Skip to main content

Home/ History Readings/ Group items tagged solar energy

Rss Feed Group items tagged

Javier E

Losing Earth: The Decade We Almost Stopped Climate Change - The New York Times - 0 views

  • As Malcolm Forbes Baldwin, the acting chairman of the president’s Council for Environmental Quality, told industry executives in 1981, “There can be no more important or conservative concern than the protection of the globe itself.”
  • Among those who called for urgent, immediate and far-reaching climate policy were Senators John Chafee, Robert Stafford and David Durenberger; the E.P.A. administrator, William K. Reilly; and, during his campaign for president, George H.W. Bush.
  • It was understood that action would have to come immediately. At the start of the 1980s, scientists within the federal government predicted that conclusive evidence of warming would appear on the global temperature record by the end of the decade, at which point it would be too late to avoid disaster.
  • ...180 more annotations...
  • If the world had adopted the proposal widely endorsed at the end of the ’80s — a freezing of carbon emissions, with a reduction of 20 percent by 2005 — warming could have been held to less than 1.5 degrees.
  • Action had to be taken, and the United States would need to lead. It didn’t.
  • There can be no understanding of our current and future predicament without understanding why we failed to solve this problem when we had the chance.
  • The first suggestion to Rafe Pomerance that humankind was destroying the conditions necessary for its own survival came on Page 66 of the government publication EPA-600/7-78-019. It was a technical report about coal
  • ‘This Is the Whole Banana’ Spring 1979
  • here was an urgent problem that demanded their attention, MacDonald believed, because human civilization faced an existential crisis. In “How to Wreck the Environment,” a 1968 essay published while he was a science adviser to Lyndon Johnson, MacDonald predicted a near future in which “nuclear weapons were effectively banned and the weapons of mass destruction were those of environmental catastrophe.” One of the most potentially devastating such weapons, he believed, was the gas that we exhaled with every breath: carbon dioxide. By vastly increasing carbon emissions, the world’s most advanced militaries could alter weather patterns and wreak famine, drought and economic collapse.
  • the Jasons. They were like one of those teams of superheroes with complementary powers that join forces in times of galactic crisis. They had been brought together by federal agencies, including the C.I.A, to devise scientific solutions to national-security problems: how to detect an incoming missile; how to predict fallout from a nuclear bomb; how to develop unconventional weapons, like plague-infested rats.
  • Agle pointed to an article about a prominent geophysicist named Gordon MacDonald, who was conducting a study on climate change with the Jasons, the mysterious coterie of elite scientists to which he belonged
  • During the spring of 1977 and the summer of 1978, the Jasons met to determine what would happen once the concentration of carbon dioxide in the atmosphere doubled from pre-Industrial Revolution levels. It was an arbitrary milestone, the doubling, but a useful one, as its inevitability was not in question; the threshold would most likely be breached by 2035.
  • The Jasons’ report to the Department of Energy, “The Long-Term Impact of Atmospheric Carbon Dioxide on Climate,” was written in an understated tone that only enhanced its nightmarish findings: Global temperatures would increase by an average of two to three degrees Celsius; Dust Bowl conditions would “threaten large areas of North America, Asia and Africa”; access to drinking water and agricultural production would fall, triggering mass migration on an unprecedented scale. “Perhaps the most ominous feature,” however, was the effect of a changing climate on the poles. Even a minimal warming “could lead to rapid melting” of the West Antarctic ice sheet. The ice sheet contained enough water to raise the level of the oceans 16 feet.
  • MacDonald explained that he first studied the carbon-dioxide issue when he was about Pomerance’s age — in 1961, when he served as an adviser to John F. Kennedy. Pomerance pieced together that MacDonald, in his youth, had been something of a prodigy: In his 20s, he advised Dwight D. Eisenhower on space exploration; at 32, he became a member of the National Academy of Sciences; at 40, he was appointed to the inaugural Council on Environmental Quality, where he advised Richard Nixon on the environmental dangers of burning coal. He monitored the carbon-dioxide problem the whole time, with increasing alarm.
  • They were surprised to learn how few senior officials were familiar with the Jasons’ findings, let alone understood the ramifications of global warming. At last, having worked their way up the federal hierarchy, the two went to see the president’s top scientist, Frank Press.
  • Thus began the Gordon and Rafe carbon-dioxide roadshow. Beginning in the spring of 1979, Pomerance arranged informal briefings with the E.P.A., the National Security Council, The New York Times, the Council on Environmental Quality and the Energy Department, which, Pomerance learned, had established an Office of Carbon Dioxide Effects two years earlier at MacDonald’s urging
  • . Out of respect for MacDonald, Press had summoned to their meeting what seemed to be the entire senior staff of the president’s Office of Science and Technology Policy — the officials consulted on every critical matter of energy and national security. What Pomerance had expected to be yet another casual briefing assumed the character of a high-level national-security meeting.
  • MacDonald would begin his presentation by going back more than a century to John Tyndall — an Irish physicist who was an early champion of Charles Darwin’s work and died after being accidentally poisoned by his wife. In 1859, Tyndall found that carbon dioxide absorbed heat and that variations in the composition of the atmosphere could create changes in climate. These findings inspired Svante Arrhenius, a Swedish chemist and future Nobel laureate, to deduce in 1896 that the combustion of coal and petroleum could raise global temperatures. This warming would become noticeable in a few centuries, Arrhenius calculated, or sooner if consumption of fossil fuels continued to increase.
  • Four decades later, a British steam engineer named Guy Stewart Callendar discovered that, at the weather stations he observed, the previous five years were the hottest in recorded history. Humankind, he wrote in a paper, had become “able to speed up the processes of Nature.” That was in 1939.
  • MacDonald’s history concluded with Roger Revelle, perhaps the most distinguished of the priestly caste of government scientists who, since the Manhattan Project, advised every president on major policy; he had been a close colleague of MacDonald and Press since they served together under Kennedy. In a 1957 paper written with Hans Suess, Revelle concluded that “human beings are now carrying out a large-scale geophysical experiment of a kind that could not have happened in the past nor be reproduced in the future.” Revelle helped the Weather Bureau establish a continuous measurement of atmospheric carbon dioxide at a site perched near the summit of Mauna Loa on the Big Island of Hawaii, 11,500 feet above the sea — a rare pristine natural laboratory on a planet blanketed by fossil-fuel emissions.
  • After nearly a decade of observation, Revelle had shared his concerns with Lyndon Johnson, who included them in a special message to Congress two weeks after his inauguration. Johnson explained that his generation had “altered the composition of the atmosphere on a global scale” through the burning of fossil fuels, and his administration commissioned a study of the subject by his Science Advisory Committee. Revelle was its chairman, and its 1965 executive report on carbon dioxide warned of the rapid melting of Antarctica, rising seas, increased acidity of fresh waters — changes that would require no less than a coordinated global effort to forestall.Yet emissions continued to rise, and at this rate, MacDonald warned, they could see a snowless New England, the swamping of major coastal cities, as much as a 40 percent decline in national wheat production, the forced migration of about one-quarter of the world’s population. Not within centuries — within their own lifetimes.
  • On May 22, Press wrote a letter to the president of the National Academy of Sciences requesting a full assessment of the carbon-dioxide issue. Jule Charney, the father of modern meteorology, would gather the nation’s top oceanographers, atmospheric scientists and climate modelers to judge whether MacDonald’s alarm was justified — whether the world was, in fact, headed to cataclysm.
  • If Charney’s group confirmed that the world was careering toward an existential crisis, the president would be forced to act.
  • Hansen turned from the moon to Venus. Why, he tried to determine, was its surface so hot? In 1967, a Soviet satellite beamed back the answer: The planet’s atmosphere was mainly carbon dioxide. Though once it may have had habitable temperatures, it was believed to have succumbed to a runaway greenhouse effect: As the sun grew brighter, Venus’s ocean began to evaporate, thickening the atmosphere, which forced yet greater evaporation — a self-perpetuating cycle that finally boiled off the ocean entirely and heated the planet’s surface to more than 800 degrees Fahrenheit
  • At the other extreme, Mars’s thin atmosphere had insufficient carbon dioxide to trap much heat at all, leaving it about 900 degrees colder. Earth lay in the middle, its Goldilocks greenhouse effect just strong enough to support life.
  • We want to learn more about Earth’s climate, Jim told Anniek — and how humanity can influence it. He would use giant new supercomputers to map the planet’s atmosphere. They would create Mirror Worlds: parallel realities that mimicked our own. These digital simulacra, technically called “general circulation models,” combined the mathematical formulas that governed the behavior of the sea, land and sky into a single computer model. Unlike the real world, they could be sped forward to reveal the future.
  • The government officials, many of them scientists themselves, tried to suppress their awe of the legends in their presence: Henry Stommel, the world’s leading oceanographer; his protégé, Carl Wunsch, a Jason; the Manhattan Project alumnus Cecil Leith; the Harvard planetary physicist Richard Goody. These were the men who, in the last three decades, had discovered foundational principles underlying the relationships among sun, atmosphere, land and ocean — which is to say, the climate.
  • When, at Charney’s request, Hansen programmed his model to consider a future of doubled carbon dioxide, it predicted a temperature increase of four degrees Celsius. That was twice as much warming as the prediction made by the most prominent climate modeler, Syukuro Manabe, whose government lab at Princeton was the first to model the greenhouse effect. The difference between the two predictions — between warming of two degrees Celsius and four degrees Celsius — was the difference between damaged coral reefs and no reefs whatsoever, between thinning forests and forests enveloped by desert, between catastrophe and chaos.
  • The discrepancy between the models, Arakawa concluded, came down to ice and snow. The whiteness of the world’s snowfields reflected light; if snow melted in a warmer climate, less radiation would escape the atmosphere, leading to even greater warming. Shortly before dawn, Arakawa concluded that Manabe had given too little weight to the influence of melting sea ice, while Hansen had overemphasized it. The best estimate lay in between. Which meant that the Jasons’ calculation was too optimistic. When carbon dioxide doubled in 2035 or thereabouts, global temperatures would increase between 1.5 and 4.5 degrees Celsius, with the most likely outcome a warming of three degrees.
  • within the highest levels of the federal government, the scientific community and the oil-and-gas industry — within the commonwealth of people who had begun to concern themselves with the future habitability of the planet — the Charney report would come to have the authority of settled fact. It was the summation of all the predictions that had come before, and it would withstand the scrutiny of the decades that followed it. Charney’s group had considered everything known about ocean, sun, sea, air and fossil fuels and had distilled it to a single number: three. When the doubling threshold was broached, as appeared inevitable, the world would warm three degrees Celsius
  • The last time the world was three degrees warmer was during the Pliocene, three million years ago, when beech trees grew in Antarctica, the seas were 80 feet higher and horses galloped across the Canadian coast of the Arctic Ocean.
  • After the publication of the Charney report, Exxon decided to create its own dedicated carbon-dioxide research program, with an annual budget of $600,000. Only Exxon was asking a slightly different question than Jule Charney. Exxon didn’t concern itself primarily with how much the world would warm. It wanted to know how much of the warming Exxon could be blamed for.
  • “It behooves us to start a very aggressive defensive program,” Shaw wrote in a memo to a manager, “because there is a good probability that legislation affecting our business will be passed.”
  • Shaw turned to Wallace Broecker, a Columbia University oceanographer who was the second author of Roger Revelle’s 1965 carbon-dioxide report for Lyndon Johnson. In 1977, in a presentation at the American Geophysical Union, Broecker predicted that fossil fuels would have to be restricted, whether by taxation or fiat. More recently, he had testified before Congress, calling carbon dioxide “the No.1 long-term environmental problem.” If presidents and senators trusted Broecker to tell them the bad news, he was good enough for Exxon.
  • The company had been studying the carbon-dioxide problem for decades, since before it changed its name to Exxon. In 1957, scientists from Humble Oil published a study tracking “the enormous quantity of carbon dioxide” contributed to the atmosphere since the Industrial Revolution “from the combustion of fossil fuels.” Even then, the observation that burning fossil fuels had increased the concentration of carbon in the atmosphere was well understood and accepted by Humble’s scientists.
  • The American Petroleum Institute, the industry’s largest trade association, asked the same question in 1958 through its air-pollution study group and replicated the findings made by Humble Oil. So did another A.P.I. study conducted by the Stanford Research Institute a decade later, in 1968, which concluded that the burning of fossil fuels would bring “significant temperature changes” by the year 2000 and ultimately “serious worldwide environmental changes,” including the melting of the Antarctic ice cap and rising seas.
  • The ritual repeated itself every few years. Industry scientists, at the behest of their corporate bosses, reviewed the problem and found good reasons for alarm and better excuses to do nothing. Why should they act when almost nobody within the United States government — nor, for that matter, within the environmental movement — seemed worried?
  • Why take on an intractable problem that would not be detected until this generation of employees was safely retired? Worse, the solutions seemed more punitive than the problem itself. Historically, energy use had correlated to economic growth — the more fossil fuels we burned, the better our lives became. Why mess with that?
  • That June, Jimmy Carter signed the Energy Security Act of 1980, which directed the National Academy of Sciences to start a multiyear, comprehensive study, to be called “Changing Climate,” that would analyze social and economic effects of climate change. More urgent, the National Commission on Air Quality, at the request of Congress, invited two dozen experts, including Henry Shaw himself, to a meeting in Florida to propose climate policy.
  • On April 3, 1980, Senator Paul Tsongas, a Massachusetts Democrat, held the first congressional hearing on carbon-dioxide buildup in the atmosphere. Gordon MacDonald testified that the United States should “take the initiative” and develop, through the United Nations, a way to coordinate every nation’s energy policies to address the problem.
  • During the expansion of the Clean Air Act, he pushed for the creation of the National Commission on Air Quality, charged with ensuring that the goals of the act were being met. One such goal was a stable global climate. The Charney report had made clear that goal was not being met, and now the commission wanted to hear proposals for legislation. It was a profound responsibility, and the two dozen experts invited to the Pink Palace — policy gurus, deep thinkers, an industry scientist and an environmental activist — had only three days to achieve it, but the utopian setting made everything seem possible
  • We have less time than we realize, said an M.I.T. nuclear engineer named David Rose, who studied how civilizations responded to large technological crises. “People leave their problems until the 11th hour, the 59th minute,” he said. “And then: ‘Eloi, Eloi, Lama Sabachthani?’ ” — “My God, my God, why hast thou forsaken me?”
  • The attendees seemed to share a sincere interest in finding solutions. They agreed that some kind of international treaty would ultimately be needed to keep atmospheric carbon dioxide at a safe level. But nobody could agree on what that level was.
  • William Elliott, a NOAA scientist, introduced some hard facts: If the United States stopped burning carbon that year, it would delay the arrival of the doubling threshold by only five years. If Western nations somehow managed to stabilize emissions, it would forestall the inevitable by only eight years. The only way to avoid the worst was to stop burning coal. Yet China, the Soviet Union and the United States, by far the world’s three largest coal producers, were frantically accelerating extraction.
  • “Do we have a problem?” asked Anthony Scoville, a congressional science consultant. “We do, but it is not the atmospheric problem. It is the political problem.” He doubted that any scientific report, no matter how ominous its predictions, would persuade politicians to act.
  • The talk of ending oil production stirred for the first time the gentleman from Exxon. “I think there is a transition period,” Henry Shaw said. “We are not going to stop burning fossil fuels and start looking toward solar or nuclear fusion and so on. We are going to have a very orderly transition from fossil fuels to renewable energy sources.”
  • What if the problem was that they were thinking of it as a problem? “What I am saying,” Scoville continued, “is that in a sense we are making a transition not only in energy but the economy as a whole.” Even if the coal and oil industries collapsed, renewable technologies like solar energy would take their place. Jimmy Carter was planning to invest $80 billion in synthetic fuel. “My God,” Scoville said, “with $80 billion, you could have a photovoltaics industry going that would obviate the need for synfuels forever!”
  • nobody could agree what to do. John Perry, a meteorologist who had worked as a staff member on the Charney report, suggested that American energy policy merely “take into account” the risks of global warming, though he acknowledged that a nonbinding measure might seem “intolerably stodgy.” “It is so weak,” Pomerance said, the air seeping out of him, “as to not get us anywhere.”
  • Scoville pointed out that the United States was responsible for the largest share of global carbon emissions. But not for long. “If we’re going to exercise leadership,” he said, “the opportunity is now.
  • One way to lead, he proposed, would be to classify carbon dioxide as a pollutant under the Clean Air Act and regulate it as such. This was received by the room like a belch. By Scoville’s logic, every sigh was an act of pollution. Did the science really support such an extreme measure? The Charney report did exactly that, Pomerance said.
  • Slade, the director of the Energy Department’s carbon-dioxide program, considered the lag a saving grace. If changes did not occur for a decade or more, he said, those in the room couldn’t be blamed for failing to prevent them. So what was the problem?
  • “Call it whatever.” Besides, Pomerance added, they didn’t have to ban coal tomorrow. A pair of modest steps could be taken immediately to show the world that the United States was serious: the implementation of a carbon tax and increased investment in renewable energy. Then the United States could organize an international summit meeting to address climate change
  • these two dozen experts, who agreed on the major points and had made a commitment to Congress, could not draft a single paragraph. Hours passed in a hell of fruitless negotiation, self-defeating proposals and impulsive speechifying. Pomerance and Scoville pushed to include a statement calling for the United States to “sharply accelerate international dialogue,” but they were sunk by objections and caveats.
  • They never got to policy proposals. They never got to the second paragraph. The final statement was signed by only the moderator, who phrased it more weakly than the declaration calling for the workshop in the first place. “The guide I would suggest,” Jorling wrote, “is whether we know enough not to recommend changes in existing policy.”
  • Pomerance had seen enough. A consensus-based strategy would not work — could not work — without American leadership. And the United States wouldn’t act unless a strong leader persuaded it to do so — someone who would speak with authority about the science, demand action from those in power and risk everything in pursuit of justice.
  • The meeting ended Friday morning. On Tuesday, four days later, Ronald Reagan was elected president.
  • ‘Otherwise, They’ll Gurgle’ November 1980-September 1981
  • In the midst of this carnage, the Council on Environmental Quality submitted a report to the White House warning that fossil fuels could “permanently and disastrously” alter Earth’s atmosphere, leading to “a warming of the Earth, possibly with very serious effects.” Reagan did not act on the council’s advice. Instead, his administration considered eliminating the council.
  • After the election, Reagan considered plans to close the Energy Department, increase coal production on federal land and deregulate surface coal mining. Once in office, he appointed James Watt, the president of a legal firm that fought to open public lands to mining and drilling, to run the Interior Department. “We’re deliriously happy,” the president of the National Coal Association was reported to have said. Reagan preserved the E.P.A. but named as its administrator Anne Gorsuch, an anti-regulation zealot who proceeded to cut the agency’s staff and budget by about a quarter
  • Reagan “has declared open war on solar energy,” the director of the nation’s lead solar-energy research agency said, after he was asked to resign). Reagan appeared determined to reverse the environmental achievements of Jimmy Carter, before undoing those of Richard Nixon, Lyndon Johnson, John F. Kennedy and, if he could get away with it, Theodore Roosevelt.
  • When Reagan considered closing the Council on Environmental Quality, its acting chairman, Malcolm Forbes Baldwin, wrote to the vice president and the White House chief of staff begging them to reconsider; in a major speech the same week, “A Conservative’s Program for the Environment,” Baldwin argued that it was “time for today’s conservatives explicitly to embrace environmentalism.” Environmental protection was not only good sense. It was good business. What could be more conservative than an efficient use of resources that led to fewer federal subsidies?
  • Meanwhile the Charney report continued to vibrate at the periphery of public consciousness. Its conclusions were confirmed by major studies from the Aspen Institute, the International Institute for Applied Systems Analysis near Vienna and the American Association for the Advancement of Science. Every month or so, nationally syndicated articles appeared summoning apocalypse: “Another Warning on ‘Greenhouse Effect,’ ” “Global Warming Trend ‘Beyond Human Experience,’ ” “Warming Trend Could ‘Pit Nation Against Nation.’
