Skip to main content

Home/ Advanced Concepts Team/ Group items tagged grid

Rss Feed Group items tagged

Luzi Bergamin

First circuit breaker for high voltage direct current - 2 views

  •  
    Doesn't really sound sexy, but this is of utmost importance for next generation grids for renewable energy.
  •  
    I agree on the significance indeed - a small boost also for my favourite Desertec project ... Though their language is a bit too "grandiose": "ABB has successfully designed and developed a hybrid DC breaker after years of research, functional testing and simulation in the R&D laboratories. This breaker is a breakthrough that solves a technical challenge that has been unresolved for over a hundred years and was perhaps one the main influencers in the 'war of currents' outcome. The 'hybrid' breaker combines mechanical and power electronics switching that enables it to interrupt power flows equivalent to the output of a nuclear power station within 5 milliseconds - that's as fast as a honey bee takes per flap of its wing - and more than 30 times faster than the reaction time of an Olympic 100-meter medalist to react to the starter's gun! But its not just about speed. The challenge was to do it 'ultra-fast' with minimal operational losses and this has been achieved by combining advanced ultrafast mechanical actuators with our inhouse semiconductor IGBT valve technologies or power electronics (watch video: Hybrid HVDC Breaker - How does it work). In terms of significance, this breaker is a 'game changer'. It removes a significant stumbling block in the development of HVDC transmission grids where planning can start now. These grids will enable interconnection and load balancing between HVDC power superhighways integrating renewables and transporting bulk power across long distances with minimal losses. DC grids will enable sharing of resources like lines and converter stations that provides reliability and redundancy in a power network in an economically viable manner with minimal losses. ABB's new Hybrid HVDC breaker, in simple terms will enable the transmission system to maintain power flow even if there is a fault on one of the lines. This is a major achievement for the global R&D team in ABB who have worked for years on the challeng
Thijs Versloot

Satellites help power grid keep its balance - 0 views

  •  
    Using realtime environmental information (irradiance in this case) from GOES to update grid forecasts.
ESA ACT

Electric cars could act as batteries for the energy grid - tech - 04 December 2007 - Ne... - 0 views

  •  
    interesting wrt our space4energy grid study ....
ESA ACT

www.metering.com | NASA warns of impact of severe space weather on grid - 0 views

shared by ESA ACT on 24 Apr 09 - Cached
  •  
    Extreme weather conditions in space can have a severe impact on the electricity grid etc.
LeopoldS

Google-Ergebnis für http://www.umerc.umd.edu/research/images/efficiency06.png - 0 views

  •  
    electric grid modelling .... Nikolaos could you have a look at this?
ESA ACT

Researchers mash Google Earth with electrical data to predict national grid problems - 0 views

  •  
    Related with Daniela and Franco project on the power grid.
santecarloni

Reeling in cheap plastic solar film - physicsworld.com - 0 views

  •  
    A UK-based start-up is developing printable, thin-film plastic solar cells aimed at providing affordable electricity to individual dwellings that have no grid connection, such as those in rural Africa
santecarloni

Engineers enlist weather model to optimize offshore wind plan | Stanford School of Engi... - 0 views

  •  
    Using a sophisticated weather model, environmental engineers at Stanford have defined optimal placement of a grid of four wind farms off the U.S. East Coast. The model successfully balances production at times of peak demand and significantly reduces costly spikes and zero-power events.
Tom Gheysens

