Skip to main content

Home/ Advanced Concepts Team/ Group items matching "everything" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Luís F. Simões

This Will Change Everything: Ideas That Will Shape the Future (The Edge Annual Question - 2009) - 3 views

  • WHAT WILL CHANGE EVERYTHING? "What game-changing scientific ideas and developments do you expect to live to see?"
  • That's the question John Brockman, editor of the Web site edge.org, posed to about 160 cutting-edge minds in his 11th annual Edge Question. As in years past, they responded with bold, often thrilling, sometimes chilling, answers.
  •  
    And here's the same thing, but in dead-trees format: http://www.amazon.com/This-Will-Change-Everything-Future/dp/0061899674 Anyone else thinks that the ACT should buy us all a copy as a Christmas present? :)
  •  
    you are the ACT!!!
Francesco Biscani

STLport: An Interview with A. Stepanov - 2 views

  • Generic programming is a programming method that is based in finding the most abstract representations of efficient algorithms.
  • I spent several months programming in Java.
  • for the first time in my life programming in a new language did not bring me new insights
  • ...2 more annotations...
  • it has no intellectual value whatsoever
  • Java is clearly an example of a money oriented programming (MOP).
  •  
    One of the authors of the STL (C++'s Standard Template Library) explains generic programming and slams Java.
  • ...6 more comments...
  •  
    "Java is clearly an example of a money oriented programming (MOP)." Exactly. And for the industry it's the money that matters. Whatever mathematicians think about it.
  •  
    It is actually a good thing that it is "MOP" (even though I do not agree with this term): that is what makes it inter-operable, light and easy to learn. There is no point in writing fancy codes, if it does not bring anything to the end-user, but only for geeks to discuss incomprehensible things in forums. Anyway, I am pretty sure we can find a Java guy slamming C++ ;)
  •  
    Personally, I never understood what the point of Java is, given that: 1) I do not know of any developer (maybe Marek?) that uses it for intellectual pleasure/curiosity/fun whatever, given the possibility of choice - this to me speaks loudly on the objective qualities of the language more than any industrial-corporate marketing bullshit (for the record, I argue that Python is more interoperable, lighter and easier to learn than Java - which is why, e.g., Google is using it heavily); 2) I have used a software developed in Java maybe a total of 5 times on any computer/laptop I owned over 15 years. I cannot name of one single Java project that I find necessary or even useful; for my usage of computers, Java could disappear overnight without even noticing. Then of course one can argue as much as one wants about the "industry choosing Java", to which I would counterargue with examples of industry doing stupid things and making absurd choices. But I suppose it would be a kind of pointless discussion, so I'll just stop here :)
  •  
    "At Google, python is one of the 3 "official languages" alongside with C++ and Java". Java runs everywhere (the byte code itself) that is I think the only reason it became famous. Python, I guess, is more heavy if it were to run on your web browser! I think every language has its pros and cons, but I agree Java is not the answer to everything... Java is used in MATLAB, some web applications, mobile phones apps, ... I would be a bit in trouble if it were to disappear today :(
  •  
    I personally do not believe in interoperability :)
  •  