  • Pomerance read on the front page of The New York Times on Aug. 22, 1981, about a forthcoming paper in Science by a team of seven NASA scientists. They had found that the world had already warmed in the past century. Temperatures hadn’t increased beyond the range of historical averages, but the scientists predicted that the warming signal would emerge from the noise of routine weather fluctuations much sooner than previously expected. Most unusual of all, the paper ended with a policy recommendation: In the coming decades, the authors wrote, humankind should develop alternative sources of energy and use fossil fuels only “as necessary.” The lead author was James Hansen.
  • Pomerance listened and watched. He understood Hansen’s basic findings well enough: Earth had been warming since 1880, and the warming would reach “almost unprecedented magnitude” in the next century, leading to the familiar suite of terrors, including the flooding of a 10th of New Jersey and a quarter of Louisiana and Florida. But Pomerance was excited to find that Hansen could translate the complexities of atmospheric science into plain English.
  • 7. ‘We’re All Going to Be the Victims’ March 1982
  • Gore had learned about climate change a dozen years earlier as an undergraduate at Harvard, when he took a class taught by Roger Revelle. Humankind was on the brink of radically transforming the global atmosphere, Revelle explained, drawing Keeling’s rising zigzag on the blackboard, and risked bringing about the collapse of civilization. Gore was stunned: Why wasn’t anyone talking about this?
  • Most in Congress considered the science committee a legislative backwater, if they considered it at all; this made Gore’s subcommittee, which had no legislative authority, an afterthought to an afterthought. That, Gore vowed, would change. Environmental and health stories had all the elements of narrative drama: villains, victims and heroes. In a hearing, you could summon all three, with the chairman serving as narrator, chorus and moral authority. He told his staff director that he wanted to hold a hearing every week.
  • The Revelle hearing went as Grumbly had predicted. The urgency of the issue was lost on Gore’s older colleagues, who drifted in and out while the witnesses testified. There were few people left by the time the Brookings Institution economist Lester Lave warned that humankind’s profligate exploitation of fossil fuels posed an existential test to human nature. “Carbon dioxide stands as a symbol now of our willingness to confront the future,” he said. “It will be a sad day when we decide that we just don’t have the time or thoughtfulness to address those issues.”
  • That night, the news programs featured the resolution of the baseball strike, the ongoing budgetary debate and the national surplus of butter.
  • There emerged, despite the general comity, a partisan divide. Unlike the Democrats, the Republicans demanded action. “Today I have a sense of déjà vu,” said Robert Walker, a Republican from Pennsylvania. In each of the last five years, he said, “we have been told and told and told that there is a problem with the increasing carbon dioxide in the atmosphere. We all accept that fact, and we realize that the potential consequences are certainly major in their impact on mankind.” Yet they had failed to propose a single law. “Now is the time,” he said. “The research is clear. It is up to us now to summon the political will.”
  • Hansen flew to Washington to testify on March 25, 1982, performing before a gallery even more thinly populated than at Gore’s first hearing on the greenhouse effect. Gore began by attacking the Reagan administration for cutting funding for carbon-dioxide research despite the “broad consensus in the scientific community that the greenhouse effect is a reality.” William Carney, a Republican from New York, bemoaned the burning of fossil fuels and argued passionately that science should serve as the basis for legislative policy
  • the experts invited by Gore agreed with the Republicans: The science was certain enough. Melvin Calvin, a Berkeley chemist who won the Nobel Prize for his work on the carbon cycle, said that it was useless to wait for stronger evidence of warming. “You cannot do a thing about it when the signals are so big that they come out of the noise,” he said. “You have to look for early warning signs.”
  • Hansen’s job was to share the warning signs, to translate the data into plain English. He explained a few discoveries that his team had made — not with computer models but in libraries. By analyzing records from hundreds of weather stations, he found that the surface temperature of the planet had already increased four-tenths of a degree Celsius in the previous century. Data from several hundred tide-gauge stations showed that the oceans had risen four inches since the 1880s
  • It occurred to Hansen that this was the only political question that mattered: How long until the worst began? It was not a question on which geophysicists expended much effort; the difference between five years and 50 years in the future was meaningless in geologic time. Politicians were capable of thinking only in terms of electoral time: six years, four years, two years. But when it came to the carbon problem, the two time schemes were converging.
  • “Within 10 or 20 years,” Hansen said, “we will see climate changes which are clearly larger than the natural variability.” James Scheuer wanted to make sure he understood this correctly. No one else had predicted that the signal would emerge that quickly. “If it were one or two degrees per century,” he said, “that would be within the range of human adaptability. But we are pushing beyond the range of human adaptability.” “Yes,” Hansen said.
  • How soon, Scheuer asked, would they have to change the national model of energy production? Hansen hesitated — it wasn’t a scientific question. But he couldn’t help himself. He had been irritated, during the hearing, by all the ludicrous talk about the possibility of growing more trees to offset emissions. False hopes were worse than no hope at all: They undermined the prospect of developing real solutions. “That time is very soon,” Hansen said finally. “My opinion is that it is past,” Calvin said, but he was not heard because he spoke from his seat. He was told to speak into the microphone. “It is already later,” Calvin said, “than you think.”
  • From Gore’s perspective, the hearing was an unequivocal success. That night Dan Rather devoted three minutes of “CBS Evening News” to the greenhouse effect. A correspondent explained that temperatures had increased over the previous century, great sheets of pack ice in Antarctica were rapidly melting, the seas were rising; Calvin said that “the trend is all in the direction of an impending catastrophe”; and Gore mocked Reagan for his shortsightedness. Later, Gore could take credit for protecting the Energy Department’s carbon-dioxide program, which in the end was largely preserved.
  • 8. ‘The Direction of an Impending Catastrophe’ 1982
  • Following Henry Shaw’s recommendation to establish credibility ahead of any future legislative battles, Exxon had begun to spend conspicuously on global-warming research. It donated tens of thousands of dollars to some of the most prominent research efforts, including one at Woods Hole led by the ecologist George Woodwell, who had been calling for major climate policy as early as the mid-1970s, and an international effort coordinated by the United Nations. Now Shaw offered to fund the October 1982 symposium on climate change at Columbia’s Lamont-Doherty campus.
  • David boasted that Exxon would usher in a new global energy system to save the planet from the ravages of climate change. He went so far as to argue that capitalism’s blind faith in the wisdom of the free market was “less than satisfying” when it came to the greenhouse effect. Ethical considerations were necessary, too. He pledged that Exxon would revise its corporate strategy to account for climate change, even if it were not “fashionable” to do so. As Exxon had already made heavy investments in nuclear and solar technology, he was “generally upbeat” that Exxon would “invent” a future of renewable energy.
  • Hansen had reason to feel upbeat himself. If the world’s largest oil-and-gas company supported a new national energy model, the White House would not stand in its way. The Reagan administration was hostile to change from within its ranks. But it couldn’t be hostile to Exxon.
  • The carbon-dioxide issue was beginning to receive major national attention — Hansen’s own findings had become front-page news, after all. What started as a scientific story was turning into a political story.
  • The political realm was itself a kind of Mirror World, a parallel reality that crudely mimicked our own. It shared many of our most fundamental laws, like the laws of gravity and inertia and publicity. And if you applied enough pressure, the Mirror World of politics could be sped forward to reveal a new future. Hansen was beginning to understand that too.
  • 1. ‘Caution, Not Panic’ 1983-1984
  • in the fall of 1983, the climate issue entered an especially long, dark winter. And all because of a single report that had done nothing to change the state of climate science but transformed the state of climate politics.
  • After the publication of the Charney report in 1979, Jimmy Carter had directed the National Academy of Sciences to prepare a comprehensive, $1 million analysis of the carbon-dioxide problem: a Warren Commission for the greenhouse effect. A team of scientist-dignitaries — among them Revelle, the Princeton modeler Syukuro Manabe and the Harvard political economist Thomas Schelling, one of the intellectual architects of Cold War game theory — would review the literature, evaluate the consequences of global warming for the world order and propose remedies
  • Then Reagan won the White House.
  • the incipient report served as the Reagan administration’s answer to every question on the subject. There could be no climate policy, Fred Koomanoff and his associates said, until the academy ruled. In the Mirror World of the Reagan administration, the warming problem hadn’t been abandoned at all. A careful, comprehensive solution was being devised. Everyone just had to wait for the academy’s elders to explain what it was.
  • The committee’s chairman, William Nierenberg — a Jason, presidential adviser and director of Scripps, the nation’s pre-eminent oceanographic institution — argued that action had to be taken immediately, before all the details could be known with certainty, or else it would be too late.
  • Better to bet on American ingenuity to save the day. Major interventions in national energy policy, taken immediately, might end up being more expensive, and less effective, than actions taken decades in the future, after more was understood about the economic and social consequences of a warmer planet. Yes, the climate would change, mostly for the worst, but future generations would be better equipped to change with it.
  • Government officials who knew Nierenberg were not surprised by his conclusions: He was an optimist by training and experience, a devout believer in the doctrine of American exceptionalism, one of the elite class of scientists who had helped the nation win a global war, invent the most deadly weapon conceivable and create the booming aerospace and computer industries. America had solved every existential problem it had confronted over the previous generation; it would not be daunted by an excess of carbon dioxide. Nierenberg had also served on Reagan’s transition team. Nobody believed that he had been directly influenced by his political connections, but his views — optimistic about the saving graces of market forces, pessimistic about the value of government regulation — reflected all the ardor of his party.
  • That’s what Nierenberg wrote in “Changing Climate.” But it’s not what he said in the press interviews that followed. He argued the opposite: There was no urgent need for action. The public should not entertain the most “extreme negative speculations” about climate change (despite the fact that many of those speculations appeared in his report). Though “Changing Climate” urged an accelerated transition to renewable fuels, noting that it would take thousands of years for the atmosphere to recover from the damage of the last century, Nierenberg recommended “caution, not panic.” Better to wait and see
  • The damage of “Changing Climate” was squared by the amount of attention it received. Nierenberg’s speech in the Great Hall, being one-500th the length of the actual assessment, received 500 times the press coverage. As The Wall Street Journal put it, in a line echoed by trade journals across the nation: “A panel of top scientists has some advice for people worried about the much-publicized warming of the Earth’s climate: You can cope.”
  • On “CBS Evening News,” Dan Rather said the academy had given “a cold shoulder” to a grim, 200-page E.P.A. assessment published earlier that week (titled “Can We Delay a Greenhouse Warming?”; the E.P.A.’s answer, reduced to a word, was no). The Washington Post described the two reports, taken together, as “clarion calls to inaction.
  • George Keyworth II, Reagan’s science adviser. Keyworth used Nierenberg’s optimism as reason to discount the E.P.A.’s “unwarranted and unnecessarily alarmist” report and warned against taking any “near-term corrective action” on global warming. Just in case it wasn’t clear, Keyworth added, “there are no actions recommended other than continued research.”
  • Edward David Jr., two years removed from boasting of Exxon’s commitment to transforming global energy policy, told Science that the corporation had reconsidered. “Exxon has reverted to being mainly a supplier of conventional hydrocarbon fuels — petroleum products, natural gas and steam coal,” David said. The American Petroleum Institute canceled its own carbon-dioxide research program, too.
  • Exxon soon revised its position on climate-change research. In a presentation at an industry conference, Henry Shaw cited “Changing Climate” as evidence that “the general consensus is that society has sufficient time to technologically adapt to a CO₂ greenhouse effect.” If the academy had concluded that regulations were not a serious option, why should Exxon protest
  • 2. ‘You Scientists Win’ 1985
  • 3. The Size of The Human Imagination Spring-Summer 1986
  • Curtis Moore’s proposal: Use ozone to revive climate. The ozone hole had a solution — an international treaty, already in negotiation. Why not hitch the milk wagon to the bullet train? Pomerance was skeptical. The problems were related, sure: Without a reduction in CFC emissions, you didn’t have a chance of averting cataclysmic global warming. But it had been difficult enough to explain the carbon issue to politicians and journalists; why complicate the sales pitch? Then again, he didn’t see what choice he had. The Republicans controlled the Senate, and Moore was his connection to the Senate’s environmental committee.
  • Pomerance met with Senator John Chafee, a Republican from Rhode Island, and helped persuade him to hold a double-barreled hearing on the twin problems of ozone and carbon dioxide on June 10 and 11, 1986
  • F.Sherwood Rowland, Robert Watson, a NASA scientist, and Richard Benedick, the administration’s lead representative in international ozone negotiations, would discuss ozone; James Hansen, Al Gore, the ecologist George Woodwell and Carl Wunsch, a veteran of the Charney group, would testify about climate change.
  • As Pomerance had hoped, fear about the ozone layer ensured a bounty of press coverage for the climate-change testimony. But as he had feared, it caused many people to conflate the two crises. One was Peter Jennings, who aired the video on ABC’s “World News Tonight,” warning that the ozone hole “could lead to flooding all over the world, also to drought and to famine.”
  • The confusion helped: For the first time since the “Changing Climate” report, global-warming headlines appeared by the dozen. William Nierenberg’s “caution, not panic” line was inverted. It was all panic without a hint of caution: “A Dire Forecast for ‘Greenhouse’ Earth” (the front page of The Washington Post); “Scientists Predict Catastrophes in Growing Global Heat Wave” (Chicago Tribune); “Swifter Warming of Globe Foreseen” (The New York Times).
  • After three years of backsliding and silence, Pomerance was exhilarated to see interest in the issue spike overnight. Not only that: A solution materialized, and a moral argument was passionately articulated — by Rhode Island’s Republican senator no less. “Ozone depletion and the greenhouse effect can no longer be treated solely as important scientific questions,” Chafee said. “They must be seen as critical problems facing the nations of the world, and they are problems that demand solutions.”
  • The old canard about the need for more research was roundly mocked — by Woodwell, by a W.R.I. colleague named Andrew Maguire, by Senator George Mitchell, a Democrat from Maine. “Scientists are never 100 percent certain,” the Princeton historian Theodore Rabb testified. “That notion of total certainty is something too elusive ever to be sought.” As Pomerance had been saying since 1979, it was past time to act. Only now the argument was so broadly accepted that nobody dared object.
  • The ozone hole, Pomerance realized, had moved the public because, though it was no more visible than global warming, people could be made to see it. They could watch it grow on video. Its metaphors were emotionally wrought: Instead of summoning a glass building that sheltered plants from chilly weather (“Everything seems to flourish in there”), the hole evoked a violent rending of the firmament, inviting deathly radiation. Americans felt that their lives were in danger. An abstract, atmospheric problem had been reduced to the size of the human imagination. It had been made just small enough, and just large enough, to break through.
  • Four years after “Changing Climate,” two years after a hole had torn open the firmament and a month after the United States and more than three dozen other nations signed a treaty to limit use of CFCs, the climate-change corps was ready to celebrate. It had become conventional wisdom that climate change would follow ozone’s trajectory. Reagan’s E.P.A. administrator, Lee M. Thomas, said as much the day he signed the Montreal Protocol on Substances That Deplete the Ozone Layer (the successor to the Vienna Convention), telling reporters that global warming was likely to be the subject of a future international agreement
  • Congress had already begun to consider policy — in 1987 alone, there were eight days of climate hearings, in three committees, across both chambers of Congress; Senator Joe Biden, a Delaware Democrat, had introduced legislation to establish a national climate-change strategy. And so it was that Jim Hansen found himself on Oct. 27 in the not especially distinguished ballroom of the Quality Inn on New Jersey Avenue, a block from the Capitol, at “Preparing for Climate Change,” which was technically a conference but felt more like a wedding.
  • John Topping was an old-line Rockefeller Republican, a Commerce Department lawyer under Nixon and an E.P.A. official under Reagan. He first heard about the climate problem in the halls of the E.P.A. in 1982 and sought out Hansen, who gave him a personal tutorial. Topping was amazed to discover that out of the E.P.A.’s 13,000-person staff, only seven people, by his count, were assigned to work on climate, though he figured it was more important to the long-term security of the nation than every other environmental issue combined.
  • Glancing around the room, Jim Hansen could chart, like an arborist counting rings on a stump, the growth of the climate issue over the decade. Veterans like Gordon MacDonald, George Woodwell and the environmental biologist Stephen Schneider stood at the center of things. Former and current staff members from the congressional science committees (Tom Grumbly, Curtis Moore, Anthony Scoville) made introductions to the congressmen they advised. Hansen’s owlish nemesis Fred Koomanoff was present, as were his counterparts from the Soviet Union and Western Europe. Rafe Pomerance’s cranium could be seen above the crowd, but unusually he was surrounded by colleagues from other environmental organizations that until now had shown little interest in a diffuse problem with no proven fund-raising record. The party’s most conspicuous newcomers, however, the outermost ring, were the oil-and-gas executives.
  • That evening, as a storm spat and coughed outside, Rafe Pomerance gave one of his exhortative speeches urging cooperation among the various factions, and John Chafee and Roger Revelle received awards; introductions were made and business cards earnestly exchanged. Not even a presentation by Hansen of his research could sour the mood. The next night, on Oct. 28, at a high-spirited dinner party in Topping’s townhouse on Capitol Hill, the oil-and-gas men joked with the environmentalists, the trade-group representatives chatted up the regulators and the academics got merrily drunk. Mikhail Budyko, the don of the Soviet climatologists, settled into an extended conversation about global warming with Topping’s 10-year-old son. It all seemed like the start of a grand bargain, a uniting of factions — a solution.
  • Hansen was accustomed to the bureaucratic nuisances that attended testifying before Congress; before a hearing, he had to send his formal statement to NASA headquarters, which forwarded it to the White House’s Office of Management and Budget for approval. “Major greenhouse climate changes are a certainty,” he had written. “By the 2010s [in every scenario], essentially the entire globe has very substantial warming.”
  • By all appearances, plans for major policy continued to advance rapidly. After the Johnston hearing, Timothy Wirth, a freshman Democratic senator from Colorado on the energy committee, began to plan a comprehensive package of climate-change legislation — a New Deal for global warming. Wirth asked a legislative assistant, David Harwood, to consult with experts on the issue, beginning with Rafe Pomerance, in the hope of converting the science of climate change into a new national energy policy.
  • In March 1988, Wirth joined 41 other senators, nearly half of them Republicans, to demand that Reagan call for an international treaty modeled after the ozone agreement. Because the United States and the Soviet Union were the world’s two largest contributors of carbon emissions, responsible for about one-third of the world total, they should lead the negotiations. Reagan agreed. In May, he signed a joint statement with Mikhail Gorbachev that included a pledge to cooperate on global warming.
  • Al Gore himself had, for the moment, withdrawn his political claim to the issue. In 1987, at the age of 39, Gore announced that he was running for president, in part to bring attention to global warming, but he stopped emphasizing it after the subject failed to captivate New Hampshire primary voters.
  • 5. ‘You Will See Things That You Shall Believe’ Summer 1988
  • It was the hottest and driest summer in history. Everywhere you looked, something was bursting into flames. Two million acres in Alaska incinerated, and dozens of major fires scored the West. Yellowstone National Park lost nearly one million acres. Smoke was visible from Chicago, 1,600 miles away.
  • In Nebraska, suffering its worst drought since the Dust Bowl, there were days when every weather station registered temperatures above 100 degrees. The director of the Kansas Department of Health and Environment warned that the drought might be the dawning of a climatic change that within a half century could turn the state into a desert.
  • On June 22 in Washington, where it hit 100 degrees, Rafe Pomerance received a call from Jim Hansen, who was scheduled to testify the following morning at a Senate hearing called by Timothy Wirth. “I hope we have good media coverage tomorrow,” Hansen said.
  • Hansen had just received the most recent global temperature data. Just over halfway into the year, 1988 was setting records. Already it had nearly clinched the hottest year in history. Ahead of schedule, the signal was emerging from the noise. “I’m going to make a pretty strong statement,” Hansen said.
  • Hansen returned to his testimony. He wrote: “The global warming is now large enough that we can ascribe with a high degree of confidence a cause-and-effect relationship to the greenhouse effect.” He wrote: “1988 so far is so much warmer than 1987, that barring a remarkable and improbable cooling, 1988 will be the warmest year on record.” He wrote: “The greenhouse effect has been detected, and it is changing our climate now.”