Biomimicr-E: Nature-Inspired Energy Systems | AAAS - 4 views

  •  
    some biomimicry used in energy systems... maybe it sparks some ideas
  •  
    not much new that has not been shared here before ... BUT: we have done relativley little on any of them. for good reasons?? don't know - maybe time to look into some of these again more closely Energy Efficiency( Termite mounds inspired regulated airflow for temperature control of large structures, preventing wasteful air conditioning and saving 10% energy.[1] Whale fins shapes informed the design of new-age wind turbine blades, with bumps/tubercles reducing drag by 30% and boosting power by 20%.[2][3][4] Stingray motion has motivated studies on this type of low-effort flapping glide, which takes advantage of the leading edge vortex, for new-age underwater robots and submarines.[5][6] Studies of microstructures found on shark skin that decrease drag and prevent accumulation of algae, barnacles, and mussels attached to their body have led to "anti-biofouling" technologies meant to address the 15% of marine vessel fuel use due to drag.[7][8][9][10] Energy Generation( Passive heliotropism exhibited by sunflowers has inspired research on a liquid crystalline elastomer and carbon nanotube system that improves the efficiency of solar panels by 10%, without using GPS and active repositioning panels to track the sun.[11][12][13] Mimicking the fluid dynamics principles utilized by schools of fish could help to optimize the arrangement of individual wind turbines in wind farms.[14] The nanoscale anti-reflection structures found on certain butterfly wings has led to a model to effectively harness solar energy.[15][16][17] Energy Storage( Inspired by the sunlight-to-energy conversion in plants, researchers are utilizing a protein in spinach to create a sort of photovoltaic cell that generates hydrogen from water (i.e. hydrogen fuel cell).[18][19] Utilizing a property of genetically-engineered viruses, specifically their ability to recognize and bind to certain materials (carbon nanotubes in this case), researchers have developed virus-based "scaffolds" that
LeopoldS

Testla energy Tesla Motors - 2 views

  •  
    tesla announcing home batteries at 350$/kW
  • ...1 more comment...
  •  
    Good stuff, no way it will be done in the netherlands however due to the 'equal-return' law in place here still that puts the price of returning to the grid equal to the costs of buying. The costs of this law are enormous however and energy companies would love to get rid off it, and it will in the upcoming years most likely. I wonder however if that makes sense on a regional/national level, returning to the grid on that scale produces a more stable supply. Why store for personal use only?
  •  
    Let's do some simple maths... Here in UK, example "economy 7" tarif yields night kWh approx. 12 pence cheaper than during day. Let's say the goal is to store energy equivalent to running a 2kW storage heater for 6 hours during the day. We need 12 kWh, so 12 times $350 this means need to spend approx. 1920 pounds for batteries. Time to break even at ROI: 1920 / 0.12 ~ 7.3 years... And this is assuming using the heater 365 days a year, and quite an expensive tariff (prepaid). SIWB :-)
  •  
    Also need to take into account that battery capacity tends to go down with time and usage
nikolas smyrlakis

GE: Ecomagination Challenge: Home - 1 views

  •  
    always ideas to power the (smart) grid effectively are needed.
LeopoldS

Ministry of Science and Technology of the People's Republic of China - 0 views

  •  
    University Alliance for Low Carbon Energy   Three universities, including Tsinghua University, University of Cambridge, and the Massachusetts Institute of Technology, have fostered up an alliance on November 15, 2009 to advocate low carbon energy and climate change adaptation The alliance will mainly work on 6 major areas: clean coal technology and CCS, homebuilding energy efficiency, industrial energy efficiency and sustainable transport, biomass energy and other renewable energy, advanced nuclear energy, intelligent power grid, and energy policies/planning. A steering panel made up of the senior experts from the three universities (two from each) will be established to review, evaluate, and endorse the goals, projects, fund raising activities, and collaborations under the alliance. With the Headquarters at the campus of Tsinghua University and branch offices at other two universities, the alliance will be chaired by a scientist selected from Tsinghua University.   According to a briefing, the alliance will need a budget of USD 3-5 million, mainly from the donations of government, industry, and all walks of life. In this context, the R&D findings derived from the alliance will find its applications in improving people's life.
nikolas smyrlakis

NASDAQ market index to track smart grid, electric infrastructure - Finance - Renewable ... - 0 views