    Well, I bet you'd notice an overnight disappearance of java, because half of the internet would vanish... J2EE technologies are just omnipresent there... I'd rather not even *think* about developing a web application/webservice/web-whatever in standard C++... is it actually possible?? Perhaps with some weird Microsoft solutions... I bet your bank online services are written in Java. Certainly not in PHP+MySQL :) Industry has chosen Java not because of industrial-corporate marketing bullshit, but because of economics... it enables you develop robustly, reliably, error-prone, modular, well integrated etc... software. And the costs? Well, using java technologies you can set-up enterprise-quality web application servers, get a fully featured development environment (which is better than ANY C/C++/whatever development environment I've EVER seen) at the cost of exactly 0 (zero!) USD/GBP/EUR... Since many years now, the central issue in software development is not implementing algorithms, it's building applications. And that's where Java outperforms many other technologies. The final remark, because I may be mistakenly taken for an apostle of Java or something... I love the idea of generic programming, C++ is my favourite programming language (and I used to read Stroustroup before sleep), at leisure time I write programs in Python... But if I were to start a software development company, then, apart from some very niche applications like computer games, it most probably would use Java as main technology.
  •  
    "I'd rather not even *think* about developing a web application/webservice/web-whatever in standard C++... is it actually possible?? Perhaps with some weird Microsoft solutions... I bet your bank online services are written in Java. Certainly not in PHP+MySQL :)" Doing in C++ would be awesomely crazy, I agree :) But as I see it there are lots of huge websites that operate on PHP, see for instance Facebook. For the banks and the enterprise market, as a general rule I tend to take with a grain of salt whatever spin comes out from them; in the end behind every corporate IT decision there is a little smurf just trying to survive and have the back covered :) As they used to say in the old times, "No one ever got fired for buying IBM". "Industry has chosen Java not because of industrial-corporate marketing bullshit, but because of economics... it enables you develop robustly, reliably, error-prone, modular, well integrated etc... software. And the costs? Well, using java technologies you can set-up enterprise-quality web application servers, get a fully featured development environment (which is better than ANY C/C++/whatever development environment I've EVER seen) at the cost of exactly 0 (zero!) USD/GBP/EUR... Since many years now, the central issue in software development is not implementing algorithms, it's building applications. And that's where Java outperforms many other technologies." Apart from the IDE considerations (on which I cannot comment, since I'm not a IDE user myself), I do not see how Java beats the competition in this regard (again, Python and the huge software ecosystem surrounding it). My impression is that Java's success is mostly due to Sun pushing it like there is no tomorrow and bundling it with their hardware business.
  •  
    OK, I think there is a bit of everything, wrong and right, but you have to acknowledge that Python is not always the simplest. For info, Facebook uses Java (if you upload picture for instance), and PHP is very limited. So definitely, in company, engineers like you and me select the language, it is not a marketing or political thing. And in the case of fb, they come up with the conclusion that PHP, and Java don't do everything but complement each other. As you say Python as many things around, but it might be too much for simple applications. Otherwise, I would seriously be interested by a study of how to implement a Python-like system on-board spacecrafts and what are the advantages over mixing C, Ada and Java.
jmlloren