  • “We have only one planet,” Senator Bennett Johnston intoned. “If we screw it up, we have no place to go.” Senator Max Baucus, a Democrat from Montana, called for the United Nations Environment Program to begin preparing a global remedy to the carbon-dioxide problem. Senator Dale Bumpers, a Democrat of Arkansas, previewed Hansen’s testimony, saying that it “ought to be cause for headlines in every newspaper in America tomorrow morning.” The coverage, Bumpers emphasized, was a necessary precursor to policy. “Nobody wants to take on any of the industries that produce the things that we throw up into the atmosphere,” he said. “But what you have are all these competing interests pitted against our very survival.”
  • Hansen, wiping his brow, spoke without affect, his eyes rarely rising from his notes. The warming trend could be detected “with 99 percent confidence,” he said. “It is changing our climate now.” But he saved his strongest comment for after the hearing, when he was encircled in the hallway by reporters. “It is time to stop waffling so much,” he said, “and say that the evidence is pretty strong that the greenhouse effect is here.”
  • The press followed Bumpers’s advice. Hansen’s testimony prompted headlines in dozens of newspapers across the country, including The New York Times, which announced, across the top of its front page: “Global Warming Has Begun, Expert Tells Senate.”
  • Rafe Pomerance called his allies on Capitol Hill, the young staff members who advised politicians, organized hearings, wrote legislation. We need to finalize a number, he told them, a specific target, in order to move the issue — to turn all this publicity into policy. The Montreal Protocol had called for a 50 percent reduction in CFC emissions by 1998. What was the right target for carbon emissions? It wasn’t enough to exhort nations to do better. That kind of talk might sound noble, but it didn’t change investments or laws. They needed a hard goal — something ambitious but reasonable. And they needed it soon: Just four days after Hansen’s star turn, politicians from 46 nations and more than 300 scientists would convene in Toronto at the World Conference on the Changing Atmosphere, an event described by Philip Shabecoff of The New York Times as “Woodstock for climate change.”
  • Pomerance had a proposal: a 20 percent reduction in carbon emissions by 2000. Ambitious, Harwood said. In all his work planning climate policy, he had seen no assurance that such a steep drop in emissions was possible. Then again, 2000 was more than a decade off, so it allowed for some flexibility.
  • Mintzer pointed out that a 20 percent reduction was consistent with the academic literature on energy efficiency. Various studies over the years had shown that you could improve efficiency in most energy systems by roughly 20 percent if you adopted best practices.
  • Of course, with any target, you had to take into account the fact that the developing world would inevitably consume much larger quantities of fossil fuels by 2000. But those gains could be offset by a wider propagation of the renewable technologies already at hand — solar, wind, geothermal. It was not a rigorous scientific analysis, Mintzer granted, but 20 percent sounded plausible. We wouldn’t need to solve cold fusion or ask Congress to repeal the law of gravity. We could manage it with the knowledge and technology we already had.
  • Besides, Pomerance said, 20 by 2000 sounds good.
  • The conference’s final statement, signed by all 400 scientists and politicians in attendance, repeated the demand with a slight variation: a 20 percent reduction in carbon emissions by 2005. Just like that, Pomerance’s best guess became global diplomatic policy.
  • Hansen, emerging from Anniek’s successful cancer surgery, took it upon himself to start a one-man public information campaign. He gave news conferences and was quoted in seemingly every article about the issue; he even appeared on television with homemade props. Like an entrant at an elementary-school science fair, he made “loaded dice” out of sections of cardboard and colored paper to illustrate the increased likelihood of hotter weather in a warmer climate. Public awareness of the greenhouse effect reached a new high of 68 percent
  • global warming became a major subject of the presidential campaign. While Michael Dukakis proposed tax incentives to encourage domestic oil production and boasted that coal could satisfy the nation’s energy needs for the next three centuries, George Bush took advantage. “I am an environmentalist,” he declared on the shore of Lake Erie, the first stop on a five-state environmental tour that would take him to Boston Harbor, Dukakis’s home turf. “Those who think we are powerless to do anything about the greenhouse effect,” he said, “are forgetting about the White House effect.”
  • His running mate emphasized the ticket’s commitment to the issue at the vice-presidential debate. “The greenhouse effect is an important environmental issue,” Dan Quayle said. “We need to get on with it. And in a George Bush administration, you can bet that we will.”
  • This kind of talk roused the oil-and-gas men. “A lot of people on the Hill see the greenhouse effect as the issue of the 1990s,” a gas lobbyist told Oil & Gas Journal. Before a meeting of oil executives shortly after the “environmentalist” candidate won the election, Representative Dick Cheney, a Wyoming Republican, warned, “It’s going to be very difficult to fend off some kind of gasoline tax.” The coal industry, which had the most to lose from restrictions on carbon emissions, had moved beyond denial to resignation. A spokesman for the National Coal Association acknowledged that the greenhouse effect was no longer “an emerging issue. It is here already, and we’ll be hearing more and more about it.”
  • By the end of the year, 32 climate bills had been introduced in Congress, led by Wirth’s omnibus National Energy Policy Act of 1988. Co-sponsored by 13 Democrats and five Republicans, it established as a national goal an “International Global Agreement on the Atmosphere by 1992,” ordered the Energy Department to submit to Congress a plan to reduce energy use by at least 2 percent a year through 2005 and directed the Congressional Budget Office to calculate the feasibility of a carbon tax. A lawyer for the Senate energy committee told an industry journal that lawmakers were “frightened” by the issue and predicted that Congress would eventually pass significant legislation after Bush took office
  • The other great powers refused to wait. The German Parliament created a special commission on climate change, which concluded that action had to be taken immediately, “irrespective of any need for further research,” and that the Toronto goal was inadequate; it recommended a 30 percent reduction of carbon emissions
  • Margaret Thatcher, who had studied chemistry at Oxford, warned in a speech to the Royal Society that global warming could “greatly exceed the capacity of our natural habitat to cope” and that “the health of the economy and the health of our environment are totally dependent upon each other.”
  • The prime ministers of Canada and Norway called for a binding international treaty on the atmosphere; Sweden’s Parliament went further, announcing a national strategy to stabilize emissions at the 1988 level and eventually imposing a carbon tax
  • the United Nations unanimously endorsed the establishment, by the World Meteorological Organization and the United Nations Environment Program, of an Intergovernmental Panel on Climate Change, composed of scientists and policymakers, to conduct scientific assessments and develop global climate policy.
  • One of the I.P.C.C.’s first sessions to plan an international treaty was hosted by the State Department, 10 days after Bush’s inauguration. James Baker chose the occasion to make his first speech as secretary of state. “We can probably not afford to wait until all of the uncertainties about global climate change have been resolved,” he said. “Time will not make the problem go away.”
  • : On April 14, 1989, a bipartisan group of 24 senators, led by the majority leader, George Mitchell, requested that Bush cut emissions in the United States even before the I.P.C.C.’s working group made its recommendation. “We cannot afford the long lead times associated with a comprehensive global agreement,” the senators wrote. Bush had promised to combat the greenhouse effect with the White House effect. The self-proclaimed environmentalist was now seated in the Oval Office. It was time.
  • 8. ‘You Never Beat The White House’ April 1989
  • After Jim Baker gave his boisterous address to the I.P.C.C. working group at the State Department, he received a visit from John Sununu, Bush’s chief of staff. Leave the science to the scientists, Sununu told Baker. Stay clear of this greenhouse-effect nonsense. You don’t know what you’re talking about. Baker, who had served as Reagan’s chief of staff, didn’t speak about the subject again.
  • despite his reputation as a political wolf, he still thought of himself as a scientist — an “old engineer,” as he was fond of putting it, having earned a Ph.D. in mechanical engineering from M.I.T. decades earlier. He lacked the reflexive deference that so many of his political generation reserved for the class of elite government scientists.
  • Since World War II, he believed, conspiratorial forces had used the imprimatur of scientific knowledge to advance an “anti-growth” doctrine. He reserved particular disdain for Paul Ehrlich’s “The Population Bomb,” which prophesied that hundreds of millions of people would starve to death if the world took no step to curb population growth; the Club of Rome, an organization of European scientists, heads of state and economists, which similarly warned that the world would run out of natural resources; and as recently as the mid-’70s, the hypothesis advanced by some of the nation’s most celebrated scientists — including Carl Sagan, Stephen Schneider and Ichtiaque Rasool — that a new ice age was dawning, thanks to the proliferation of man-made aerosols. All were theories of questionable scientific merit, portending vast, authoritarian remedies to halt economic progress.
  • When Mead talked about “far-reaching” decisions and “long-term consequences,” Sununu heard the marching of jackboots.
  • Sununu had suspected that the greenhouse effect belonged to this nefarious cabal since 1975, when the anthropologist Margaret Mead convened a symposium on the subject at the National Institute of Environmental Health Sciences.
  • While Sununu and Darman reviewed Hansen’s statements, the E.P.A. administrator, William K. Reilly, took a new proposal to the White House. The next meeting of the I.P.C.C.’s working group was scheduled for Geneva the following month, in May; it was the perfect occasion, Reilly argued, to take a stronger stand on climate change. Bush should demand a global treaty to reduce carbon emissions.
  • Sununu wouldn’t budge. He ordered the American delegates not to make any commitment in Geneva. Very soon after that, someone leaked the exchange to the press.
  • A deputy of Jim Baker pulled Reilly aside. He said he had a message from Baker, who had observed Reilly’s infighting with Sununu. “In the long run,” the deputy warned Reilly, “you never beat the White House.”
  • 9. ‘A Form of Science Fraud’ May 1989
  • The cameras followed Hansen and Gore into the marbled hallway. Hansen insisted that he wanted to focus on the science. Gore focused on the politics. “I think they’re scared of the truth,” he said. “They’re scared that Hansen and the other scientists are right and that some dramatic policy changes are going to be needed, and they don’t want to face up to it.”
  • The censorship did more to publicize Hansen’s testimony and the dangers of global warming than anything he could have possibly said. At the White House briefing later that morning, Press Secretary Marlin Fitzwater admitted that Hansen’s statement had been changed. He blamed an official “five levels down from the top” and promised that there would be no retaliation. Hansen, he added, was “an outstanding and distinguished scientist” and was “doing a great job.”
  • 10. The White House Effect Fall 1989
  • The Los Angeles Times called the censorship “an outrageous assault.” The Chicago Tribune said it was the beginning of “a cold war on global warming,” and The New York Times warned that the White House’s “heavy-handed intervention sends the signal that Washington wants to go slow on addressing the greenhouse problem.”
  • Darman went to see Sununu. He didn’t like being accused of censoring scientists. They needed to issue some kind of response. Sununu called Reilly to ask if he had any ideas. We could start, Reilly said, by recommitting to a global climate treaty. The United States was the only Western nation on record as opposing negotiations.
  • Sununu sent a telegram to Geneva endorsing a plan “to develop full international consensus on necessary steps to prepare for a formal treaty-negotiating process. The scope and importance of this issue are so great that it is essential for the U.S. to exercise leadership.”
  • Sununu seethed at any mention of the subject. He had taken it upon himself to study more deeply the greenhouse effect; he would have a rudimentary, one-dimensional general circulation model installed on his personal desktop computer. He decided that the models promoted by Jim Hansen were a lot of bunk. They were horribly imprecise in scale and underestimated the ocean’s ability to mitigate warming. Sununu complained about Hansen to D. Allan Bromley, a nuclear physicist from Yale who, at Sununu’s recommendation, was named Bush’s science adviser. Hansen’s findings were “technical poppycock” that didn’t begin to justify such wild-eyed pronouncements that “the greenhouse effect is here” or that the 1988 heat waves could be attributed to global warming, let alone serve as the basis for national economic policy.
  • When a junior staff member in the Energy Department, in a meeting at the White House with Sununu and Reilly, mentioned an initiative to reduce fossil-fuel use, Sununu interrupted her. “Why in the world would you need to reduce fossil-fuel use?” he asked. “Because of climate change,” the young woman replied. “I don’t want anyone in this administration without a scientific background using ‘climate change’ or ‘global warming’ ever again,” he said. “If you don’t have a technical basis for policy, don’t run around making decisions on the basis of newspaper headlines.” After the meeting, Reilly caught up to the staff member in the hallway. She was shaken. Don’t take it personally, Reilly told her. Sununu might have been looking at you, but that was directed at me.
  • Reilly, for his part, didn’t entirely blame Sununu for Bush’s indecision on the prospect of a climate treaty. The president had never taken a vigorous interest in global warming and was mainly briefed about it by nonscientists. Bush had brought up the subject on the campaign trail, in his speech about the White House effect, after leafing through a briefing booklet for a new issue that might generate some positive press. When Reilly tried in person to persuade him to take action, Bush deferred to Sununu and Baker. Why don’t the three of you work it out, he said. Let me know when you decide
  • Relations between Sununu and Reilly became openly adversarial. Reilly, Sununu thought, was a creature of the environmental lobby. He was trying to impress his friends at the E.P.A. without having a basic grasp of the science himself.
  • Pomerance had the sinking feeling that the momentum of the previous year was beginning to flag. The censoring of Hansen’s testimony and the inexplicably strident opposition from John Sununu were ominous signs. So were the findings of a report Pomerance had commissioned, published in September by the World Resources Institute, tracking global greenhouse-gas emissions. The United States was the largest contributor by far, producing nearly a quarter of the world’s carbon emissions, and its contribution was growing faster than that of every other country. Bush’s indecision, or perhaps inattention, had already managed to delay the negotiation of a global climate treaty until 1990 at the earliest, perhaps even 1991. By then, Pomerance worried, it would be too late.
  • Pomerance tried to be more diplomatic. “The president made a commitment to the American people to deal with global warming,” he told The Washington Post, “and he hasn’t followed it up.” He didn’t want to sound defeated. “There are some good building blocks here,” Pomerance said, and he meant it. The Montreal Protocol on CFCs wasn’t perfect at first, either — it had huge loopholes and weak restrictions. Once in place, however, the restrictions could be tightened. Perhaps the same could happen with climate change. Perhaps. Pomerance was not one for pessimism. As William Reilly told reporters, dutifully defending the official position forced upon him, it was the first time that the United States had formally endorsed the concept of an emissions limit. Pomerance wanted to believe that this was progress.
  • All week in Noordwijk, Becker couldn’t stop talking about what he had seen in Zeeland. After a flood in 1953, when the sea swallowed much of the region, killing more than 2,000 people, the Dutch began to build the Delta Works, a vast concrete-and-steel fortress of movable barriers, dams and sluice gates — a masterpiece of human engineering. The whole system could be locked into place within 90 minutes, defending the land against storm surge. It reduced the country’s exposure to the sea by 700 kilometers, Becker explained. The United States coastline was about 153,000 kilometers long. How long, he asked, was the entire terrestrial coastline? Because the whole world was going to need this. In Zeeland, he said, he had seen the future.
  • Ken Caldeira, a climate scientist at the Carnegie Institution for Science in Stanford, Calif., has a habit of asking new graduate students to name the largest fundamental breakthrough in climate physics since 1979. It’s a trick question. There has been no breakthrough. As with any mature scientific discipline, there is only refinement. The computer models grow more precise; the regional analyses sharpen; estimates solidify into observational data. Where there have been inaccuracies, they have tended to be in the direction of understatement.
  • More carbon has been released into the atmosphere since the final day of the Noordwijk conference, Nov. 7, 1989, than in the entire history of civilization preceding it
  • Despite every action taken since the Charney report — the billions of dollars invested in research, the nonbinding treaties, the investments in renewable energy — the only number that counts, the total quantity of global greenhouse gas emitted per year, has continued its inexorable rise.
  • When it comes to our own nation, which has failed to make any binding commitments whatsoever, the dominant narrative for the last quarter century has concerned the efforts of the fossil-fuel industries to suppress science, confuse public knowledge and bribe politicians.
  • The mustache-twirling depravity of these campaigns has left the impression that the oil-and-gas industry always operated thus; while the Exxon scientists and American Petroleum Institute clerics of the ’70s and ’80s were hardly good Samaritans, they did not start multimillion-dollar disinformation campaigns, pay scientists to distort the truth or try to brainwash children in elementary schools, as their successors would.
  • It was James Hansen’s testimony before Congress in 1988 that, for the first time since the “Changing Climate” report, made oil-and-gas executives begin to consider the issue’s potential to hurt their profits. Exxon, as ever, led the field. Six weeks after Hansen’s testimony, Exxon’s manager of science and strategy development, Duane LeVine, prepared an internal strategy paper urging the company to “emphasize the uncertainty in scientific conclusions.” This shortly became the default position of the entire sector. LeVine, it so happened, served as chairman of the global petroleum industry’s Working Group on Global Climate Change, created the same year, which adopted Exxon’s position as its own
  • The American Petroleum Institute, after holding a series of internal briefings on the subject in the fall and winter of 1988, including one for the chief executives of the dozen or so largest oil companies, took a similar, if slightly more diplomatic, line. It set aside money for carbon-dioxide policy — about $100,000, a fraction of the millions it was spending on the health effects of benzene, but enough to establish a lobbying organization called, in an admirable flourish of newspeak, the Global Climate Coalition.
  • The G.C.C. was conceived as a reactive body, to share news of any proposed regulations, but on a whim, it added a press campaign, to be coordinated mainly by the A.P.I. It gave briefings to politicians known to be friendly to the industry and approached scientists who professed skepticism about global warming. The A.P.I.’s payment for an original op-ed was $2,000.
  • It was joined by the U.S. Chamber of Commerce and 14 other trade associations, including those representing the coal, electric-grid and automobile industries
  • In October 1989, scientists allied with the G.C.C. began to be quoted in national publications, giving an issue that lacked controversy a convenient fulcrum. “Many respected scientists say the available evidence doesn’t warrant the doomsday warnings,” was the caveat that began to appear in articles on climate change.
  • The following year, when President Bill Clinton proposed an energy tax in the hope of meeting the goals of the Rio treaty, the A.P.I. invested $1.8 million in a G.C.C. disinformation campaign. Senate Democrats from oil-and-coal states joined Republicans to defeat the tax proposal, which later contributed to the Republicans’ rout of Democrats in the midterm congressional elections in 1994 — the first time the Republican Party had won control of both houses in 40 years
  • The G.C.C. spent $13 million on a single ad campaign intended to weaken support for the 1997 Kyoto Protocol, which committed its parties to reducing greenhouse-gas emissions by 5 percent relative to 1990 levels. The Senate, which would have had to ratify the agreement, took a pre-emptive vote declaring its opposition; the resolution passed 95-0. There has never been another serious effort to negotiate a binding global climate treaty.
  • . This has made the corporation an especially vulnerable target for the wave of compensatory litigation that began in earnest in the last three years and may last a generation. Tort lawsuits have become possible only in recent years, as scientists have begun more precisely to attribute regional effects to global emission levels. This is one subfield of climate science that has advanced significantly sin
  • Pomerance had not been among the 400 delegates invited to Noordwijk. But together with three young activists — Daniel Becker of the Sierra Club, Alden Meyer of the Union of Concerned Scientists and Stewart Boyle from Friends of the Earth — he had formed his own impromptu delegation. Their constituency, they liked to say, was the climate itself. Their mission was to pressure the delegates to include in the final conference statement, which would be used as the basis for a global treaty, the target proposed in Toronto: a 20 percent reduction of greenhouse-gas combustion by 2005. It was the only measure that mattered, the amount of emissions reductions, and the Toronto number was the strongest global target yet proposed.
  • The delegations would review the progress made by the I.P.C.C. and decide whether to endorse a framework for a global treaty. There was a general sense among the delegates that they would, at minimum, agree to the target proposed by the host, the Dutch environmental minister, more modest than the Toronto number: a freezing of greenhouse-gas emissions at 1990 levels by 2000. Some believed that if the meeting was a success, it would encourage the I.P.C.C. to accelerate its negotiations and reach a decision about a treaty sooner. But at the very least, the world’s environmental ministers should sign a statement endorsing a hard, binding target of emissions reductions. The mood among the delegates was electric, nearly giddy — after more than a decade of fruitless international meetings, they could finally sign an agreement that meant something.
  • 11. ‘The Skunks at The Garden Party’ November 1989
  • It was nearly freezing — Nov. 6, 1989, on the coast of the North Sea in the Dutch resort town of Noordwijk
  • Losing Earth: The Decade WeAlmost Stopped Climate Change We knew everything we needed to know, and nothing stood in our way. Nothing, that is, except ourselves. A tragedy in two acts. By Nathaniel RichPhotographs and Videos by George Steinmetz AUG. 1, 2018
Javier E