  •  
    how about that for smartgrids etc
LeopoldS

BBC NEWS | Technology | Electricity to power 'smart grid' - 0 views

  •  
    nice link from Andrés ...
ESA ACT

ZetaGrid - 0 views

shared by ESA ACT on 24 Apr 09 - Cached
  •  
    ZetaGrid is a platform independent grid system that uses idle CPU cycles from participating computers. Problem: The ZetaGrid activities must come to a final end! Now all services are down and this domain will be closed soon. The official last update note
ESA ACT

Jarifa - Trac - 0 views

  •  
    Jarifa (a.k.a OGM) is a system for grid computing on organizational resources, using BOINC.
Nicholas Lan

Alertme energy - 3 views

  •  
    energy consumption meter that integrates with google powermeter. bottom-up smart grid?
Guido de Croon

Will robots be smarter than humans by 2029? - 2 views

  •  
    Nice discussion about the singularity. Made me think of drinking coffee with Luis... It raises some issues such as the necessity of embodiment, etc.
  • ...9 more comments...
  •  
    "Kurzweilians"... LOL. Still not sold on embodiment, btw.
  •  
    The biggest problem with embodiment is that, since the passive walkers (with which it all started), it hasn't delivered anything really interesting...
  •  
    The problem with embodiment is that it's done wrong. Embodiment needs to be treated like big data. More sensors, more data, more processing. Just putting a computer in a robot with a camera and microphone is not embodiment.
  •  
    I like how he attacks Moore's Law. It always looks a bit naive to me if people start to (ab)use it to make their point. No strong opinion about embodiment.
  •  
    @Paul: How would embodiment be done RIGHT?
  •  
    Embodiment has some obvious advantages. For example, in the vision domain many hard problems become easy when you have a body with which you can take actions (like looking at an object you don't immediately recognize from a different angle) - a point already made by researchers such as Aloimonos.and Ballard in the end 80s / beginning 90s. However, embodiment goes further than gathering information and "mental" recognition. In this respect, the evolutionary robotics work by for example Beer is interesting, where an agent discriminates between diamonds and circles by avoiding one and catching the other, without there being a clear "moment" in which the recognition takes place. "Recognition" is a behavioral property there, for which embodiment is obviously important. With embodiment the effort for recognizing an object behaviorally can be divided between the brain and the body, resulting in less computation for the brain. Also the article "Behavioural Categorisation: Behaviour makes up for bad vision" is interesting in this respect. In the field of embodied cognitive science, some say that recognition is constituted by the activation of sensorimotor correlations. I wonder to which extent this is true, and if it is valid for extremely simple creatures to more advanced ones, but it is an interesting idea nonetheless. This being said, if "embodiment" implies having a physical body, then I would argue that it is not a necessary requirement for intelligence. "Situatedness", being able to take (virtual or real) "actions" that influence the "inputs", may be.
  •  
    @Paul While I completely agree about the "embodiment done wrong" (or at least "not exactly correct") part, what you say goes exactly against one of the major claims which are connected with the notion of embodiment (google for "representational bottleneck"). The fact is your brain does *not* have resources to deal with big data. The idea therefore is that it is the body what helps to deal with what to a computer scientist appears like "big data". Understanding how this happens is key. Whether it is the problem of scale or of actually understanding what happens should be quite conclusively shown by the outcomes of the Blue Brain project.
  •  
    Wouldn't one expect that to produce consciousness (even in a lower form) an approach resembling that of nature would be essential? All animals grow from a very simple initial state (just a few cells) and have only a very limited number of sensors AND processing units. This would allow for a fairly simple way to create simple neural networks and to start up stable neural excitation patterns. Over time as complexity of the body (sensors, processors, actuators) increases the system should be able to adapt in a continuous manner and increase its degree of self-awareness and consciousness. On the other hand, building a simulated brain that resembles (parts of) the human one in its final state seems to me like taking a person who is just dead and trying to restart the brain by means of electric shocks.
  •  