Exotic matter : Insight : Nature - 5 views

shared by jmlloren on 03 Aug 10 - Cached
LeopoldS liked it
  •  
    Trends in materials and condensed matter. Check out the topological insulators. amazing field.
  • ...12 more comments...
  •  
    Aparently very interesting, will it survive the short hype? Relevant work describing mirror charges of topological insulators and the classical boundary conditions were done by Ismo and Ari. But the two communities don't know each other and so they are never cited. Also a way to produce new things...
  •  
    Thanks for noticing! Indeed, I had no idea that Ari (don't know Ismo) was involved in the field. Was it before Kane's proposal or more recently? What I mostly like is that semiconductors are good candidates for 3D TI, however I got lost in the quantum field jargon. Yesterday, I got a headache trying to follow the Majorana fermions, the merons, skyrnions, axions, and so on. Luzi, are all these things familiar to you?
  •  
    Ismo Lindell described in the early 90's the mirror charge of what is now called topological insulator. He says that similar results were obtained already at the beginning of the 20th century... Ismo Lindell and Ari Sihvola in the recent years discussed engineering aspects of PEMCs (perfect electro-megnetic conductors,) which are more or less classical analogues of topological insulators. Fundamental aspects of PEMCs are well knwon in high-energy physics for a long time, recent works are mainly due to Friedrich Hehl and Yuri Obukhov. All these works are purely classical, so there is no charge quantisation, no considerations of electron spin etc. About Majorana fermions: yes, I spent several years of research on that topic. Axions: a topological state, of course, trivial :-) Also merons and skyrnions are topological states, but I'm less familiar with them.
  •  
    "Non-Abelian systems1, 2 contain composite particles that are neither fermions nor bosons and have a quantum statistics that is far richer than that offered by the fermion-boson dichotomy. The presence of such quasiparticles manifests itself in two remarkable ways. First, it leads to a degeneracy of the ground state that is not based on simple symmetry considerations and is robust against perturbations and interactions with the environment. Second, an interchange of two quasiparticles does not merely multiply the wavefunction by a sign, as is the case for fermions and bosons. Rather, it takes the system from one ground state to another. If a series of interchanges is made, the final state of the system will depend on the order in which these interchanges are being carried out, in sharp contrast to what happens when similar operations are performed on identical fermions or bosons." wow, this paper by Stern reads really weired ... any of you ever looked into this?
  •  
    C'mon Leopold, it's as trivial as the topological states, AKA axions! Regarding the question, not me!
  •  
    just looked up the wikipedia entry on axions .... at least they have some creativity in names giving: "In supersymmetric theories the axion has both a scalar and a fermionic superpartner. The fermionic superpartner of the axion is called the axino, the scalar superpartner is called the saxion. In some models, the saxion is the dilaton. They are all bundled up in a chiral superfield. The axino has been predicted to be the lightest supersymmetric particle in such a model.[24] In part due to this property, it is considered a candidate for the composition of dark matter.[25]"
  •  
    Thank's Leopold. Sorry Luzi for being ironic concerning the triviality of the axions. Now, Leo confirmed me that indeed is a trivial matter. I have problems with models where EVERYTHING is involved.
  •  
    Well, that's the theory of everything, isn't it?? Seriously: I don't think that theoretically there is a lot of new stuff here. Topological aspects of (non-Abelian) theories became extremely popular in the context of string theory. The reason is very simple: topological theories are much simpler than "normal" and since string theory anyway is far too complicated to be solved, people just consider purely topological theories, then claiming that this has something to do with the real world, which of course is plainly wrong. So what I think is new about these topological insulators are the claims that one can actually fabricate a material which more or less accurately mimics a topological theory and that these materials are of practical use. Still, they are a little bit the poor man's version of the topological theories fundamental physicists like to look at since electrdynamics is an Abelian theory.
  •  
    I have the feeling, not the knowledge, that you are right. However, I think that the implications of this light quantum field effects are great. The fact of being able to sustain two currents polarized in spin is a technological breakthrough.
  •  
    not sure how much I can contribute to your apparently educated debate here but if I remember well from my work for the master, these non-Abelian theories were all but "simple" as Luzi puts it ... and from a different perspective: to me the whole thing of being able to describe such non-Abelian systems nicely indicates that they should in one way or another also have some appearance in Nature (would be very surprised if not) - though this is of course no argument that makes string theory any better or closer to what Luzi called reality ....
  •  
    Well, electrodynamics remains an Abelian theory. From the theoretical point of view this is less interesting than non-Abelian ones, since in 4D the fibre bundle of a U(1) theory is trivial (great buzz words, eh!) But in topological insulators the point of view is slightly different since one always has the insulator (topological theory), its surrounding (propagating theory) and most importantly the interface between the two. This is a new situation that people from field and string theory were not really interested in.
  •  
    guys... how would you explain this to your gran mothers?
  •  
    *you* tried *your* best .... ??
nikolas smyrlakis

Google - Moscow-Vladivostok: virtual journey on Google Maps - 1 views

  •  
    the whole trans-siberian journey recorded from a camera, a bit too long to watch everything nevertheless
ESA ACT

Espra and Plexnet - 0 views

  •  
    "weapons for mass construction" - they want to solve everything with a new type of internet. including "swarm awareness" and "hive intelligence"
ESA ACT

Tikitag promises to bring RFID tags to everything - Engadget - 0 views

  •  
    we need to get one of these packages as soon as they are out ... putting them on our cups? LS;
nikolas smyrlakis

cool site - 0 views

  •  
    no registration, you just send an email to post@posterous.com and automatically creates a blog with your link, check my test one e.g. http://nikolis1.posterous.com/ Read more: "Posterous - The place to post everything. Just email us. Dead simple blog by email." - http://posterous.com/#ixzz0EYUFIaWX&A
  •  
    bullshit
ESA ACT

