Skip to main content

Home/ Artificial Intelligence Research/ Group items tagged not.

Rss Feed Group items tagged

Matvey Ezhov

On Biological and Digital Intelligence - 0 views

  • In essence, Hawkins argues that, to whatever extent the concept of “consciousness” can’t be boiled down to brain theory, it’s simply a bunch of hooey.
    • Matvey Ezhov
       
      Not true!
  • in which conscious experience is more foundational than physical systems or linguistic communications
  • Conscious experiences are associated with patterns, and patterns are associated with physical systems, but none of these is fully reducible to the other. 
  • ...22 more annotations...
  • He makes the correct point that roughly-human-level AI’s will have dramatically different strengths and weaknesses from human being, due to different sensors and actuators and different physical infrastructures for their cognitive dynamics.  But he doesn’t even touch the notion of self-modifying AI – the concept that once an AI gets smart enough to modify its own code, it’s likely to get exponentially smarter and smarter until it’s left us humans in the dust.
    • Matvey Ezhov
       
      Совершенно не имеет отношения к теме, подход Хокинса легко масштабируется до сверх- и сверх-сверх-сверхчеловеческого интеллекта.
  • therefore if AI closely enough emulates the human brain it won’t radically self-modify either
  • Rather, I think the problem is that the field of AI has come to focus on “narrow AI” – programs that solve particularly, narrowly-defined problems – rather than “artificial general intelligence” (AGI). 
  • cognitive science, artificial general intelligence, philosophy of mind and abstract mathematics
    • Matvey Ezhov
       
      т.о. Гортзел признается, что вообще принимает и не считает нужным принимать нейронауку в расчет, т.е. опирается только на эмпирические представления о том, как работает сознание.
  • So what we’re doing is creating commercial narrow AI programs, using the software framework that we’re building out with our AGI design in mind.
    • Matvey Ezhov
       
      и в этом его большое отличие от платформы Хокинса, которая имеет одинаковую структуру для всех ее применений
  • I tend to largely agree with his take on the brain
  • I think he oversimplifies some things fairly seriously – giving them very brief mention when they’re actually quite long and complicated stories.  And some of these omissions, in my view, are not mere “biological details” but are rather points of serious importance for his program of abstracting principles from brain science and then re-concretizing these principles in the context of digital software.
  • One point Hawkins doesn’t really cover is how a mind/brain chooses which predictions to make, from among the many possible predictions that exist.
    • Matvey Ezhov
       
      тут он вроде бы прав...
  • Hawkins proposes that there are neurons or neuronal groups that represent patterns as “tokens,” and that these tokens are then incorporated along with other neurons or neuronal groups into larger groupings representing more abstract patterns.  This seems clearly to be correct, but he doesn’t give much information on how these tokens are supposed to be formed. 
  • So, what’s wrong with Hawkins’ picture of brain function?  Nothing’s exactly wrong with it, so far as I can tell.
  • But Edelman then takes the concept one step further and talks about “neural maps” – assemblies of neuronal groups that carry out particular perception, cognition or action functions.  Neural maps, in essence, are sets of neuronal groups that host attractors of neurodynamics.  And Edelman then observes, astutely, that the dynamics of the population of neuronal groups, over time, is likely to obey a form of evolution by natural selection.
  • How fascinating if the brain also operates in this way!
    • Matvey Ezhov
       
      да нифига... слов нет
  • Hawkins argues that creativity is essentially just metaphorical thinking, generalization based on memory.  While this is true in a grand sense, it’s not a very penetrating statement.
  • Evolutionary learning is the most powerful general search mechanism known to computer science, and is also hypothesized by Edelman to underly neural intelligence.  This sort of idea, it seems to me, should be part of any synthetic approach to brain function.
  • Hawkins mentions the notion, and observes correctly that Hebbian learning in the brain is a lot subtler than the simple version that Donald Hebb laid out in the late 40’s.   But he largely portrays these variations as biological details, and then shifts focus to the hierarchical architecture of the cortex. 
  • Hawkins’ critique of AI, which in my view is overly harsh.  He dismisses work on formal logic based reasoning as irrelevant to “real intelligence.” 
  • So – to sum up – I think Hawkins’ statements about brain function are pretty much correct
  • What he omits are, for instance,   The way the brain displays evolutionary learning as a consequence of the dynamics of multiple attractors involving sets of neural clusters The way the brain may emergently give rise to probabilistic reasoning via the statistical coordination of Hebbian learning
  • Learning of predictive patterns requires an explicit or implicit search through a large space of predictive patterns; evolutionary learning provides one approach to this problem, with computer science foundations and plausible connections to brain function; again, Hawkins does not propose any concrete alternative.
  • crucial question of how far one has to abstract away from brain function, to get to something that can be re-specialized into efficient computer software.  My intuition is that this will require a higher level of abstraction than Hawkins seems to believe.  But I stress that this is a matter of intuitive judgment – neither of us really knows.
  • Of course, to interpret the Novamente design as an “abstraction from the brain” is to interpret this phrase in a fairly extreme sense – we’re abstracting general processes like probabilistic inference and evolutionary learning and general properties like hierarchical structure from the brain, rather than particular algorithms. 
    • Matvey Ezhov
       
