher acknowledges the autonomy of learners, yet understands the frustration of exploring unknown territories without a map. A curator is an expert learner. Instead of dispensing knowledge, he creates spaces in which knowledge can be created, explored, and connected.
  • The curator, in a learning context, arranges key elements of a subject in such a manner that learners will “bump into” them throughout the course. Instead of explicitly stating “you must know this”, the curator includes critical course concepts in her dialogue with learners, her comments on blog posts, her in-class discussions, and in her personal reflections. As learners grow their own networks of understanding, frequent encounters with conceptual artifacts shared by the teacher will begin to resonate.
    • Barbara Lindsey
       
      Can you see this as a viable possibility?
  • When I first started learning about the internet (pre-web days), I felt like I had stepped into a alternate realm with its own norms of behaviour and conduct. Bulletin boards and chat rooms presented a challenging mix of navigating social protocols while developing technical skills. By engaging with these conversation spaces – and forming a few tentative connections with others – I was able to find a precarious foothold in the online medium.
  • Today’s social web is no different – we find our way through active exploration. Designers can aid the wayfinding process through consistency of design and functionality across various tools, but ultimately, it is the responsibility of the individual to click/fail/recoup and continue.
  • Social structures are filters. As a learner grows (and prunes) her personal networks, she also develops an effective means to filter abundance. The network becomes a cognitive agent in this instance – helping the learner to make sense of complex subject areas by relying not only on her own reading and resource exploration, but by permitting her social network to filter resources and draw attention to important topics. In order for these networks to work effectively, learners must be conscious of the need for diversity and should include nodes that offer critical or antagonistic perspectives on all topic areas. Sensemaking in complex environments is a social process.
  • Imagine a course where the fragmented conversations and content are analyzed (monitored) through a similar service. Instead of creating a structure of the course in advance of the students starting (the current model), course structure emerges through numerous fragmented interactions. “Intelligence” is applied after the content and interactions start, not before. This is basically what Google did for the web – instead of fully defined and meta-described resources in a database, organized according to subject areas (i.e. Yahoo at the time), intelligence was applied at the point of search. Aggregation should do the same – reveal the content and conversation structure of the course as it unfolds, rather than defining it in advance.
    • Barbara Lindsey
       
      This would really change how courses are currently taught. How would current course, program, departmental, school-wide assessments, evaluations react?
  • Educators often have years or decades of experience in a field. As such, they are familiar with many of the concepts, pitfalls, confusions, and distractions that learners are likely to encounter. As should be evident by now, the educator is an important agent in networked learning. Instead of being the sole or dominant filter of information, he now shares this task with other methods and individuals.
  • Filtering can be done in explicit ways – such as selecting readings around course topics – or in less obvious ways – such as writing summary blog posts around topics. Learning is an eliminative process. By determining what doesn’t belong, a learner develops and focuses his understanding of a topic. The teacher assists in the process by providing one stream of filtered information. The student is then faced with making nuanced selections based on the multiple information streams he encounters. The singular filter of the teacher has morphed into numerous information streams, each filtered according to different perspectives and world views.
  • During CCK08/09, one of Stephen’s statements that resonated with many learners centers on modelling as a teaching practice: “To teach is to model and to demonstrate. To learn is to practice and to reflect.”
  • Apprenticeship learning models are among the most effective in attending to the full breadth of learning. Apprenticeship is concerned with more than cognition and knowledge (to know about) – it also addresses the process of becoming a carpenter, plumber, or physician.
  • Without an online identity, you can’t connect with others – to know and be known. I don’t think I’m overstating the importance of have a presence in order to participate in networks. To teach well in networks – to weave a narrative of coherence with learners – requires a point of presence.
  • In CCK08/09, we used The Daily, the connectivism blog, elearnspace, OLDaily, Twitter, Facebook, Ning, Second Life, and numerous other tools to connect with learners. Persistent presence in the learning network is needed for the teacher to amplify, curate, aggregate, and filter content and to model critical thinking and cognitive attributes that reflect the needs of a discipline.
  • We’re
  • We’re still early in many of these trends. Many questions remain unanswered about privacy, ethics in networks, and assessment. My view is that change in education needs to be systemic and substantial. Education is concerned with content and conversations. The tools for controlling both content and conversation have shifted from the educator to the learner. We require a system that acknowledges this reality.
  • Aggregation had so much potential. And yet has delivered relatively little over the last decade.
  • Perhaps we need to spend more time in information abundant environments before we turn to aggregation as a means of making sense of the landscape.
  • I’d like a learning system that functions along the lines of RescueTime – actively monitoring what I’m doing – but then offers suggestions of what I should (or could) be doing additionally. Or a system that is aware of my email exchanges over the last several years and can provide relevant information based on the development of my thinking and work.
    • Barbara Lindsey
       