Everything you always wanted to know about Google... - 0 views

  •  
    Actually quite interesting and in-depth
ESA ACT

Dumb eco-questions you were afraid to ask - 0 views

  •  
    Everything you wanted to know about se... um... ecology. Very interesting, myth-busting article.
nikolas smyrlakis

Bio-Mimetic Approaches in Management Science, Book - Barnes & Noble - 1 views

  •  
    Oh yes somebody seems to have found a link between CMS and Biomimetics. Everything is possible now, even Fundamental physics !
  •  
    Neural networks = biomimetics. That's the conclusion from the TOC. It seems that biomimetics becomes the worse usurper than string theory.
Marcus Maertens

Everything You Wanted to Know about Space Tourism but Were Afraid to Ask | Space Safety Magazine - 3 views

  •  
    "chances are that if 700 passengers are flown annually, up to 10 of them might not survive the flight in the first years of the operations." most remarkable also the question who is to blame if a dead and burned space tourist corps comes crashing down from the sky into your car.
  • ...3 more comments...
  •  
    How sure is the information that a human body would not completely burn / ablate during atmospheric re-entry? I am not aware of any material ground tests in a plasma wind tunnel confirming that human tissue would survive re-entry from LEO.
  •  
    Since a steak would not even be cooked by dropping it from very high altitudes (http://what-if.xkcd.com/28/) I would doubt that a space tourists body would desintegrate by atmospheric re-entry.
  •  
    Funny link, however, some things are not clear enough: 1. Ablation rate is unknown 2. What are the entry conditions? The link suggests that the steak is just dropped (no initial velocity). 3. What about the ballistic coefficient? 4. How would the entry body orientation? It would be a quite non-steady state configuration I guess with heavy accelerations. 5. How would vacuum exposure impact on the water in the body/steak and what would be the consequence for ablation behaviour? 6. Does surface chemistry play a role (not ablation, but catalysis)? My conclusion: the example with the steak is a funny and not so bad exercise, not more.
  •  
    This calls for some we serious simulations by the Petkow code it seems to me ...
  •  
    I still would need some serious input data...
Luís F. Simões

The Emerging Revolution in Game Theory - Technology Review - 2 views

  • The world of game theory is currently on fire. In May, Freeman Dyson at Princeton University and William Press at the University of Texas announced that they had discovered a previously unknown strategy for the game of prisoner's dilemma which guarantees one player a better outcome than the other. That's a monumental surprise. Theorists have studied Prisoner's Dilemma for decades, using it as a model for the emergence of co-operation in nature. This work has had a profound impact on disciplines such as economics, evolutionary biology and, of course, game theory itself. The new result will have impact in all these areas and more.
  • Ref: arxiv.org/abs/1208.2666: Winning isn't everything: Evolutionary stability of Zero Determinant strategies
santecarloni

Artificial Braneworlds Made to Collide In Lab - Technology Review - 4 views

  •  
    Physicists have simulated two universes colliding inside a metamaterial--  Now, this is cool (if it is true...)
  • ...1 more comment...
  •  
    we... the article is a bit overblown in my view ... except maybe the last paragraphs: "The collision between universe's is a variation on this theme. "The "colliding universe" scenario can be realized as a simple extension of our earlier experiments simulating the spacetime geometry in the vicinity of big bang," he says. He simulates an expanding universe using concetric rings of gold separated by a dielectric. "When the two concentric ring ("universe") patterns touch each other ("collide"), a Minkowski domain wall is created, in which the metallic stripes touch each other at a small angle," he says. Being able to recreate these exotic events in the lab is certainly interesting but it is beginning to lose its novelty. The problem is that this work is not telling us anything we didn't know--the universe behaves the same way inside a metamaterial as it does outside. What Smolyaninov needs is a way of using his exotic materials to do something interesting. In other words, he needs a killer app. Any ideas? "
  •  
    Hm, they use more or less everything I don't especially like. They are nonmagnetic, so the relation materialGR is already rather weak. Usually, experimentalists prefer nonmagnetic media, since they are cheaper and broadband. At least the broadband is no argument here, since the frequency defines the "mass", which I find a rather strange point of view. And finally, they use strong anisotropy as a model of "time", which is rather problematic. Of course, the spatial direction with eps<0 appears in the wave equation with the same sign as time. But this does not mean that it behaves like time. But to teach material physicists that time is more than just a different sign in the wave equation seems to be as hopeless as to teach them that a black hole is more than something that absorbs all light... SIGHHH
  •  
    Luzi I miss you ...
Wiktor Piotrowski