Transcript: Ezra Klein Interviews Robinson Meyer - The New York Times - 0 views

  • Implementation matters, but it’s harder to cover because it’s happening in all parts of the country simultaneously. There isn’t a huge Republican-Democratic fight over it, so there isn’t the conflict that draws the attention to it
  • we sort of implicitly treat policy like it’s this binary one-zero condition. One, you pass a bill, and the thing is going to happen. Zero, you didn’t, and it won’t.
  • ROBINSON MEYER: You can almost divide the law up into different kind of sectors, right? You have the renewable build-out. You have EVs. You have carbon capture. You have all these other decarbonizing technologies the law is trying to encourage
  • ...184 more annotations...
  • that’s particularly true on the I.R.A., which has to build all these things in the real world.
  • we’re trying to do industrial physical transformation at a speed and scale unheralded in American history. This is bigger than anything we have done at this speed ever.
  • The money is beginning to move out the door now, but we’re on a clock. Climate change is not like some other issues where if you don’t solve it this year, it is exactly the same to solve it next year. This is an issue where every year you don’t solve it, the amount of greenhouse gases in the atmosphere builds, warming builds, the effects compound
  • Solve, frankly, isn’t the right word there because all we can do is abate, a lot of the problems now baked in. So how is it going, and who can actually walk us through that?
  • Robinson Meyer is the founding executive editor of heatmap.news
  • why do all these numbers differ so much? How big is this thing?
  • in electric vehicles and in the effort, kind of this dual effort in the law, to both encourage Americans to buy and use electric vehicles and then also to build a domestic manufacturing base for electric vehicles.
  • on both counts, the data’s really good on electric vehicles. And that’s where we’re getting the fastest response from industry and the clearest response from industry to the law.
  • ROBINSON MEYER: Factories are getting planned. Steel’s going in the ground. The financing for those factories is locked down. It seems like they’re definitely going to happen. They’re permitted. Companies are excited about them. Large Fortune 500 automakers are confidently and with certainty planning for an electric vehicle future, and they’re building the factories to do that in the United States. They’re also building the factories to do that not just in blue states. And so to some degree, we can see the political certainty for electric vehicles going forward.
  • in other parts of the law, partially due to just vagaries of how the law is being implemented, tax credits where the fine print hasn’t worked out yet, it’s too early to say whether the law is working and how it’s going and whether it’s going to accomplish its goal
  • EZRA KLEIN: I always find this very funny in a way. The Congressional Budget Office scored it. They thought it would make about $380 billion in climate investments over a decade. So then you have all these other analyses coming out.
  • But there’s actually this huge range of outcomes in between where the thing passes, and maybe what you wanted to have happen happens. Maybe it doesn’t. Implementation is where all this rubber meets the road
  • the Rhodium Group, which is a consulting firm, they think it could be as high as $522 billion, which is a big difference. Then there’s this Goldman Sachs estimate, which the administration loves, where they say they’re projecting $1.2 trillion in incentives —
  • ROBINSON MEYER: All the numbers differ because most of the important incentives, most of the important tax credits and subsidies in the I.R.A., are uncapped. There’s no limit to how much the government might spend on them. All that matters is that some private citizen or firm or organization come to the government and is like, hey, we did this. You said you’d give us money for it. Give us the money.
  • because of that, different banks have their own energy system models, their own models of the economy. Different research groups have their own models.
  • we know it’s going to be wrong because the Congressional Budget Office is actually quite constrained in how it can predict how these tax credits are taken up. And it’s constrained by the technology that’s out there in the country right now.
  • The C.B.O. can only look at the number of electrolyzers, kind of the existing hydrogen infrastructure in the country, and be like, well, they’re probably all going to use these tax credits. And so I think they said that there would be about $5 billion of take up for the hydrogen tax credits.
  • But sometimes money gets allocated, and then costs overrun, and there delays, and you can’t get the permits, and so on, and the thing never gets built
  • the fact that the estimates are going up is to them early evidence that this is going well. There is a lot of applications. People want the tax credits. They want to build these new factories, et cetera.
  • a huge fallacy that we make in policy all the time is assuming that once money is allocated for something, you get the thing you’re allocating the money for. Noah Smith, the economics writer, likes to call this checkism, that money equals stuff.
  • EZRA KLEIN: They do not want that, and not wanting that and putting every application through a level of scrutiny high enough to try and make sure you don’t have another one
  • I don’t think people think a lot about who is cutting these checks, but a lot of it is happening in this very obscure office of the Department of Energy, the Loan Program Office, which has gone from having $40 billion in lending authority, which is already a big boost over it not existing a couple decades ago, to $400 billion in loan authority,
  • the Loan Program Office as one of the best places we have data on how this is going right now and one of the offices that’s responded fastest to the I.R.A.
  • the Loan Program Office is basically the Department of Energy’s in-house bank, and it’s kind of the closest thing we have in the US to what exists in other countries, like Germany, which is a State development bank that funds projects that are eventually going to be profitable.
  • It has existed for some time. I mean, at first, it kind of was first to play after the Recovery Act of 2009. And in fact, early in its life, it gave a very important loan to Tesla. It gave this almost bridge loan to Tesla that helped Tesla build up manufacturing capacity, and it got Tesla to where it is today.
  • EZRA KLEIN: It’s because one of the questions I have about that office and that you see in some of the coverage of them is they’re very afraid of having another Solyndra.
  • Now, depending on other numbers, including the D.O.E., it’s potentially as high as $100 billion, but that’s because the whole thing about the I.R.A. is it’s meant to encourage the build-out of this hydrogen infrastructure.
  • EZRA KLEIN: I’m never that excited when I see a government loans program turning a profit because I think that tends to mean they’re not making risky enough loans. The point of the government should be to bear quite a bit of risk —
  • And to some degree, Ford now has to compete, and US automakers are trying to catch up with Chinese EV automakers. And its firms have EV battery technology especially, but just have kind of comprehensive understanding of the EV supply chain that no other countries’ companies have
  • ROBINSON MEYER: You’re absolutely right that this is the key question. They gave this $9.2 billion loan to Ford to build these EV battery plants in Kentucky and Tennessee. It’s the largest loan in the office’s history. It actually means that the investment in these factories is going to be entirely covered by the government, which is great for Ford and great for our build-out of EVs
  • And to some degree, I should say, one of the roles of L.P.O. and one of the roles of any kind of State development bank, right, is to loan to these big factory projects that, yes, may eventually be profitable, may, in fact, assuredly be profitable, but just aren’t there yet or need financing that the private market can’t provide. That being said, they have moved very slowly, I think.
  • And they feel like they’re moving quickly. They just got out new guidelines that are supposed to streamline a lot of this. Their core programs, they just redefined and streamlined in the name of speeding them up
  • However, so far, L.P.O. has been quite slow in getting out new loans
  • I want to say that the pressure they’re under is very real. Solyndra was a disaster for the Department of Energy. Whether that was fair or not fair, there’s a real fear that if you make a couple bad loans that go bad in a big way, you will destroy the political support for this program, and the money will be clawed back, a future Republican administration will wreck the office, whatever it might be. So this is not an easy call.
  • when you tell me they just made the biggest loan in their history to Ford, I’m not saying you shouldn’t lend any money to Ford, but when I think of what is the kind of company that cannot raise money on the capital markets, the one that comes to mind is not Ford
  • They have made loans to a number of more risky companies than Ford, but in addition to speed, do you think they are taking bets on the kinds of companies that need bets? It’s a little bit hard for me to believe that it would have been impossible for Ford to figure out how to finance factorie
  • ROBINSON MEYER: Now, I guess what I would say about that is that Ford is — let’s go back to why Solyndra failed, right? Solyndra failed because Chinese solar deluged the market. Now, why did Chinese solar deluge the market? Because there’s such support of Chinese financing from the state for massive solar factories and massive scale.
  • EZRA KLEIN: — the private market can’t. So that’s the meta question I’m asking here. In your view, because you’re tracking this much closer than I am, are they too much under the shadow of Solyndra? Are they being too cautious? Are they getting money out fast enough?
  • ROBINSON MEYER: I think that’s right; that basically, if we think the US should stay competitive and stay as close as it can and not even stay competitive, but catch up with Chinese companies, it is going to require large-scale state support of manufacturing.
  • EZRA KLEIN: OK, that’s fair. I will say, in general, there’s a constant thing you find reporting on government that people in government feel like they are moving very quickly
  • EZRA KLEIN: — given the procedural work they have to go through. And they often are moving very quickly compared to what has been done in that respect before, compared to what they have to get over. They are working weekends, they are working nights, and they are still not actually moving that quickly compared to what a VC firm can do or an investment bank or someone else who doesn’t have the weight of congressional oversight committees potentially calling you in and government procurement rules and all the rest of it.
  • ROBINSON MEYER: I think that’s a theme across the government’s implementation of the I.R.A. right now, is that generally the government feels like it’s moving as fast as it can. And if you look at the Department of Treasury, they feel like we are publishing — basically, the way that most of the I.R.A. subsidies work is that they will eventually be administered by the I.R.S., but first the Department of the Treasury has to write the guidebook for all these subsidies, right?
  • the law says there’s a very general kind of “here’s thousands of dollars for EVs under this circumstance.” Someone still has to go in and write all the fine print. The Department of Treasury is doing that right now for each tax credit, and they have to do that before anyone can claim that tax credit to the I.R.S. Treasury feels like it’s moving extremely quickly. It basically feels like it’s completely at capacity with these, and it’s sequenced these so it feels like it’s getting out the most important tax credits first.
  • Private industry feels like we need certainty. It’s almost a year since the law passed, and you haven’t gotten us the domestic content bonus. You haven’t gotten us the community solar bonus. You haven’t gotten us all these things yet.
  • a theme across the government right now is that the I.R.A. passed. Agencies have to write the regulations for all these tax credits. They feel like they’re moving very quickly, and yet companies feel like they’re not moving fast enough.
  • that’s how we get to this point where we’re 311 days out from the I.R.A. passing, and you’re like, well, has it made a big difference? And I’m like, well, frankly, wind and solar developers broadly don’t feel like they have the full understanding of all the subsidies they need yet to begin making the massive investments
  • I think it’s fair to say maybe the biggest bet on that is green hydrogen, if you’re looking in the bill.
  • We think it’s going to be an important tool in industry. It may be an important tool for storing energy in the power grid. It may be an important tool for anything that needs combustion.
  • ROBINSON MEYER: Yeah, absolutely. So green hydrogen — and let’s just actually talk about hydrogen broadly as this potential tool in the decarbonization tool kit.
  • It’s a molecule. It is a very light element, and you can burn it, but it’s not a fossil fuel. And a lot of the importance of hydrogen kind of comes back to that attribute of it.
  • So when we look at sectors of the economy that are going to be quite hard to decarbonize — and that’s because there is something about fossil fuels chemically that is essential to how that sector works either because they provide combustion heat and steelmaking or because fossil fuels are actually a chemical feedstock where the molecules in the fossil fuel are going into the product or because fossil fuels are so energy dense that you can carry a lot of energy while actually not carrying that much mass — any of those places, that’s where we look at hydrogen as going.
  • green hydrogen is something new, and the size of the bet is huge. So can you talk about first just what is green hydrogen? Because my understanding of it is spotty.
  • The I.R.A. is extremely generous — like extremely, extremely generous — in its hydrogen subsidies
  • The first is for what’s called blue hydrogen, which is hydrogen made from natural gas, where we then capture the carbon dioxide that was released from that process and pump it back into the ground. That’s one thing that’s subsidized. It’s basically subsidized as part of this broader set of packages targeted at carbon capture
  • green hydrogen, which is where we take water, use electrolyzers on it, basically zap it apart, take the hydrogen from the water, and then use that as a fue
  • The I.R.A. subsidies for green hydrogen specifically, which is the one with water and electricity, are so generous that relatively immediately, it’s going to have a negative cost to make green hydrogen. It will cost less than $0 to make green hydrogen. The government’s going to fully cover the cost of producing it.
  • That is intentional because what needs to happen now is that green hydrogen moves into places where we’re using natural gas, other places in the industrial economy, and it needs to be price competitive with those things, with natural gas, for instance. And so as it kind of is transported, it’s going to cost money
  • As you make the investment to replace the technology, it’s going to cost money. And so as the hydrogen moves through the system, it’s going to wind up being price competitive with natural gas, but the subsidies in the bill are so generous that hydrogen will cost less than $0 to make a kilogram of it
  • There seems to be a sense that hydrogen, green hydrogen, is something we sort of know how to make, but we don’t know how to make it cost competitive yet. We don’t know how to infuse it into all the processes that we need to be infused into. And so a place where the I.R.A. is trying to create a reality that does not yet exist is a reality where green hydrogen is widely used, we have to know how to use it, et cetera.
  • And they just seem to think we don’t. And so you need all these factories. You need all this innovation. Like, they have to create a whole innovation and supply chain almost from scratch. Is that right?
  • ROBINSON MEYER: That’s exactly right. There’s a great Department of Energy report that I would actually recommend anyone interested in this read called “The Liftoff Report for Clean Hydrogen.” They made it for a few other technologies. It’s a hundred-page book that’s basically how the D.O.E. believes we’re going to build out a clean hydrogen economy.
  • And, of course, that is policy in its own right because the D.O.E. is saying, here is the years we’re going to invest to have certain infrastructure come online. Here’s what we think we need. That’s kind of a signal to industry that everyone should plan around those years as well.
  • It’s a great book. It’s like the best piece of industrial policy I’ve actually seen from the government at all. But one of the points it makes is that you’re going to make green hydrogen. You’re then going to need to move it. You’re going to need to move it in a pipeline or maybe a truck or maybe in storage tanks that you then cart around.
  • Once it gets to a facility that uses green hydrogen, you’re going to need to store some green hydrogen there in storage tanks on site because you basically need kind of a backup supply in case your main supply fails. All of those things are going to add cost to hydrogen. And not only are they going to add cost, we don’t really know how to do them. We have very few pipelines that are hydrogen ready.
  • All of that investment needs to happen as a result to make the green hydrogen economy come alive. And why it’s so lavishly subsidized is to kind of fund all that downstream investment that’s eventually going to make the economy come true.
  • But a lot of what has to happen here, including once the money is given out, is that things we do know how to build get built, and they get built really fast, and they get built at this crazy scale.
  • So I’ve been reading this paper on what they call “The Greens’ Dilemma” by J.B. Ruhl and James Salzman, who also wrote this paper called “Old Green Laws, New Green Deal,” or something like that. And I think they get at the scale problem here really well.
  • “The largest solar facility currently online in the US is capable of generating 585 megawatts. To meet even a middle-road renewable energy scenario would require bringing online two new 400-megawatt solar power facilities, each taking up at least 2,000 acres of land every week for the next 30 years.”
  • And that’s just solar. We’re not talking wind there. We’re not talking any of the other stuff we’ve discussed here, transmission lines. Can we do that? Do we have that capacity?
  • ROBINSON MEYER: No, we do not. We absolutely do not. I think we’re going to build a ton of wind and solar. We do not right now have the system set up to use that much land to build that much new solar and wind by the time that we need to build it. I think it is partially because of permitting laws, and I think it’s also partially because right now there is no master plan
  • There’s no overarching strategic entity in the government that’s saying, how do we get from all these subsidies in the I.R.A. to net zero? What is our actual plan to get from where we are right now to where we’re emitting zero carbon as an economy? And without that function, no project is essential. No activity that we do absolutely needs to happen, and so therefore everything just kind of proceeds along at a convenient pace.
  • given the scale of what’s being attempted here, you might think that something the I.R.A. does is to have some entity in the government, as you’re saying, say, OK, we need this many solar farms. This is where we think we should put them. Let’s find some people to build them, or let’s build them ourselves.
  • what it actually does is there’s an office somewhere waiting for private companies to send in an application for a tax credit for solar that they say they’re going to build, and then we hope they build it
  • it’s an almost entirely passive process on the part of the government. Entirely would be going too far because I do think they talk to people, and they’re having conversations
  • the builder applies, not the government plans. Is that accurate?
  • ROBINSON MEYER: That’s correct. Yes.
  • ROBINSON MEYER: I think here’s what I would say, and this gets back to what do we want the I.R.A. to do and what are our expectations for the I.R.A
  • If the I.R.A. exists to build out a ton of green capacity and shift the political economy of the country toward being less dominated by fossil fuels and more dominated by the clean energy industry, frankly, then it is working
  • If the I.R.A. is meant to get us all the way to net zero, then it is not capable of that.
  • in 2022, right, we had no way to see how we were going to reduce emissions. We did not know if we were going to get a climate bill at all. Now, we have this really aggressive climate bill, and we’re like, oh, is this going to get us to net zero?
  • But getting to net zero was not even a possibility in 2022.
  • The issue is that the I.R.A. requires, ultimately, private actors to come forward and do these things. And as more and more renewables get onto the grid, almost mechanically, there’s going to be less interest in bringing the final pieces of decarbonized electricity infrastructure onto the grid as well.
  • EZRA KLEIN: Because the first things that get applied for are the ones that are more obviously profitable
  • The issue is when you talk to solar developers, they don’t see it like, “Am I going to make a ton of money, yes or no?” They see it like they have a capital stack, and they have certain incentives and certain ways to make money based off certain things they can do. And as more and more solar gets on the grid, building solar at all becomes less profitable
  • also, just generally, there’s less people willing to buy the solar.
  • as we get closer to a zero-carbon grid, there is this risk that basically less and less gets built because it will become less and less profitable
  • EZRA KLEIN: Let’s call that the last 20 percent risk
  • EZRA KLEIN: — or the last 40 percent. I mean, you can probably attach different numbers to that
  • ROBINSON MEYER: Permitting is the primary thing that is going to hold back any construction basically, especially out West,
  • right now permitting fights, the process under the National Environmental Policy Act just at the federal level, can take 4.5 years
  • let’s say every single project we need to do was applied for today, which is not true — those projects have not yet been applied for — they would be approved under the current permitting schedule in 2027.
  • ROBINSON MEYER: That’s before they get built.
  • Basically nobody on the left talked about permitting five years ago. I don’t want to say literally nobody, but you weren’t hearing it, including in the climate discussion.
  • people have moved to saying we do not have the laws, right, the permitting laws, the procurement laws to do this at the speed we’re promising, and we need to fix that. And then what you’re seeing them propose is kind of tweak oriented,
  • Permitting reform could mean a lot of different things, and Democrats and Republicans have different ideas about what it could mean. Environmental groups, within themselves, have different ideas about what it could mean.
  • for many environmental groups, the permitting process is their main tool. It is how they do the good that they see themselves doing in the world. They use the permitting process to slow down fossil fuel projects, to slow down projects that they see as harming local communities or the local environment.
  • ROBINSON MEYER: So we talk about the National Environmental Policy Act or NEPA. Let’s just start calling it NEPA. We talk about the NEPA process