      Would you welcome this kind of feedback on your private exchanges?
13More

Cognitive Surplus: The Great Spare-Time Revolution | Magazine - 0 views

  • Somehow, watching television became a part-time job for every citizen in the developed world. But once we stop thinking of all that time as individual minutes to be whiled away and start thinking of it as a social asset that can be harnessed, it all looks very different. The buildup of this free time among the world’s educated population—maybe a trillion hours per year—is a new resource. It’s what I refer to as the cognitive surplus.
  • Shirky:
  • Pink: A surplus that post-TV media—blogs, wikis, and Twitter—can tap for other, often more valuable, uses.
  • ...8 more annotations...
  • he very nature of these new technologies fosters social connection—creating, contributing, sharing. When someone buys a TV, the number of consumers goes up by one, but the number of producers stays the same. When someone buys a computer or mobile phone, the number of consumers and producers both increase by one. This lets ordinary citizens, who’ve previously been locked out, pool their free time for activities they like and care about. So instead of that free time seeping away in front of the television set, the cognitive surplus is going to be poured into everything from goofy enterprises like lolcats, where people stick captions on cat photos, to serious political activities like Ushahidi.com, where people report human rights abuses.
  • All the time that people devote to Wikipedia—which that guy considered weird and wasteful—is really a tiny portion of our worldwide cognitive surplus. It’s less than one-tenth of 1 percent of the total.
  • Our third drive—our intrinsic motivation—can be even more powerful.
  • Shirky: Right—because television crowded out other forms of social engagement. Look, behavior is motivation filtered through opportunity. So if you see people behaving in new ways, like with Wikipedia and whatnot, it’s very unlikely that their motivations have changed, because human nature doesn’t change that quickly. It’s quite likely that the opportunities have changed.
  • When we lacked the ability to efficiently connect and collaborate with each other, that intrinsic motivation often didn’t surface. So we assumed that productive, public activities revolved around extrinsic motivation and external rewards. And we assumed that all rewards were substitutable for all other rewards. So I can pay you more or I can praise you or I can put a Lucite brick on your desk and it all works the same way.
  • When Deci took people who enjoyed solving complicated puzzles for fun and began paying them if they did the puzzles, they no longer wanted to play with those puzzles during their free time. And the science is overwhelming that for creative, conceptual tasks, those if-then rewards rarely work and often do harm.
  • Pink: Yes, often these outside motivators can give us less of what we want and more of what we don’t want. Think about that study of Israeli day care centers, which we both write about. When day care centers fined parents for being late to pick up their kids, the result was that more parents ended up coming late. People no longer felt a social obligation to behave well. Shirky: If you assume bad faith from the average participant, you’ll probably get it. In social media, the design principle that has worked remarkably well is to treat good faith as the normal case and to regard defections from that as essentially a special case to be solved.
  • Shirky: Well, organizations that are founded to solve problems end up committed to the preservation of the problems. So Trentway-Wagar, an Ontario-based bus company, sues PickupPal, an online ride-sharing service, because T-W isn’t committed to solving transportation problems. It’s committed to solving transportation problems with buses. In the media world, Britannica is now committed to making reference works that can’t easily be referred to, and the music industry is now distributing music that can’t easily be shared because new ways of distributing music undermine the old business model.
    • Barbara Lindsey
       
      Does the same hold true for education?
  •  
    Pink and Shirky talk about the shift in technology-enabled human interaction.
1 - 20 of 110 Next › Last »
Showing 20 items per page