How Long until We Have the Superhuman Exoskeletons from Elysium ?: Scientific American - 3 views

  •  
    Interesting to see that almost everything in sci-fi that looks pretty cool requires a power source that has not been invented yet. Imagine what would be possible if you would have a table top high power source available.
Guido de Croon

Worlds smallest autopilot (yet) - 1 views

  •  
    The most tiny autopilot in the world was introduced yesterday by the Technical University of Delft, The Netherlands. Named Lisa/s, she comes in at the scales with just a mere 1.9 grams, the 2*2 cm board has everything that a multirotor needs. Among the sensors are a 3 axle gyroscope, compass, barometer and a gps module.
  •  
    Also hardware and software are open source!
Dario Izzo

NASA Brings Earth Science 'Big Data' to the Cloud with Amazon Web Services | NASA - 3 views

  •  
    NASA answer to the big data hype
  •  
    "The service encompasses selected NASA satellite and global change data sets -- including temperature, precipitation, and forest cover -- and data processing tools from the NASA Earth Exchange (NEX)" Very good marketing move for just three types of selected data (MODIS, Landsat products) plus four model runs (past/projection) for the the four greenhouse gas emissions scenarios of the IPCC. It looks as if they are making data available to adress a targeted question (crowdsourcing of science, as Paul mentioned last time, this time climate evolution), not at all the "free scrolling of the user around the database" to pick up what he thinks useful, mode. There is already more rich libraries out there when it comes to climate (http://icdc.zmaw.de/) Maybe simpler approach is the way to go: make available the big data sets categorized by study topic (climate evolution, solar system science, galaxies etc.) and not by instrument or mission, which is more technical, so that the amateur user can identify his point of interest easily.
  •  
    They are taking a good leap forward with it, but it definitely requires a lot of post processing of the data. Actually it seems they downsample everything to workable chunks. But I guess the power is really in the availability of the data in combination with Amazon's cloud computing platform. Who knows what will come out of it if hundreds of people start interacting with it.
johannessimon81

#Wired: When We Lose #Antibiotics, Here's Everything Else We'll Lose Too - 2 views

  •  
    This is seriously scary. Basically the only thing that hospitals could still help you with are broken arms and alcohol poisoning... :-\
  •  
    And the scary part is antibiotics use for human medicine is dwarfed by antibiotics use in livestock, at least in most countries I think.
Thijs Versloot

Hydrocoating - water transfer painting - 1 views

  •  
    Never knew they could paint this way
Thijs Versloot

Graphene #nantennas for power transfer and communication between tiny devices - 0 views

  •  
    Known technically as a surface plasmon polariton (SPP) wave, the effect will allow the nano-antennas to operate at the low end of the terahertz frequency range, between 0.1 and 10 terahertz - instead of at 150 terahertz With this antenna, we can cut the frequency by two orders of magnitude and cut the power needs by four orders of magnitude," said Jornet. "Using this antenna, we believe the energy-harvesting techniques developed by Dr. Wang would give us enough power to create a communications link between nanomachines." As always, graphene seems to be the answer to anything, but steady progress is being made although one needs to find out first an easy method of generating high quality graphene layers (btw that is also one of the reasons to do the supercapacitor study...)
  •  
    Well plasmonics is also the solution to everything it seems...
tvinko