      наконец-то он сказал это
  • Although I’m (unsurprisingly) most psyched about the Novamente approach, I think it’s also quite worthwhile to pursue AGI approaches that are closer to the brain level – there’s a large space between detailed brain simulation and Novamente, including neuron-level simulations, neural-cluster-level simulations, and so forth. 
Matvey Ezhov

Time-keeping Brain Neurons Discovered - 3 views

  • An MIT team led by Institute Professor Ann Graybiel has found groups of neurons in the primate brain that code time with extreme precision.
  • The neurons are located in the prefrontal cortex and the striatum, both of which play important roles in learning, movement and thought control.
  • The research team trained two macaque monkeys to perform a simple eye-movement task. After receiving the "go" signal, the monkeys were free to perform the task at their own speed. The researchers found neurons that consistently fired at specific times -- 100 milliseconds, 110 milliseconds, 150 milliseconds and so on -- after the "go" signal.
  •  
    Its would be difficult, if neurons of that kind have not be discovered. Obliviously, we have millions of it in our brains. For make time-keeping neurons we need (in simplest case) only 2 neurons with reciprocal connections. More units in circle - more time to delay - more time to "keep". Also, not single "time keeping neurons" but time keeping circles. Such clear understating of processes on neuronal level is completely impossible without Brainbug play experience. Think about it!
Alexander Phoenix

Chinese Room Argument - 2 views

  •  
    and why it's not an argument
  •  
    I think, it's not an argument at all. Empty metaphysics
mikhail-miguel

Audyo - Edit words not waveforms, switch speakers, and tweak pronunciations with phonet... - 0 views

  •  
    Audyo: Create audio like writing a doc (audyo.ai). Audyo: Edit words not waveforms, switch speakers, and tweak pronunciations with phonetics (audyo.ai).
mikhail-miguel

This Resume Does Not Exist - 1000 AI-inspired resume examples (thisresumedoesnotexist.c... - 0 views

  •  
    This Resume Does Not Exist: 1000 AI-inspired resume examples (thisresumedoesnotexist.com).
mikhail-miguel

Audyo - Edit words not waveforms, switch speakers, and tweak pronunciations with phonet... - 0 views

  •  
    Audyo: Create audio like writing a doc (audyo.ai). Audyo: Edit words not waveforms, switch speakers, and tweak pronunciations with phonetics (audyo.ai).
mikhail-miguel

Codeium - AI-powered code acceleration toolkit to code smarter, not harder (codeium.com). - 0 views

  •  
    Codeium: AI-powered code acceleration toolkit to code smarter, not harder (codeium.com).
mikhail-miguel

Codeium - AI-powered code acceleration toolkit to code smarter, not harder (codeium.com). - 0 views

  •  
    Codeium: AI-powered code acceleration toolkit to code smarter, not harder (codeium.com).
mikhail-miguel

This Model Does Not Exist - Alice is an AI-generated influencer! Vote to decide her Ins... - 0 views

  •  
    This Model Does Not Exist: Alice is an AI-generated influencer! Vote to decide her Instagram posts (thismodeldoesnotexist.co).
mikhail-miguel

Human or Not - A social Turing Game (humanornot.ai). - 0 views

  •  
    Human or Not: A social Turing Game (humanornot.ai).
mikhail-miguel

Human or Not - A social Turing Game (humanornot.ai). - 0 views

  •  
    Human or Not: A social Turing Game (humanornot.ai).
thinkahol *

Being No One - The MIT Press - 0 views

  •  
    According to Thomas Metzinger, no such things as selves exist in the world: nobody ever had or was a self. All that exists are phenomenal selves, as they appear in conscious experience. The phenomenal self, however, is not a thing but an ongoing process; it is the content of a "transparent self-model." In Being No One, Metzinger, a German philosopher, draws strongly on neuroscientific research to present a representationalist and functional analysis of what a consciously experienced first-person perspective actually is. Building a bridge between the humanities and the empirical sciences of the mind, he develops new conceptual toolkits and metaphors; uses case studies of unusual states of mind such as agnosia, neglect, blindsight, and hallucinations; and offers new sets of multilevel constraints for the concept of consciousness. Metzinger's central question is: How exactly does strong, consciously experienced subjectivity emerge out of objective events in the natural world? His epistemic goal is to determine whether conscious experience, in particular the experience of being someone that results from the emergence of a phenomenal self, can be analyzed on subpersonal levels of description. He also asks if and how our Cartesian intuitions that subjective experiences as such can never be reductively explained are themselves ultimately rooted in the deeper representational structure of our conscious minds.
thinkahol *

Artificial life forms evolve basic intelligence - life - 04 August 2010 - New Scientist - 0 views

  •  
    Digital organisms not only mutate and evolve, they also have memory - so how long before they acquire intelligence too?
Volucer Volucer

Equal numbers of neuronal and nonneuronal cells ma... [J Comp Neurol. 2009] - PubMed re... - 0 views

  •  
    "We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells ("neurons") and 84.6 +/- 9.8 billion NeuN-negative ("nonneuronal") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. "
  •  
    New data about overall number of neurons in brain
thinkahol *