  • NEPA requires the government basically study any environmental impact from a project or from a decision or from a big rule that could occur.
  • Any giant project in the United States goes through this NEPA process. The federal government studies what the environmental impact of the project will be. Then it makes a decision about whether to approve the project. That decision has nothing to do with the study. Now, notionally, the study is supposed to inform the project.
  • the decision the federal government makes, the actual “can you build this, yes or no,” legally has no connection to the study. But it must conduct the study in order to make that decision.
  • that permitting reform is so tough for the Democratic coalition specifically is that this process of forcing the government to amend its studies of the environmental impact of various decisions is the main tool that environmental litigation groups like Earthjustice use to slow down fossil fuel projects and use to slow down large-scale chemical or industrial projects that they don’t think should happen.
  • when we talk about making this program faster, and when we talk about making it more immune to litigation, they see it as we’re going to take away their main tools to fight fossil fuel infrastructure
  • why there’s this gap between rhetoric and what’s actually being proposed is that the same tool that is slowing down the green build-out is also what’s slowing down the fossil fuel build-out
  • ROBINSON MEYER: They’re the classic conflict here between the environmental movement classic, let’s call it, which was “think globally, act locally,” which said “we’re going to do everything we can to preserve the local environment,” and what the environmental movement and the climate movement, let’s say, needs to do today, which is think globally, act with an eye to what we need globally as well, which is, in some cases, maybe welcome projects that may slightly reduce local environmental quality or may seem to reduce local environmental quality in the name of a decarbonized world.
  • Because if we fill the atmosphere with carbon, nobody’s going to get a good environment.
  • Michael Gerrard, who is professor at Columbia Law School. He’s a founder of the Sabin Center for Climate Change Law there. It’s called “A Time for Triage,” and he has this sort of interesting argument that the environmental movement in general, in his view, is engaged in something he calls trade-off denial.
  • his view and the view of some people is that, look, the climate crisis is so bad that we just have to make those choices. We have to do things we would not have wanted to do to preserve something like the climate in which not just human civilization, but this sort of animal ecosystem, has emerged. But that’s hard, and who gets to decide which trade-offs to make?
  • what you’re not really seeing — not really, I would say, from the administration, even though they have some principles now; not really from California, though Gavin Newsom has a set of early things — is “this is what we think we need to make the I.R.A. happen on time, and this is how we’re going to decide what is a kind of project that gets this speedway through,” w
  • there’s a failure on the part of, let’s say, the environmental coalition writ large to have the courage to have this conversation and to sit down at a table and be like, “OK, we know that certain projects aren’t happening fast enough. We know that we need to build out faster. What could we actually do to the laws to be able to construct things faster and to meet our net-zero targets and to let the I.R.A. kind achieve what it could achieve?”
  • part of the issue is that we’re in this environment where Democrats control the Senate, Republicans control the House, and it feels very unlikely that you could just get “we are going to accelerate projects, but only those that are good for climate change,” into the law given that Republicans control the House.
  • part of the progressive fear here is that the right solutions must recognize climate change. Progressives are very skeptical that there are reforms that are neutral on the existence of climate change and whether we need to build faster to meet those demands that can pass through a Republican-controlled House.
  • one of the implications of that piece was it was maybe a huge mistake for progressives not to have figured out what they wanted here and could accept here, back when the negotiating partner was Joe Manchin.
  • Manchin’s bill is basically a set of moderate NEPA reforms and transmission reforms. Democrats, progressives refuse to move on it. Now, I do want to be fair here because I think Democrats absolutely should have seized on that opportunity, because it was the only moment when — we could tell already that Democrats — I mean, Democrats actually, by that moment, had lost the House.
  • I do want to be fair here that Manchin’s own account of what happened with this bill is that Senate Republicans killed it and that once McConnell failed to negotiate on the bill in December, Manchin’s bill was dead.
  • EZRA KLEIN: It died in both places.ROBINSON MEYER: It died in both places. I think that’s right.
  • Republicans already knew they were going to get the House, too, so they had less incentive to play along. Probably the time for this was October.
  • EZRA KLEIN: But it wasn’t like Democrats were trying to get this one done.
  • EZRA KLEIN: To your point about this was all coming down to the wire, Manchin could have let the I.R.A. pass many months before this, and they would have had more time to negotiate together, right? The fact that it was associated with Manchin in the way it was was also what made it toxic to progressives, who didn’t want to be held up by him anymore.
  • What becomes clear by the winter of this year, February, March of this year, is that as Democrats and Republicans begin to talk through this debt-ceiling process where, again, permitting was not the main focus. It was the federal budget. It was an entirely separate political process, basically.
  • EZRA KLEIN: I would say the core weirdness of the debt-ceiling fight was there was no main focus to it.
  • EZRA KLEIN: It wasn’t like past ones where it was about the debt. Republicans did some stuff to cut spending. They also wanted to cut spending on the I.R.S., which would increase the debt, right? It was a total mishmash of stuff happening in there.
  • That alchemy goes into the final debt-ceiling negotiations, which are between principals in Congress and the White House, and what we get is a set of basically the NEPA reforms in Joe Manchin’s bill from last year and the Mountain Valley pipeline, the thing that environmentalists were focused on blocking, and effectively no transmission reforms.
  • the set of NEPA reforms that were just enacted, that are now in the law, include — basically, the word reasonable has been inserted many times into NEPA. [LAUGHS] So the law, instead of saying the government has to study all environmental impacts, now it has to study reasonable environmental impacts.
  • this is a kind of climate win — has to study the environmental impacts that could result from not doing a project. The kind of average NEPA environmental impact study today is 500 pages and takes 4.5 years to produce. Under the law now, the government is supposed to hit a page limit of 150 to 300 pages.
  • there’s a study that’s very well cited by progressives from three professors in Utah who basically say, well, when you look at the National Forest Service, and you look at this 40,000 NEPA decisions, what mostly holds up these NEPA decisions is not like, oh, there’s too many requirements or they had to study too many things that don’t matter. It’s just there wasn’t enough staff and that staffing is primarily the big impediment. And so on the one hand, I think that’s probably accurate in that these are, in some cases — the beast has been starved, and these are very poorly staffed departments
  • The main progressive demand was just “we must staff it better.”
  • But if it’s taking you this much staffing and that much time to say something doesn’t apply to you, maybe you have a process problem —ROBINSON MEYER: Yes.EZRA KLEIN: — and you shouldn’t just throw endless resources at a broken process, which brings me — because, again, you can fall into this and never get out — I think, to the bigger critique her
  • these bills are almost symbolic because there’s so much else happening, and it’s really the way all this interlocks and the number of possible choke points, that if you touch one of them or even you streamline one of them, it doesn’t necessarily get you that f
  • “All told, over 60 federal permitting programs operate in the infrastructure approval regime, and that is just the federal system. State and local approvals and impact assessments could also apply to any project.”
  • their view is that under this system, it’s simply not possible to build the amount of decarbonization infrastructure we need at the pace we need it; that no amount of streamlining NEPA or streamlining, in California, CEQA will get you there; that we basically have been operating under what they call an environmental grand bargain dating back to the ’70s, where we built all of these processes to slow things down and to clean up the air and clean up the water.
  • we accepted this trade-off of slower building, quite a bit slower building, for a cleaner environment. And that was a good trade. It was addressing the problems of that era
  • now we have the problems of this era, which is we need to unbelievably, rapidly build out decarbonization infrastructure to keep the climate from warming more than we can handle and that we just don’t have a legal regime or anything.
  • You would need to do a whole new grand bargain for this era. And I’ve not seen that many people say that, but it seems true to me
  • the role that America had played in the global economy in the ’50s and ’60s where we had a ton of manufacturing, where we were kind of the factory to a world rebuilding from World War II, was no longer tenable and that, also, we wanted to focus on more of these kind of high-wage, what we would now call knowledge economy jobs.That was a large economic transition happening in the ’70s and ’80s, and it dovetailed really nicely with the environmental grand bargain.
  • At some point, the I.R.A. recognizes that that environmental grand bargain is no longer operative, right, because it says, we’re going to build all this big fiscal fixed infrastructure in the United States, we’re going to become a manufacturing giant again, but there has not been a recognition among either party of what exactly that will mean and what will be required to have it take hold.
  • It must require a form of on-the-ground, inside-the-fenceline, “at the site of the power plant” pollution control technology. The only way to do that, really, is by requiring carbon capture and requiring the large construction of major industrial infrastructure at many, many coal plants and natural gas plants around the country in order to capture carbon so it doesn’t enter the atmosphere, and so we don’t contribute to climate change. That is what the Supreme Court has ruled. Until that body changes, that is going to be the law.
  • So the E.P.A. has now, last month, proposed a new rule under the Clean Air Act that is going to require coal plants and some natural gas plants to install carbon capture technology to do basically what the Supreme Court has all but kind of required the E.P.A. to do
  • the E.P.A. has to demonstrate, in order to kind of make this rule the law and in order to make this rule pass muster with the Supreme Court, that this is tenable, that this is the best available and technologically feasible option
  • that means you actually have to allow carbon capture facilities to get built and you have to create a legal process that will allow carbon capture facilities to get built. And that means you need to be able to tell a power plant operator that if they capture carbon, there’s a way they can inject it back into the ground, the thing that they’re supposed to do with it.
  • Well, E.P.A. simultaneously has only approved the kind of well that you need to inject carbon that you’ve captured from a coal factory or a natural gas line back into the ground. It’s called a Class 6 well. The E.P.A. has only ever approved two Class 6 wells. It takes years for the E.P.A. to approve a Class 6 well.
  • And environmental justice groups really, really oppose these Class 6 wells because they see any carbon capture as an effort to extend the life of the fossil fuel infrastructure
  • The issue here is that it seems like C.C.S., carbon capture, is going to be essential to how the U.S. decarbonizes. Legally, we have no other choice because of the constraints the Supreme Court has placed on the E.P.A.. At the same time, environmental justice groups, and big green groups to some extent, oppose building out any C.C.S.
  • to be fair to them, right, they would say there are other ways to decarbonize. That may not be the way we’ve chosen because the politics weren’t there for it, but there are a lot of these groups that believe you could have 100 percent renewables, do not use all that much carbon capture, right? They would have liked to see a different decarbonization path taken too. I’m not sure that path is realistic.
  • what you do see are environmental groups opposing making it possible to build C.C.S. anywhere in the country at all.
  • EZRA KLEIN: The only point I’m making here is I think this is where you see a compromise a lot of them didn’t want to make —ROBINSON MEYER: Exactly, yeah.EZRA KLEIN: — which is a decarbonization strategy that actually does extend the life cycle of a lot of fossil fuel infrastructure using carbon capture. And because they never bought onto it, they’re still using the pathway they have to try to block it. The problem is that’s part of the path that’s now been chosen. So if you block it, you just don’t decarbonize. It’s not like you get the 100 percent renewable strategy.
  • ROBINSON MEYER: Exactly. The bargain that will emerge from that set of actions and that set of coalitional trade-offs is we will simply keep running this, and we will not cap it.
  • What could be possible is that progressives and Democrats and the E.P.A. turns around and says, “Oh, that’s fine. You can do C.C.S. You just have to cap every single stationary source in the country.” Like, “You want to do C.C.S.? We totally agree. Essential. You must put CSS infrastructure on every power plant, on every factory that burns fossil fuels, on everything.”
  • If progressives were to do that and were to get it into the law — and there’s nothing the Supreme Court has said, by the way, that would limit progressives from doing that — the upshot would be we shut down a ton more stationary sources and a ton more petrochemical refineries and these bad facilities that groups don’t want than we would under the current plan.
  • what is effectively going to happen is that way more factories and power plants stay open and uncapped than would be otherwise.
  • EZRA KLEIN: So Republican-controlled states are just on track to get a lot more of it. So the Rocky Mountain Institute estimates that red states will get $623 billion in investments by 2030 compared to $354 billion for blue states.
  • why are red states getting so much more of this money?
  • ROBINSON MEYER: I think there’s two reasons. I think, first of all, red states have been more enthusiastic about getting the money. They’re the ones giving away the tax credits. They have a business-friendly environment. And ultimately, the way many, many of these red-state governors see it is that these are just businesses.
  • I think the other thing is that these states, many of them, are right-to-work states. And so they might pay their workers less. They certainly face much less risk financially from a unionization campaign in their state.
  • regardless of the I.R.A., that’s where manufacturing and industrial investment goes in the first place. And that’s where it’s been going for 20 years because of the set of business-friendly and local subsidies and right-to-work policies.
  • I think the administration would say, we want this to be a big union-led effort. We want it to go to the Great Lakes states that are our political firewall.
  • and it would go to red states, because that’s where private industry has been locating since the ’70s and ’80s, and it would go to the Southeast, right, and the Sunbelt, and that that wouldn’t be so bad because then you would get a dynamic where red-state senators, red-state representatives, red-state governors would want to support the transition further and would certainly not support the repeal of the I.R.A. provisions and the repeal of climate provisions, and that you’d get this kind of nice vortex of the investment goes to red states, red states feel less antagonistic toward climate policies, more investment goes to red states. Red-state governors might even begin to support environmental regulation because that basically locks in benefits and advantages to the companies located in their states already.
  • I think what you see is that Republicans are increasingly warming to EV investment, and it’s actually building out renewables and actually building out clean electricity generation, where you see them fighting harder.
  • The other way that permitting matters — and this gets into the broader reason why private investment was generally going to red states and generally going to the Sunbelt — is that the Sunbelt states — Georgia, Texas — it’s easier to be there as a company because housing costs are lower and because the cost of living is lower in those states.
  • it’s also partially because the Sunbelt and the Southeast, it was like the last part of the country to develop, frankly, and there’s just a ton more land around all the cities, and so you can get away with the sprawling suburban growth model in those citie
  • It’s just cheaper to keep building suburbs there.
  • EZRA KLEIN: So how are you seeing the fights over these rare-earth metals and the effort to build a safe and, if not domestic, kind of friend-shored supply chain there?
  • Are we going to be able to source some of these minerals from the U.S.? That process seems to be proceeding but going slowly. There are some minerals we’re not going to be able to get from the United States at all and are going to have to get from our allies and partners across the world.
  • The kind of open question there is what exactly is the bargain we’re going to strike with countries that have these critical minerals, and will it be fair to those countries?
  • it isn’t to say that I think the I.R.A. on net is going to be bad for other countries. I just think we haven’t really figured out what deal and even what mechanisms we can use across the government to strike deals with other countries to mine the minerals in those countries while being fair and just and creating the kind of economic arrangement that those countries want.
  • , let’s say we get the minerals. Let’s say we learn how to refine them. There is many parts of the battery and many parts of EVs and many, many subcomponents in these green systems that there’s not as strong incentive to produce in the U.S.
  • at the same time, there’s a ton of technology. One answer to that might be to say, OK, well, what the federal government should do is just make it illegal for any of these battery makers or any of these EV companies to work with Chinese companies, so then we’ll definitely establish this parallel supply chain. We’ll learn how to make cathodes and anodes. We’ll figure it out
  • The issue is that there’s technology on the frontier that only Chinese companies have, and U.S. automakers need to work with those companies in order to be able to compete with them eventually.
  • EZRA KLEIN: How much easier would it be to achieve the I.R.A.’s goals if America’s relationship with China was more like its relationship with Germany?
  • ROBINSON MEYER: It would be significantly easier, and I think we’d view this entire challenge very differently, because China, as you said, not only is a leader in renewable energy. It actually made a lot of the important technological gains over the past 15 years to reducing the cost of solar and wind. It really did play a huge role on the supply side of reducing the cost of these technologies.
  • If we could approach that, if China were like Germany, if China were like Japan, and we could say, “Oh, this is great. China’s just going to make all these things. Our friend, China, is just going to make all these technologies, and we’re going to import them.
  • So it refines 75 percent of the polysilicon that you need for solar, but the machines that do the refining, 99 percent of them are made in China. I think it would be reckless for the U.S. to kind of rely on a single country and for the world to rely on a single country to produce the technologies that we need for decarbonization and unwise, regardless of our relationship with that country.
  • We want to geographically diversify the supply chain more, but it would be significantly easier if we did not have to also factor into this the possibility that the US is going to need to have an entirely separate supply chain to make use of for EVs, solar panels, wind turbines, batteries potentially in the near-term future.
  • , what are three other books they should read?
  • The first book is called “The End of the World” by Peter Brannen. It’s a book that’s a history of mass extinctions, the Earth’s five mass extinctions, and, actually, why he doesn’t think we’re currently in a mass extinction or why, at least, things would need to go just as bad as they are right now for thousands and thousands of years for us to be in basically the sixth extinction.
  • The book’s amazing for two reasons. The first is that it is the first that really got me to understand deep time.
  • he explains how one kind of triggered the next one. It is also an amazing book for understanding the centrality of carbon to Earth’s geological history going as far back as, basically, we can track.
  • “Climate Shock” by Gernot Wagner and Marty Weitzman. It’s about the economics of climate change
  • Marty Weitzman, who I think, until recently, was kind of the also-ran important economist of climate change. Nordhaus was the famous economist. He was the one who got all attention. He’s the one who won the Nobel.
  • He focuses on risk and that climate change is specifically bad because it will damage the environment, because it will make our lives worse, but it’s really specifically bad because we don’t know how bad it will be
  • it imposes all these huge, high end-tail risks and that blocking those tail risks is actually the main thing we want to do with climate policy.
  • That is I think, in some ways, what has become the U.S. approach to climate change and, to some degree, to the underlying economic thinking that drives even the I.R.A., where we want to just cut off these high-end mega warming scenarios. And this is a fantastic explanation of that particular way of thinking and of how to apply that way of thinking to climate change and also to geoengineerin
  • The third book, a little controversial, is called “Shorting the Grid” by Meredith Angwin
  • her argument is basically that electricity markets are not the right structure to organize our electricity system, and because we have chosen markets as a structured, organized electricity system in many states, we’re giving preferential treatment to natural gas and renewables, two fuels that I think climate activists may feel very different ways about, instead of coal, which she does think we should phase out, and, really, nuclear
  • By making it easier for renewables and natural gas to kind of accept these side payments, we made them much more profitable and therefore encouraged people to build more of them and therefore underinvested in the forms of generation, such as nuclear, that actually make most of their money by selling electrons to the grid, where they go to people’s homes.
Javier E