Massively collaborative mathematics : Article : Nature - 28 views

  •  
    peer-to-peer theorem-proving
  • ...14 more comments...
  •  
    Or: mathematicians catch up with open-source software developers :)
  •  
    "Similar open-source techniques could be applied in fields such as [...] computer science, where the raw materials are informational and can be freely shared online." ... or we could reach the point, unthinkable only few years ago, of being able to exchange text messages in almost real time! OMG, think of the possibilities! Seriously, does the author even browse the internet?
  •  
    I do not agree with you F., you are citing out of context! Sharing messages does not make a collaboration, nor does a forum, .... You need a set of rules and a common objective. This is clearly observable in "some team", where these rules are lacking, making team work inexistent. The additional difficulties here are that it involves people that are almost strangers to each other, and the immateriality of the project. The support they are using (web, wiki) is only secondary. What they achieved is remarkable, disregarding the subject!
  •  
    I think we will just have to agree to disagree then :) Open source developers have been organizing themselves with emails since the early '90s, and most projects (e.g., the Linux kernel) still do not use anything else today. The Linux kernel mailing list gets around 400 messages per day, and they are managing just fine to scale as the number of contributors increases. I agree that what they achieved is remarkable, but it is more for "what" they achieved than "how". What they did does not remotely qualify as "massively" collaborative: again, many open source projects are managed collaboratively by thousands of people, and many of them are in the multi-million lines of code range. My personal opinion of why in the scientific world these open models are having so many difficulties is that the scientific community today is (globally, of course there are many exceptions) a closed, mostly conservative circle of people who are scared of changes. There is also the fact that the barrier of entry in a scientific community is very high, but I think that this should merely scale down the number of people involved and not change the community "qualitatively". I do not think that many research activities are so much more difficult than, e.g., writing an O(1) scheduler for an Operating System or writing a new balancing tree algorithm for efficiently storing files on a filesystem. Then there is the whole issue of scientific publishing, which, in its current form, is nothing more than a racket. No wonder traditional journals are scared to death by these open-science movements.
  •  
    here we go ... nice controversy! but maybe too many things mixed up together - open science journals vs traditional journals, conservatism of science community wrt programmers (to me one of the reasons for this might be the average age of both groups, which is probably more than 10 years apart ...) and then using emailing wrt other collaboration tools .... .... will have to look at the paper now more carefully ... (I am surprised to see no comment from José or Marek here :-)
  •  
    My point about your initial comment is that it is simplistic to infer that emails imply collaborative work. You actually use the word "organize", what does it mean indeed. In the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review). Mailing is just a coordination mean. In collaborations and team work, it is about rules, not only about the technology you use to potentially collaborate. Otherwise, all projects would be successful, and we would noy learn management at school! They did not write they managed the colloboration exclusively because of wikipedia and emails (or other 2.0 technology)! You are missing the part that makes it successful and remarkable as a project. On his blog the guy put a list of 12 rules for this project. None are related to emails, wikipedia, forums ... because that would be lame and your comment would make sense. Following your argumentation, the tools would be sufficient for collaboration. In the ACT, we have plenty of tools, but no team work. QED
  •  
    the question on the ACT team work is one that is coming back continuously and it always so far has boiled down to the question of how much there need and should be a team project to which everybody inthe team contributes in his / her way or how much we should leave smaller, flexible teams within the team form and progress, more following a bottom-up initiative than imposing one from top-down. At this very moment, there are at least 4 to 5 teams with their own tools and mechanisms which are active and operating within the team. - but hey, if there is a real will for one larger project of the team to which all or most members want to contribute, lets go for it .... but in my view, it should be on a convince rather than oblige basis ...
  •  
    It is, though, indicative that some of the team member do not see all the collaboration and team work happening around them. We always leave the small and agile sub-teams to form and organize themselves spontaneously, but clearly this method leaves out some people (be it for their own personal attitude or be it for pure chance) For those cases which we could think to provide the possibility to participate in an alternative, more structured, team work where we actually manage the hierachy, meritocracy and perform the project review (to use Joris words).
  •  