    Actually on a neuronal level all information gets processed. Not all of it makes it into "conscious" processing or attention. Whatever makes it into conscious processing is a highly reduced representation of the data you get. However that doesn't get lost. Basic, low processed data forms the basis of proprioception and reflexes. Every step you take is a macro command your brain issues to the intricate sensory-motor system that puts your legs in motion by actuating every muscle and correcting every step deviation from its desired trajectory using the complicated system of nerve endings and motor commands. Reflexes which were build over the years, as those massive amounts of data slowly get integrated into the nervous system and the the incipient parts of the brain. But without all those sensors scattered throughout the body, all the little inputs in massive amounts that slowly get filtered through, you would not be able to experience your body, and experience the world. Every concept that you conjure up from your mind is a sort of loose association of your sensorimotor input. How can a robot understand the concept of a strawberry if all it can perceive of it is its shape and color and maybe the sound that it makes as it gets squished? How can you understand the "abstract" notion of strawberry without the incredibly sensible tactile feel, without the act of ripping off the stem, without the motor action of taking it to our mouths, without its texture and taste? When we as humans summon the strawberry thought, all of these concepts and ideas converge (distributed throughout the neurons in our minds) to form this abstract concept formed out of all of these many many correlations. A robot with no touch, no taste, no delicate articulate motions, no "serious" way to interact with and perceive its environment, no massive flow of information from which to chose and and reduce, will never attain human level intelligence. That's point 1. Point 2 is that mere pattern recogn
  •  
    All information *that gets processed* gets processed but now we arrived at a tautology. The whole problem is ultimately nobody knows what gets processed (not to mention how). In fact an absolute statement "all information" gets processed is very easy to dismiss because the characteristics of our sensors are such that a lot of information is filtered out already at the input level (e.g. eyes). I'm not saying it's not a valid and even interesting assumption, but it's still just an assumption and the next step is to explore scientifically where it leads you. And until you show its superiority experimentally it's as good as all other alternative assumptions you can make. I only wanted to point out is that "more processing" is not exactly compatible with some of the fundamental assumptions of the embodiment. I recommend Wilson, 2002 as a crash course.
  •  
    These deal with different things in human intelligence. One is the depth of the intelligence (how much of the bigger picture can you see, how abstract can you form concept and ideas), another is the breadth of the intelligence (how well can you actually generalize, how encompassing those concepts are and what is the level of detail in which you perceive all the information you have) and another is the relevance of the information (this is where the embodiment comes in. What you do is to a purpose, tied into the environment and ultimately linked to survival). As far as I see it, these form the pillars of human intelligence, and of the intelligence of biological beings. They are quite contradictory to each other mainly due to physical constraints (such as for example energy usage, and training time). "More processing" is not exactly compatible with some aspects of embodiment, but it is important for human level intelligence. Embodiment is necessary for establishing an environmental context of actions, a constraint space if you will, failure of human minds (i.e. schizophrenia) is ultimately a failure of perceived embodiment. What we do know is that we perform a lot of compression and a lot of integration on a lot of data in an environmental coupling. Imo, take any of these parts out, and you cannot attain human+ intelligence. Vary the quantities and you'll obtain different manifestations of intelligence, from cockroach to cat to google to random quake bot. Increase them all beyond human levels and you're on your way towards the singularity.
Thijs Versloot

Laser fusion reactor inches closer to ignition #NIF - 2 views

  •  
    a point called plasma/fuel break-even is reached where the energy released is higher than the power absorbed by the pellet. Of course, to produce 192 high power lasers does also have an efficiency. Thats why 'machine break-even' or even 'grid break-even' is more important and still quite a long way off. It does show that laser fusion is catching up quickly, although with serious bumps along the road.
Loretta Latronico Poulain

Agent-based computer models could anticipate future economic crisis - 1 views

  •  
    "The Illinois Commerce Commission wanted to make sure that if they deregulated the power market, individual producers of electricity would not be able to manipulate the market during times of high demand by withholding capacity or charging excessive rates. The Argonne model found that during certain times of heavy load such a situation could emerge, which led to the recommendation that independent monitors maintain some oversight of the power market." Interesting this study on power grids !
1 - 20 of 37 Next ›
Showing 20 items per page