'Insanely cheap energy': how solar power continues to shock the world | Energy | The Gu... - 0 views

  • Over the last two decades, however, the IEA has consistently failed to see the massive growth in renewable energy coming. Not only has the organisation underestimated the take-up of solar and wind, but it has massively overstated the demand for coal and oil.
  • Jenny Chase, head of solar analysis at BloombergNEF, says that, in fairness to the IEA, it wasn’t alone.
  • “When I got this job in 2005, I thought maybe one day solar will supply 1% of the world’s electricity. Now it’s 3%. Our official forecast is that it will be 23% by 2050, but that’s completely underestimated,”
  • ...13 more annotations...
  • This rapid radical reduction in the price of PV solar is a story about Chinese industrial might backed by American capital, fanned by European political sensibilities and made possible largely thanks to the pioneering work of an Australian research team.
  • “We’ve got to the point where solar is the cheapest source of energy in the world in most places. This means we’ve been trying to model a situation where the grid looks totally different today.”
  • Every time you double producing capacity, you reduce the cost of PV solar by 28%
  • “The first reaction was: that’s the future. Everybody said that’s the future. But they also said it was one step too early. What they meant was that there was no market for it yet. In China at the time, if you mentioned solar, people thought of solar hot water.”
  • It was a moment that opened up what was possible from the industry, and the new upper limit was “set” at 25% – another barrier Green and his team would smash in 2008. In 2015, they built the world’s most efficient solar cell, achieving a 40.6% conversion rate using focused light reflected off a mirror.
  • In the very early years of the industry, the received wisdom had been that a 20% conversion rate marked the hard limit of what was possible from PV solar cells. Green, however, disagreed in a paper published in 1984.A year later, his team built the first cell that pushed past that limit, and in 1989 built the first full solar panel capable of running at 20% efficiency.
  • All that would change when Germany passed new laws encouraging the uptake of solar power. Quickly it became clear there was a massive global demand and the world’s manufacturers were struggling to keep up with supply.
  • Spying an opportunity for investment, a consortium that included Actis Capital and Goldman Sachs came knocking to pitch Shi on taking the company public. When the company listed on the New York Stock Exchange in 2005, it raised $420m and made Shi an instant billionaire. A year later he would be worth an estimated $3bn and crowned the richest man in China, earning him the moniker “the Sun King”.
  • Around 2012 the world market was flooded with solar panels, sending the price plummeting through the floor, leaving SunTech vulnerable. Already under intense financial pressure, disaster struck when an internal investigation found a takeover bid it had launched had been guaranteed by €560m in fake German government bonds.
  • In a quirk of history, what had begun as an American drive to wean itself off oil was eventually taken up by China, which made solar power dirt cheap in the process.“The Chinese approach to renewables is all about energy security,” Mathews says. “At the scale from which they’re building new industries, they would need colossal imports of conventional fossil fuels, which would cripple them economically.
  • “They can get around that problem, which is a geopolitical obstacle, by manufacturing their own energy equipment.”
  • “We think a 40% module, rather than the 22% you can do nowadays with PERC, is what the industry will be doing once we perfect this stacking approach,” Green says. “We’re just trying to find a new cell that will have all the qualities of silicon that we can stack on top of silicon.
  • “The International Energy Agency now says solar is providing the cheapest energy the world has ever seen. But we’re headed towards a future of insanely cheap energy.“It’s a fundamentally different world we’re moving into.”
Javier E

(3) Chartbook 285: Cal-Tex - How Bidenomics is shaping America's multi-speed energy tra... - 0 views

  • If the Texas solar boom, the biggest in the USA, has little to do with Bidenomics, are we exaggerating the impact of Bidenomics? Rather than the shiny new tax incentives is it more general factors such as the plunging cost of PVs driving the renewable surge in the USA. Or, if policy is indeed the key, are state-level measures in Texas making the difference? Or, is this unfair to the IRA? Are its main effects still to come? Will it pile-on a boom that is already underway?
  • What did I learn?
  • First, when we compare the US renewable energy trajectory with the global picture, there is little reason to believe that Bidenomics has, so far, produced an exceptional US trajectory.
  • ...29 more annotations...
  • Everywhere, new investment in green energy generation is being propelled by general concern for the climate, shifting corporate and household demand, the plunging prices for solar and batteries triggered by Chinese policy, and a combination of national and regional interventions
  • How different would we expect this data to look without the IRA?
  • The most useful overview of these modeling efforts that I have been able to find is by Bistline et al “Power sector impacts of the Inflation Reduction Act of 2022” in Environmental Research Letters November 2023. If anyone has a better source, please let me know.
  • The top panel shows the historical trajectory of US generating capacity from 1980 to 2021. The second half of the graphic shows how 11 different models predict that the US electricity system might be expected to develop up to 2035, with and without IRA.
  • all the models expect the trends of the 2010s to continue through to the 2030s which means that solar, wind and battery storage dominate America’s energy future. Even without the IRA, the low carbon share of electricity generation will likely rise to 50-55% by 2035. Bidenomics bumps that to 70-80 percent.
  • The question is: “How does the renewable surge of 2022-2024, compare to the model-based expectations, with and without the IRA?”
  • The answer is either, “so so”, or, more charitably, it is “too early to tell”. In broad terms the current rate of expansion is slightly above the rate the models predict without the provision of additional Bidenomics incentives. But what is also clear is that the current rate of expansion, is far short of the long-run pace that should be expected from the IRA
  • At this point, defenders of the IRA interject that the IRA has only just come into effect. Cash from the IRA is only beginning to flow. And in an environment of higher costs for renewable energy equipment and higher interest rates, cash matters.
  • As Yakov Feygin put it: “Maybe the pithiest way to put it is that there are pre-IRA trends and outside IRA trends, but IRA has served to rapidly compress the timeframes for installation in a lot of technologies. So five years has turned into two, for example.”
  • So, to judge the impact of the IRA to date, the real question is not what has been built in 2022 and 2023, but what is in the pipeline.
  • Advised by JP Morgan, sophisticated global players like Ørsted are optimizing their use of both the production and investment tax credits offered by the IRA to launch large new renewable schemes. Of course, correlation is not the same as causation
  • Where the IRA is perhaps doing its most important work may be in incentivizing the middle bracket of projects where green momentum is less certain.
  • According to Utility Drive: “The 10 largest U.S. developers plan to build 110,364 MW of new wind and solar projects over the next five years, according to S&P Global Market Intelligence, but the majority of these projects remain in early stages of development. Just 15% of planned wind and solar projects are under construction, and 13% are considered to be in advanced stages of development, … ”
  • The states that I have highlighted in red stand out either for their unusually low existing level of renewable power capacity or their lack of current momentum.
  • Along with Texas, the pipelines for the PJM, MISO and Southeast regions (which includes Florida) look particularly healthy.
  • The relatively modest California numbers should not be a surprise. As Yakov Feygin and others pointed out, what is needed in California is not more raw generating capacity, but more battery storage. And that is what we are seeing in the data.
  • The numbers would be even larger if it were not for the truly surreal logjam in California’s system for authorizing interconnections. According to Hamilton/Brookings data the volume of hybrid solar and batter capacity in the queue for approval is 6.5 times the capacity currently operating in the state. In other words there is an entire energy transition waiting to happen when the overloaded managerial processes of the system catch up
  • Texas’s less bureaucratic system seems to be one of its key advantages in the extremely rapid roll-out of solar.
  • though it may be true that globally speaking the United States as a whole is a laggard in renewable energy development,
  • If California (with an economy roughly comparable to that of Germany at current exchange rates) and Texas (with an economy roughly the size of Italy’s) were countries, they would be #3 and #5 in the world in solar capacity per capita.
  • the obvious question is, which are the laggards in the US energy system.
  • So there is a lot to get excited about, at, what we are learning to call, the “meso”-level of the economy (more on this in a future post).
  • What the state-level data reveal is that there are a significant number of large states in the USA where solar and wind energy have barely made any impact. Pennsylvania, for instance
  • The relative levels of sunshine between US states is irrelevant. As the global solar atlas shows, the entire United States has far better solar potential than North West Europe. If you can grow corn and tobbaco, you can do utility-scale solar. The fact that Arizona is not a solar giant is mind boggling.
  • Texas is both big and truly remarkable. California already is a world leader in renewable energy. Meanwhile, the majority of the US electricity system presents a very different picture. There is a huge distance to be traveled and the pace of solar build-out is unremarkable.
  • This is where national level incentives like the IRA must prove themselves
  • And these local battles in America matter. Given the extremely high per capita energy consumption in the USA, greening state-level energy systems is significant at the global level. It does not compare to the super-sized levels of emissions in China, but it matters.
  • Indonesia’s total installed electricity generating capacity is rated at 81 GW. As far as immediate impact on the global carbon balance is concerned, cleaning up the power systems of Pennsylvania and Illinois would make an even bigger impact.
  • A key test of Biden-era climate and industrial policy will be whether it can untie the local political economy of fossil fuels, which, across many regions of the United States still stands in the way of a green energy transition that now has all the force of economics and technological advantage on its side.
Javier E