All In The Mind - 10 October 2009 - You are not a self! Bodies, brains and the nature o... - 0 views

  •  
    German philosopher of mind Thomas Metzinger is one of the world's top researchers on consciousness, instrumental in its renaissance as a respectable problem for scientific enquiry. From out-of-body experiences to lucid dreaming, anarchic hand syndrome to phantom limbs, his investigations have taken him to places few dare to go. Be spooked, bewildered and amazed.
Matvey Ezhov

PLoS Biology: Towards a Mathematical Theory of Cortical Micro-circuits (about Hawkins' ... - 1 views

  • The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation.
    • Matvey Ezhov
       
      Statement needs checking
  • Friston recently expanded on this to suggest an inversion method for hierarchical Bayesian dynamic models and to point out that the brain, in principle, has the infrastructure needed to invert hierarchical dynamic models [6].
  • In a recent review, Hegde and Felleman pointed out that the “Bayesian framework is not yet a neural model. [The Bayesian] framework currently helps explain the computations that underlie various brain functions, but not how the brain implements these computations” [2]. This paper is an attempt to fill this gap by deriving a computational model for cortical circuits based on the mathematics of Bayesian belief propagation in the context of a particular Bayesian framework called Hierarchical Temporal Memory (HTM).
  • ...3 more annotations...
  • This paper's other author, George, recognized that the Memory-Prediction framework could be formulated in Bayesian terms and given a proper mathematical foundation [8],[9].
  • Several researchers have proposed detailed models for cortical circuits [10]–[12].
  • Other researchers [4],[13] have proposed detailed mechanisms by which Bayesian belief propagation techniques can be implemented in neurons.
    • Matvey Ezhov
       
      Николаю Сибирцеву: ты искал именно это
Matvey Ezhov

Technology Review: Intelligence Explained (!) - 0 views

  • "Scientists are now able to switch the focus from particular regions of the brain to the connections between those regions," says Sherif Karama, a psychiatrist and a neuroscientist at McGill University's Montreal Neurological Institute.
  • A quantifiable "general intelligence factor," known as g, can be statistically extracted from scores on a battery of intelligence tests.
  • In 2001, Thompson showed that it is correlated with volume in the frontal cortex, a result consistent with a number of studies that have linked intelligence to overall brain size.
  • ...3 more annotations...
  • In 2007, Jung and Richard Haier, now professor emeritus of psychology at the University of California, Irvine, developed the first comprehensive theory drawn from neuroimaging of how the brain gives rise to intelligence.
    • Matvey Ezhov
       
      Attention! To Research.
  • As we "evolved from worms to humans," says George Bartzokis, a professor of psychiatry at UCLA, the number of non-neural cells in the brain increased 50 times more than the number of neurons. He adds, "My hypothesis has always been that what gives us our cognitive capacity is not actually the number of neurons, which can vary tremendously between human individuals, but rather the quality of our connections."
  • The type of MRI typically used for medical scans does not show the finer details of the brain's white matter. But with a technique called diffusion tensor imaging (DTI), which uses the scanner's magnet to track the movement of water molecules in the brain, scientists have developed ways to map out neural wiring in detail. While water moves randomly within most brain tissue, it flows along the insulated neural fibers like current through a wire.
Matvey Ezhov

PLoS Computational Biology: Qualia: The Geometry of Integrated Information - 1 views

  •  
    According to the integrated information theory, the quantity of consciousness is the amount of integrated information generated by a complex of elements, and the quality of experience is specified by the informational relationships it generates. This paper outlines a framework for characterizing the informational relationships generated by such systems. Qualia space (Q) is a space having an axis for each possible state (activity pattern) of a complex. Within Q, each submechanism specifies a point corresponding to a repertoire of system states. Arrows between repertoires in Q define informational relationships. Together, these arrows specify a quale-a shape that completely and univocally characterizes the quality of a conscious experience. Φ- the height of this shape-is the quantity of consciousness associated with the experience. Entanglement measures how irreducible informational relationships are to their component relationships, specifying concepts and modes. Several corollaries follow from these premises. The quale is determined by both the mechanism and state of the system. Thus, two different systems having identical activity patterns may generate different qualia. Conversely, the same quale may be generated by two systems that differ in both activity and connectivity. Both active and inactive elements specify a quale, but elements that are inactivated do not. Also, the activation of an element affects experience by changing the shape of the quale. The subdivision of experience into modalities and submodalities corresponds to subshapes in Q. In principle, different aspects of experience may be classified as different shapes in Q, and the similarity between experiences reduces to similarities between shapes. Finally, specific qualities, such as the "redness" of red, while generated by a local mechanism, cannot be reduced to it, but require considering the entire quale. Ultimately, the present framework may offer a principled way for translating quali
Matvey Ezhov

NeuroLex - 1 views

  •  
    The NeuroLex project, supported by the Neuroscience Information Framework project, is a dynamic lexicon of neuroscience terms. Unlike an encyclopedia, a lexicon provides the meaning of a term, and not all there is to know about it.
1 - 20 of 39 Next ›
Showing 20 items per page