    I am, and was, involved in "collaboration" but I can say from experience that we are mostly a sum of individuals. In the end, it is always one or two individuals doing the job, and other waiting. Sometimes even, some people don't do what they are supposed to do, so nothing happens ... this could not be defined as team work. Don't get me wrong, this is the dynamic of the team and I am OK with it ... in the end it is less work for me :) team = 3 members or more. I am personally not looking for a 15 member team work, and it is not what I meant. Anyway, this is not exactly the subject of the paper.
  •  
    My opinion about this is that a research team, like the ACT, is a group of _people_ and not only brains. What I mean is that people have feelings, hate, anger, envy, sympathy, love, etc about the others. Unfortunately(?), this could lead to situations, where, in theory, a group of brains could work together, but not the same group of people. As far as I am concerned, this happened many times during my ACT period. And this is happening now with me in Delft, where I have the chance to be in an even more international group than the ACT. I do efficient collaborations with those people who are "close" to me not only in scientific interest, but also in some private sense. And I have people around me who have interesting topics and they might need my help and knowledge, but somehow, it just does not work. Simply lack of sympathy. You know what I mean, don't you? About the article: there is nothing new, indeed. However, why it worked: only brains and not the people worked together on a very specific problem. Plus maybe they were motivated by the idea of e-collaboration. No revolution.
  •  
    Joris, maybe I made myself not clear enough, but my point was only tangentially related to the tools. Indeed, it is the original article mention of "development of new online tools" which prompted my reply about emails. Let me try to say it more clearly: my point is that what they accomplished is nothing new methodologically (i.e., online collaboration of a loosely knit group of people), it is something that has been done countless times before. Do you think that now that it is mathematicians who are doing it makes it somehow special or different? Personally, I don't. You should come over to some mailing lists of mathematical open-source software (e.g., SAGE, Pari, ...), there's plenty of online collaborative research going on there :) I also disagree that, as you say, "in the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review)". First of all I think the main engine of any collaboration like this is the objective, i.e., wanting to get something done. Rules emerge from self-organization later on, and they may be completely different from project to project, ranging from almost anarchy to BDFL (benevolent dictator for life) style. Given this kind of variety that can be observed in open-source projects today, I am very skeptical that any kind of management rule can be said to be universal (and I am pretty sure that the overwhelming majority of project organizers never went to any "management school"). Then there is the social aspect that Tamas mentions above. From my personal experience, communities that put technical merit above everything else tend to remain very small and generally become irrelevant. The ability to work and collaborate with others is the main asset the a participant of a community can bring. I've seen many times on the Linux kernel mailing list contributions deemed "technically superior" being disregarded and not considered for inclusion in the kernel because it was clear that
  •  
    hey, just catched up the discussion. For me what is very new is mainly the framework where this collaborative (open) work is applied. I haven't seen this kind of working openly in any other field of academic research (except for the Boinc type project which are very different, because relying on non specialists for the work to be done). This raise several problems, and mainly the one of the credit, which has not really been solved as I read in the wiki (is an article is written, who writes it, what are the names on the paper). They chose to refer to the project, and not to the individual researchers, as a temporary solution... It is not so surprising for me that this type of work has been first done in the domain of mathematics. Perhaps I have an ideal view of this community but it seems that the result obtained is more important than who obtained it... In many areas of research this is not the case, and one reason is how the research is financed. To obtain money you need to have (scientific) credit, and to have credit you need to have papers with your name on it... so this model of research does not fit in my opinion with the way research is governed. Anyway we had a discussion on the Ariadnet on how to use it, and one idea was to do this kind of collaborative research; idea that was quickly abandoned...
  •  
    I don't really see much the problem with giving credit. It is not the first time a group of researchers collectively take credit for a result under a group umbrella, e.g., see Nicolas Bourbaki: http://en.wikipedia.org/wiki/Bourbaki Again, if the research process is completely transparent and publicly accessible there's no way to fake contributions or to give undue credit, and one could cite without problems a group paper in his/her CV, research grant application, etc.
  •  
    Well my point was more that it could be a problem with how the actual system works. Let say you want a grant or a position, then the jury will count the number of papers with you as a first author, and the other papers (at least in France)... and look at the impact factor of these journals. Then you would have to set up a rule for classifying the authors (endless and pointless discussions), and give an impact factor to the group...?
  •  
    it seems that i should visit you guys at estec... :-)
  •  
    urgently!! btw: we will have the ACT christmas dinner on the 9th in the evening ... are you coming?
1 - 20 of 44 Next › Last »
Showing 20 items per page