Natural Gas, America's No. 1 Power Source, Already Has a New Challenger: Batteries - WSJ - 0 views

  • Vistra Corp. owns 36 natural-gas power plants, one of America’s largest fleets. It doesn’t plan to buy or build any more. Instead, Vistra intends to invest more than $1 billion in solar farms and battery storage units in Texas and California as it tries to transform its business to survive in an electricity industry being reshaped by new technology.
  • A decade ago, natural gas displaced coal as America’s top electric-power source, as fracking unlocked cheap quantities of the fuel. Now, in quick succession, natural gas finds itself threatened with the same kind of disruption, only this time from cost-effective batteries charged with wind and solar energy.
  • Natural-gas-fired electricity represented 38% of U.S. generation in 2019
  • ...23 more annotations...
  • Wind and solar generators have gained substantial market share, and as battery costs fall, batteries paired with that green power are beginning to step into those roles by storing inexpensive green energy and discharging it after the sun falls or the wind dies.
  • President Biden is proposing to extend renewable-energy tax credits to stand-alone battery projects—installations that aren’t part of a generating facility—as part of his $2.3 trillion infrastructure plan, which could add fuel to an already booming market for energy storage.
  • renewables have become increasingly cost-competitive without subsidies in recent years, spurring more companies to voluntarily cut carbon emissions by investing in wind and solar power at the expense of that generated from fossil fuels.
  • the specter of more state and federal regulations to address climate change is accelerating the trend.
  • the combination of batteries and renewable energy is threatening to upend billions of dollars in natural-gas investments, raising concerns about whether power plants built in the past 10 years—financed with the expectation that they would run for decades—will become “stranded assets,” facilities that retire before they pay for themselves.
  • as batteries help wind and solar displace traditional power sources, some investors view the projects with caution, noting that they, too, could become victims of disruption in coming years, if still-other technological advances yield better ways to store energy.
  • most current batteries can deliver power only for several hours before needing to recharge. That makes them nearly useless during extended outages.
  • Duke Energy Corp. , a utility company based in Charlotte, N.C., that supplies electricity and natural gas in parts of seven states, is still looking to build additional gas-fired power plants. But it has started to rethink its financial calculus to reflect that the plants might need to pay for themselves sooner, because they might not be able to operate for as long.
  • To remedy that, Duke in public filings said it is considering shortening the plants’ expected lifespan from about 40 years to 25 years and recouping costs using accelerated depreciation, an accounting measure that would let the company write off more expenses earlier in the plants’ lives
  • It may also consider eventually converting the plants to run on hydrogen, which doesn’t result in carbon emissions when burned.
  • Much of the nation’s gas fleet, on the other hand, is relatively young, increasing the potential for stranded costs if widespread closures occur within the next two decades.
  • Gas plants that supply power throughout the day face the biggest risk of displacement. Such “baseload” plants typically need to run at 60% to 80% capacity to be economically viable, making them vulnerable as batteries help fill gaps in power supplied by solar and wind farms.
  • Today, such plants average 60% capacity in the U.S., according to IHS Markit, a data and analytics firm. By the end of the decade, the firm expects that average to fall to 50%, raising the prospect of bankruptcy and restructuring for the lowest performers.
  • “It’s just coal repeating itself.”
  • It took only a few years for inexpensive fracked gas to begin displacing coal used in power generation. Between 2011, shortly after the start of the fracking boom, and 2020, more than 100 coal plants with 95,000 megawatts of capacity were closed or converted to run on gas, according to the EIA. An additional 25,000 megawatts are slated to close by 2025.
  • Batteries are most often paired with solar farms, rather than wind farms, because of their power’s predictability and because it is easier to secure federal tax credits for that pairing.
  • Already, the cost of discharging a 100-megawatt battery with a two-hour power supply is roughly on par with the cost of generating electricity from the special power plants that operate during peak hours. Such batteries can discharge for as little as $140 a megawatt-hour, while the lowest-cost “peaker” plants—which fire up on demand when supplies are scarce—generate at $151 a megawatt-hour, according to investment bank Lazard.
  • Solar farms paired with batteries, meanwhile, are becoming competitive with gas plants that run all the time. Those types of projects can produce power for as little as $81 a megawatt-hour, according to Lazard, while the priciest of gas plants average $73 a megawatt-hour
  • Even in Texas, a state with a fiercely competitive power market and no emissions mandates, scarcely any gas plants are under construction, while solar farms and batteries are growing fast. Companies are considering nearly 88,900 megawatts of solar, 23,860 megawatts of wind and 30,300 megawatts of battery storage capacity in the state, according to the Electric Reliability Council of Texas. By comparison, only 7,900 megawatts of new gas-fired capacity is under consideration.
  • California last summer experienced the consequences of quickly reducing its reliance on gas plants. In August, during an intense heat wave that swept the West, the California grid operator resorted to rolling blackouts to ease a supply crunch when demand skyrocketed. In a postmortem published jointly with the California Public Utilities Commission and the California Energy Commission, the operator identified the rapid shift to solar and wind power as one of several contributing factors.
  • Mr. Morgan, who has closed a number of Vistra’s coal-fired and gas-fired plants since becoming CEO in 2016, said he anticipates most of the company’s remaining gas plants to operate for the next 20 years.
  • Quantum Energy Partners, a Houston-based private-equity firm, in the last several years sold a portfolio of six gas plants in Texas and three other states upon seeing just how competitive renewable energy was becoming. It is now working to develop more than 8,000 megawatts of wind, solar and battery projects in 10 states.
  • “We pivoted,” said Sean O’Donnell, a partner in the firm who helps oversee the firm’s power investments. “Everything that we had on the conventional power side, we decided to sell, given our outlook of increasing competition and diminishing returns.”
Javier E

What The History of Fossil Fuels Teaches Us About Renewable Energy - The Atlantic - 0 views

  • First, the resources. Pretty much all available energy on the earth comes from energy radiated by the sun.
  • The exceptions to the sunlight rule are: geothermal energy, which comes from the very hot core of the earth (often in the form of volcanoes); tidal energy, which is the result of water interacting with the gravity of the earth, moon, and sun; and nuclear energy
  • Some of these resources are renewable, but at the moment, the dominant suppliers of energy to human civilization (the fossil fuels) are not.
  • ...16 more annotations...
  • Smil’s “prime movers,” which he defines as “energy converters able to produce kinetic (mechanical) energy into forms suitable for human use.” For most of the time that there have been humans on earth, the best prime movers have been people
  • while Smil agrees with pretty much everyone else that the next big energy transition is from nonrenewable to renewable resources, he is cautious about the timing. At one level, the change is plainly inevitable.
  • Things really kicked off with the invention of the steam engine in the 1700s—the first prime mover powered by fuels (100,000W in 1800; 3,000,000W in 1900). This was followed by the steam turbine (75,000W in 1890; 25,000,000W in 1914). The prime-mover revolution is rounded out by the internal-combustion engine in the later half of the 1800s and the gas turbine in the 1930s
  • Smil is concerned with the series of transitions that have occurred throughout human history, both in terms of resources and prime movers. These transitions are somewhat interrelated, but not completely. For example, you can run a steam turbine off of wood, coal, or nuclear power so a transition between those resources does not necessitate a change in prime movers. On the other hand, you can’t feed an internal-combustion engine with wind or wood. At the moment, all of our best prime movers rely heavily on fossil fuels.
  • how prime movers have increased in power over the course of history. Remember that orange lifted to a counter? If you expend that effort over a second, that's 1W (a watt) of work. Smil calculates that the average healthy human can sustain 60W–100W of work throughout a working day. At some point in prehistory, people started yoking domesticated animals (250W–800W depending on the breed). Then came sails, then a few thousand years later, waterwheels (2,000W–4,000W in medieval times) and then a thousand years after that, windmills (1,000W–10,0000W in 1900).
  • Where he does differ is in his opinion about how quickly it can happen. Where Gore calls for a complete conversion to renewables in 10 years, Smil thinks the transition will take generations.
  • The barriers to total conversion—much like the problems that plague our energy infrastructure—are a funny mixture of policy, technology, infrastructure, and physics
  • For example, the possibility that nuclear power might take up any of the load in the U.S. seems extremely low, given that no new plants have been built since the 1970s. That’s not a physics problem, that’s a policy problem.
  • As far as converting to wind and solar, Smil sees much bigger technological and infrastructural hurdles. A switch to renewables means a transition in terms of both resources and prime movers.
  • The character of renewable resources is fundamentally different from that of fossil fuels. Where fuels are highly dense stores of energy and relatively easy to reliably transport, the renewables are characterized by the highly fickle ebbs and flows of nature. Some days are sunny, others have clouds.
  • Energy density is sometimes used to discuss the capacity of volumes of batteries and fuel. Smil is interested instead in measuring energy per unit of the earth’s surface. He uses the figure as a means to try to compare the various means of producing energy and the demands for using it.
  • to measure the energy density of coal, you look at how much energy you get from burning coal and divide that by how much of the earth’s surface needs to be given over to coal production to get it.
  • Because the best way of mitigating the irregularity in how they generate power is to create interconnected grids, an energy regime based on wind and solar needs to lay a lot of power lines through a lot of jurisdictions and permitting regimes. Physics meets infrastructure, and policy. Renewables are simply more diffuse.
  • “Mass adoption of renewable energies would thus necessitate a fundamental reshaping of modern energy infrastructures,” Smil writes. We'd go from harvesting energy from concentrated sources and diffusing it outwards, to gathering energy from diffuse sources and concentrating it inwards towards relatively few centers. This is, fundamentally, a very different way of organizing how we use land.
  • This is not impossible, and in the long run it is probably inevitable. But we underestimate the effort required and changes that will be necessary at our peril.
  • The switch from wood to coal ushered in industrialization which completely upended social-structures and human relationships all over the world. The rise of oil transformed geo-politics, turning some countries into energy superpowers overnight. No one knows how deeply our society might be transformed by the transition to renewables. Or whether we'll be able to do it fast enough.
criscimagnael

Biden Administration to Cut Costs for Wind and Solar Energy Projects - The New York Times - 0 views

  • The Biden administration said on Wednesday it would cut in half the amount it charges companies to build wind and solar projects on federal lands, a move designed to encourage development of renewable energy.
  • “Clean energy projects on public lands have an important role to play in reducing our nation’s greenhouse gas emissions and lowering costs for families,”
  • The new policy would cut those costs by about 50 percent,
  • ...6 more annotations...
  • The decision comes as the Biden administration also seeks to raise the royalty fees it charges oil and gas companies to drill on federal land and in federal waters. Last month, the administration canceled three oil and gas lease sales in the Gulf of Mexico and off the coast of Alaska, prompting Republican lawmakers to criticize the new renewable energy policies as harmful to energy producing states.
  • The federal Bureau of Land Management also announced that it would strengthen its ability to handle a growing number of applications by wind, solar and geothermal developers by creating five new offices across the West to review proposed projects.
  • “Here is Biden‘s energy policy: wind, solar and wishful thinking,”
  • President Biden has pledged to cut greenhouse gases generated by the United States roughly in half by 2030.
  • Last year, for example, the administration gave a green light to two major solar projects on federal lands in California that it said would generate about 1,000 megawatts, enough electricity to power about 132,000 homes.
  • The reduction in fees and rental rates comes at a challenging time for the solar industry. A Commerce Department investigation into whether Chinese companies are circumventing U.S. tariffs by moving components for solar panels through four Southeast Asian countries has held up hundreds of new solar projects across the country.
Javier E

Opinion | The Green Transition Is Happening Fast. The Climate Bill Will Only Speed It U... - 0 views

  • Among the first things you likely heard about the Inflation Reduction Act was its size.The bill, signed into law by President Biden on Tuesday, makes $369 billion in climate and energy investments — by far the largest such investment in American history.
  • But there are several ways to measure the size of a bill, and given how high the country’s emissions targets are, even many of the I.R.A.’s supporters will openly concede that it is, on its own, inadequate
  • it is ultimately how much carbon we put into the atmosphere and not how much solar power we produce that determines the future of warming. But the power of carrots also just reflects some new realities: To simplify radically, a 90 percent reduction in the cost of solar power over the last decade means that the same amount of money now goes ten times as far.
  • ...25 more annotations...
  • the broader economic and cultural landscape is so different now than it was just a few years ago that public investments of even this somewhat smaller scale appear poised to make an enormous difference.
  • That’s because those public investments are being made not against dirty-energy headwinds but with the support of much broader tailwinds
  • Thanks to technological change and the plunging cost of renewables, a growing political and cultural focus on decarbonization and increasing awareness of the public health costs of pollution and market trends for things like electric vehicles and heat pumps, it’s genuinely a whole new world out there. Not that long ago, the upfront cost of a green transition looked almost incalculably large. Today it seems plausible that quite dramatic emissions gains can be achieved for just, say, $369 billion
  • For 90 percent of the world, clean energy is now cheaper than dirty alternatives, and while countries like Spain are boasting about more than tripling solar power capacity by 2030, in Texas, solar output has grown 39-fold in just six years. Globally, renewable output has grown fourfold in the past decade
  • Ten years ago, when the United States endeavored to tackle the problem of climate change, it tried to do so largely by punishing the cost of dirty energy with a cap-and-trade system. This time, it’s giving a kick-start, or a boost of momentum, to an already ongoing green transition.
  • this strategic choice of carrots rather than sticks has received some deserved praise: It’s better and more popular to subsidize cheap, clean energy than it is to make the bad stuff more expensive
  • A “fair share” analysis suggests the United States — today the world’s second largest emitter, and historically the largest by far — should be moving faster than any nation in the world.
  • The models may ultimately prove optimistic, given the complications of infrastructure build-out
  • it is fair to wonder about the uncertain economics of some of the bill’s technological bets, like carbon capture and storage, which could allow emissions from industry and power generation to be trapped and sequestered, and which some climate activists and environmental justice advocates distrust
  • Jesse Jenkins, who leads the REPEAT Project, says he believes that the tech problems of C.C.S. have been solved and that, with tax credits, the bill will address its cost problem, leading to a dramatic scale-up in use. Julio Friedmann, a former Obama-era Energy Department official turned carbon removal advocate, says that a rapid scale-up of C.C.S. would be, while miraculous, also plausible.
  • the fact that this much climate progress appears even remotely possible for less than the annualized budget of the State Department, as Ben Dreyfuss recently put it, is a remarkable reflection of the state of green energy today, even without the new law. When it comes to emissions, we are no longer fighting an uphill battle, at least in the United States and many other countries like it. We are deciding how quickly to race downhill.
  • at the risk of playing Pollyanna, I think it is also possible to see the size of the bill — its relative smallness — as at least a mark of good news
  • The headline projection of the I.R.A. impact appears, if inadequate by the standards of the Paris agreement, nevertheless impressive: a 40 percent reduction in just eight years
  • already today the United States has reduced emissions 20 percent from 2005 levels, and was projected to reduce them further even without the benefit of the I.R.A. As recently as a few weeks ago, before the bill was revived, it might have felt like the United States was permanently stalled on climate action, but in fact the country was already moving to decarbonize, if not fast enough.
  • peed really matters; as the writer and activist Bill McKibben put it, when it comes to warming, “winning slowly is the same as losing.” Simply moving in the right direction isn’t enough, and too much time has been squandered — within the United States and globally — to avoid what was once described as a catastrophic climate future.
  • If the United States achieves that 40 percent reduction, that’s still well short of the country’s target of a 50-52 percent reduction by 2030. The gap may seem relatively small, but it represents more than half a billion tons of carbon each year. That’s a lot.
  • the I.R.A. is a compromise, obviously and outwardly, tying new leases for wind power development to new ones for oil and gas, only moderately reducing the country’s demand for oil and gas over the next decade and investing less in environmental justice measures than Biden himself promised not too long ago
  • But its basic bet — that many of these markets and technologies are close enough to tipping points that relatively small public support can get them racing toward inevitability — also means the ultimate impacts could be larger and far-reaching.
  • The effects on prices and markets could make state and local action cheaper and easier, and even federal regulation more palatable
  • the bill includes some unheralded provisions to help retire coal power more quickly, as Keane Bhatt, the policy director for the Progressive Caucus, has pointed out, as well as an under-discussed “stick” in the form of a fee for methane
  • The impact of its “green bank” and Energy Department loans could be quite large — some estimates have suggested they could run into the hundreds of billions, and the $27 billion handed to the Green Bank could catalyze ten times as much private capital
  • because much of the I.R.A.’s top-line “investment” comes in the form of tax credits, its outlays — and impacts — could ultimately grow substantially if certain sectors (wind, solar and C.C.S., for instance) really do take off.
  • This might not ultimately be just a $369 billion package, in other words, but something quite a bit bigger. Enough to get us to 50 percent by 2030? “I think we have a pretty good chance,” Jenkins says.
  • it is striking that, given where we were not that long ago, such a proposition seems credible at all. Here’s hoping.
  • The provisions tying future auctions for wind power to leases for oil and gas development have been called “poison pills,” because they appear to lock in future emissions. But the ultimate impact is likely to be quite small. (Energy Innovation estimates at most 50 million tons of additional annual carbon emissions, compared with a billion in reductions from other measures in the bill.)
Javier E

Life After Oil and Gas - NYTimes.com - 0 views

  • To what extent will we really “need” fossil fuel in the years to come? To what extent is it a choice?
  • Thirteen countries got more than 30 percent of their electricity from renewable energy in 2011, according to the Paris-based International Energy Agency, and many are aiming still higher.
  • Could we? Should we?
  • ...11 more annotations...
  • the United States could halve by 2030 the oil used in cars and trucks compared with 2005 levels by improving the efficiency of gasoline-powered vehicles and by relying more on cars that use alternative power sources, like electric batteries and biofuels.
  • New York State — not windy like the Great Plains, nor sunny like Arizona — could easily produce the power it needs from wind, solar and water power by 2030
  • “You could power America with renewables from a technical and economic standpoint. The biggest obstacles are social and political — what you need is the will to do it.”
  • “There is plenty of room for wind and solar to grow and they are becoming more competitive, but these are still variable resources — the sun doesn’t always shine and the wind doesn’t always blow,” said Alex Klein, the research director of IHS Emerging Energy Research, a consulting firm on renewable energy. “An industrial economy needs a reliable power source, so we think fossil fuel will be an important foundation of our energy mix for the next few decades.”
  • improving the energy efficiency of homes, vehicles and industry was an easier short-term strategy. He noted that the 19.5 million residents of New York State consume as much energy as the 800 million in sub-Saharan Africa (excluding South Africa)
  • a rapid expansion of renewable power would be complicated and costly. Using large amounts of renewable energy often requires modifying national power grids, and renewable energy is still generally more expensive than using fossil fuels
  • Promoting wind and solar would mean higher electricity costs for consumers and industry.
  • many of the European countries that have led the way in adopting renewables had little fossil fuel of their own, so electricity costs were already high. Others had strong environmental movements that made it politically acceptable to endure higher prices
  • countries could often get 25 percent of their electricity from renewable sources like wind and solar without much modification to their grids. A few states, like Iowa and South Dakota, get nearly that much of their electricity from renewable power (in both states, wind), while others use little at all.
  • America is rich in renewable resources and (unlike Europe) has the empty space to create wind and solar plants. New York State has plenty of wind and sun to do the job, they found. Their blueprint for powering the state with clean energy calls for 10 percent land-based wind, 40 percent offshore wind, 20 percent solar power plants and 18 percent solar panels on rooftops
  • the substantial costs of enacting the scheme could be recouped in under two decades, particularly if the societal cost of pollution and carbon emissions were factored in
Javier E

Europe's Energy Risks Go Beyond Natural Gas - The New York Times - 0 views

  • To fill the gap, Europe had to go searching for new sources and found it primarily in liquefied natural gas from the United States, where production is expected to hit a record high this year. LNG is about 600 times more compact than its gaseous form and can be moved anywhere in the world through specialized ships and ports.
  • In 2017, wind surpassed hydroelectricity as the largest renewable source of power for the European Union.
  • A record year for solar and wind power saved the European Union €11 billion in gas costs this year, generating around a quarter of total electricity since the war began
  • ...4 more annotations...
  • In May, the European Commission put out a plan for achieving energy independence from Russia that leaned further into the renewable energy transition. Known as REPowerEU, it encourages diversifying fossil fuel sources and accelerating the adoption of renewable energy sources like wind and solar, and also pushes for greater energy savings.
  • major challenges remain. Solar power, in particular, has supply chain risks of its own. China has a near-monopoly on the raw materials and technical expertise to produce photovoltaic cells for solar panels. An analysis from Bloomberg BNEF found it would take nearly $150 billion for Europe to build the plants to manufacture enough solar capacity and storage to meet demand by 2030.
  • Achieving energy security and meeting climate goals will take far greater investment and cooperation between European countries than ever before, according to energy experts.
  • “One of Europe’s founding fathers — Jean Monnet — used to say that Europe would be made out of crisis,” said Simone Tagliapietra, a senior fellow at Bruegel, an energy think tank. “Europe will come out of this energy crisis more united when it comes to energy and climate policy.”
Javier E

Opinion | Climate Change Is Real. Markets, Not Governments, Offer the Cure. - The New Y... - 0 views

  • For years, I saw myself not as a global-warming denier (a loaded term with its tendentious echo of Holocaust denial) but rather as an agnostic on the causes of climate change and a scoffer at the idea that it was a catastrophic threat to the future of humanity.
  • It’s not that I was unalterably opposed to the idea that, by pumping carbon dioxide into the atmosphere, modern civilization was contributing to the warming by 1 degree Celsius and the inches of sea-level rise the planet had experienced since the dawn of the industrial age. It’s that the severity of the threat seemed to me wildly exaggerated and that the proposed cures all smacked of old-fashioned statism mixed with new-age religion.
  • Hadn’t we repeatedly lived through previous alarms about other, allegedly imminent, environmental catastrophes that didn’t come to pass, like the belief, widespread in the 1970s, that overpopulation would inevitably lead to mass starvation? And if the Green Revolution had spared us from that Malthusian nightmare, why should we not have confidence that human ingenuity wouldn’t also prevent the parade of horribles that climate change was supposed to bring about?
  • ...63 more annotations...
  • I had other doubts, too. It seemed hubristic, or worse, to make multitrillion-dollar policy bets based on computer models trying to forecast climate patterns decades into the future. Climate activists kept promoting policies based on technologies that were either far from mature (solar energy) or sometimes actively harmful (biofuels).
  • Expensive efforts to curb greenhouse gas emissions in Europe and North America seemed particularly fruitless when China, India and other developing countries weren’t about to curb their own appetite for fossil fuels
  • just how fast is Greenland’s ice melting right now? Is this an emergency for our time, or is it a problem for the future?
  • His pitch was simple: The coastline we have taken for granted for thousands of years of human history changed rapidly in the past on account of natural forces — and would soon be changing rapidly and disastrously by man-made ones. A trip to Greenland, which holds one-eighth of the world’s ice on land (most of the rest is in Antarctica) would show me just how drastic those changes have been. Would I join him?
  • Greenland is about the size of Alaska and California combined and, except at its coasts, is covered by ice that in places is nearly two miles thick. Even that’s only a fraction of the ice in Antarctica, which is more than six times as large
  • Greenland’s ice also poses a nearer-term risk because it is melting faster. If all its ice were to melt, global sea levels would rise by some 24 feet. That would be more than enough to inundate hundreds of coastal cities in scores of nations, from Jakarta and Bangkok to Copenhagen and Amsterdam to Miami and New Orleans.
  • There was also a millenarian fervor that bothered me about climate activism, with its apocalyptic imagery (the Statue of Liberty underwater) and threats of doom unless we were willing to live far more frugally.
  • “We haven’t had a good positive mass balance year since the late 1990s,” he told me in a follow-on email when I asked him to explain the data for me. The losses can vary sharply by year. The annualized average over the past 30 years, he added, is 170 gigatons per year. That’s the equivalent of about 5,400 tons of ice loss per second. That “suggests that Greenland ice loss has been tracking the I.P.P.C. worse-case, highest-carbon-emission scenario.
  • The data shows unmistakably that Greenland’s ice is not in balance. It is losing far more than it is gaining.
  • scientists have been drilling ice-core samples from Greenland for decades, giving them a very good idea of climatic changes stretching back thousands of years. Better yet, a pair of satellites that detect anomalies in Earth’s gravity fields have been taking measurements of the sheet regularly for nearly 20 years, giving scientists a much more precise idea of what is happening.
  • it’s hard to forecast with any precision what that means. “Anyone who says they know what the sea level is going to be in 2100 is giving you an educated guess,” said NASA’s Willis. “The fact is, we’re seeing these big ice sheets melt for the first time in history, and we don’t really know how fast they can go.”
  • His own educated guess: “By 2100, we are probably looking at more than a foot or two and hopefully less than seven or eight feet. But we are struggling to figure out just how fast the ice sheets can melt. So the upper end of range is still not well known.”
  • On the face of it, that sounds manageable. Even if sea levels rise by eight feet, won’t the world have nearly 80 years to come to grips with the problem, during which technologies that help us mitigate the effects of climate change while adapting to its consequences are likely to make dramatic advances?
  • Won’t the world — including countries that today are poor — become far richer and thus more capable of weathering the floods, surges and superstorms?
  • The average rate at which sea level is rising around the world, he estimates, has more than tripled over the past three decades, to five millimeters a year from 1.5 millimeters. That may still seem minute, yet as the world learned during the pandemic, exponential increases have a way of hitting hard.
  • “When something is on a straight line or a smooth curve, you can plot its trajectory,” Englander said. “But sea level, like earthquakes and mudslides, is something that happens irregularly and can change rather quickly and surprise us. The point is, you can no longer predict the future by the recent past.”
  • In The Wall Street Journal’s editorial pages, where I used to work, the theoretical physicist Steven Koonin, a former under secretary for science in the Obama administration’s Energy Department, cast doubt on the threat from Thwaites in a voice that could have once been mine. He also thinks the risks associated with Greenland’s melting are less a product of human-induced global warming than of natural cycles in North Atlantic currents and temperatures, which over time have a way of regressing to the mean.
  • Even the poorest countries, while still unacceptably vulnerable, are suffering far fewer human and economic losses to climate-related disasters.
  • Another climate nonalarmist is Roger Pielke Jr., a professor of environmental studies at the University of Colorado Boulder. I call Pielke a nonalarmist rather than a skeptic because he readily acknowledges that the challenges associated with climate change, including sea-level rise, are real, serious and probably unstoppable, at least for many decades.
  • “If we have to have a problem,” he told me when I reached him by phone, “we probably want one with a slow onset that we can see coming. It’s not like an asteroid coming from space.”
  • “Since the 1940s, the impact of floods as a proportion of U.S. gross domestic product has dropped by 70 percent-plus,” Pielke said. “We see this around the world, across phenomena. The story is that fewer people are dying and we are having less damage proportional to G.D.P.”
  • “Much climate reporting today highlights short-term changes when they fit the narrative of a broken climate but then ignores or plays down changes when they don’t, often dismissing them as ‘just weather,’” he wrote in February.
  • Global warming is real and getting worse, Pielke said, yet still it’s possible that humanity will be able to adapt to, and compensate for, its effects.
  • A few years ago, I would have found voices like Koonin’s and Pielke’s persuasive. Now I’m less sure. What intervened was a pandemic.
  • That’s what I thought until the spring of 2020, when, along with everyone else, I experienced how swiftly and implacably nature can overwhelm even the richest and most technologically advanced societies. It was a lesson in the sort of intellectual humility I recommended for others
  • It was also a lesson in thinking about risk, especially those in the category known as high-impact, low-probability events that seem to be hitting us with such regularity in this century: the attacks of Sept. 11, 2001; the tsunamis of 2004 and 2011, the mass upheavals in the Arab world
  • What if the past does nothing to predict the future? What if climate risks do not evolve gradually and relatively predictably but instead suddenly soar uncontrollably? How much lead time is required to deal with something like sea-level rise? How do we weigh the risks of underreacting to climate change against the risks of overreacting to it?
  • I called Seth Klarman, one of the world’s most successful hedge-fund managers, to think through questions of risk. While he’s not an expert on climate change, he has spent decades thinking deeply about every manner of risk
  • And we will almost certainly have to do it from sources other than Russia, China, the Democratic Republic of Congo and other places that pose unacceptable strategic, environmental or humanitarian risks
  • “If you face something that is potentially existential,” he explained, “existential for nations, even for life as we know it, even if you thought the risk is, say, 5 percent, you’d want to hedge against it.”
  • “One thing we try to do,” he said, “is we buy protection when it’s really inexpensive, even when we think we may well not need it.” The forces contributing to climate change, he noted, echoing Englander, “might be irreversible sooner than the damage from climate change has become fully apparent. You can’t say it’s far off and wait when, if you had acted sooner, you might have dealt with it better and at less cost. We have to act now.”
  • In other words, an ounce of prevention is worth a pound of cure. That’s particularly true if climate change is akin to cancer — manageable or curable in its earlier stages, disastrous in its later ones.
  • As I’ve always believed, knowing there is grave risk to future generations — and expecting current ones to make immediate sacrifices for it — defies most of what we know about human nature. So I began to think more deeply about that challenge, and others.
  • For the world to achieve the net-zero goal for carbon dioxide emissions by 2050, according to the International Energy Agency, we will have to mine, by 2040, six times the current amounts of critical minerals — nickel, cobalt, copper, lithium, manganese, graphite, chromium, rare earths and other minerals and elements — needed for electric vehicles, wind turbines and solar panels.
  • The poster child for this kind of magical thinking is Germany, which undertook a historic Energiewende — “energy revolution” — only to come up short. At the turn of the century, Germany got about 85 percent of its primary energy from fossil fuels. Now it gets about 78 percent, a puny reduction, considering that the country has spent massive sums on renewables to increase the share of electricity it generates from them.
  • As in everything else in life, so too with the environment: There is no such thing as a free lunch. Whether it’s nuclear, biofuels, natural gas, hydroelectric or, yes, wind and solar, there will always be serious environmental downsides to any form of energy when used on a massive scale. A single industrial-size wind turbine, for instance, typically requires about a ton of rare earth metals as well as three metric tons of copper, which is notoriously destructive and dirty to mine.
  • no “clean energy” solution will easily liberate us from our overwhelming and, for now, inescapable dependence on fossil fuels.
  • Nobody brings the point home better than Vaclav Smil, the Canadian polymath whose most recent book, “How the World Really Works,” should be required reading for policymakers and anyone else interested in a serious discussion about potential climate solutions.
  • “I’ve talked to so many experts and seen so much evidence,” he told me over Zoom, “I’m convinced the climate is changing, and addressing climate change has become a philanthropic priority of mine.”
  • Things could turn a corner once scientists finally figure out a technical solution to the energy storage problem. Or when governments and local actors get over their NIMBYism when it comes to permitting and building a large energy grid to move electricity from Germany’s windy north to its energy-hungry south. Or when thoughtful environmental activists finally come to grips with the necessity of nuclear energy
  • Till then, even as I’ve come to accept the danger we face, I think it’s worth extending the cancer metaphor a little further: Just as cancer treatments, when they work at all, can have terrible side effects, much the same can be said of climate treatments: The gap between an accurate diagnosis and effective treatment remains dismayingly wide
  • Only when countries like Vietnam and China turned to a different model, of largely bottom-up, market-driven development, did hundreds of millions of people get lifted out of destitution.
  • the most important transformation has come in agriculture, which uses about 70 percent of the world’s freshwater supply.
  • Farmers gradually adopted sprinkler and drip irrigation systems, rather than more wasteful flood irrigation, not to conserve water but because the technology provided higher crop yields and larger profit margins.
  • Water shortages “will spur a revolutionary, aggressive approach to getting rid of flood irrigation,” said Seth Siegel, the chief sustainability officer of the Israeli AgTech company N-Drip. “Most of this innovation will be driven by free-market capitalism, with important incentives from government and NGOs.
  • meaningful environmental progress has been made through market forces. In this century, America’s carbon dioxide emissions across fuel types have fallen to well below 5,000 million metric tons per year, from a peak of about 6,000 million in 2007, even as our inflation-adjusted G.D.P. has grown by over 50 percent and total population by about 17 percent.
  • 1) Engagement with critics is vital. Insults and stridency are never good tools of persuasion, and trying to cow or censor climate skeptics into silence rarely works
  • the biggest single driver in emissions reductions from 2005 to 2017 was the switch from coal to natural gas for power generation, since gas produces roughly half the carbon dioxide as coal. This, in turn, was the result of a fracking revolution in the past decade, fiercely resisted by many environmental activists, that made the United States the world’s largest gas producer.
  • In the long run, we are likelier to make progress when we adopt partial solutions that work with the grain of human nature, not big ones that work against it
  • Renewables, particularly wind power, played a role. So did efficiency mandates.
  • The problem with our civilization isn’t overconfidence. It’s polarization, paralysis and a profound lack of trust in all institutions, including the scientific one
  • Devising effective climate policies begins with recognizing the reality of the social and political landscape in which all policy operates. Some thoughts on how we might do better:
  • They may not be directly related to climate change but can nonetheless have a positive impact on it. And they probably won’t come in the form of One Big Idea but in thousands of little ones whose cumulative impacts add up.
  • 2) Separate facts from predictions and predictions from policy. Global warming is a fact. So is the human contribution to it. So are observed increases in temperature and sea levels. So are continued increases if we continue to do more of the same. But the rate of those increases is difficult to predict even with the most sophisticated computer modeling
  • 3) Don’t allow climate to become a mainly left-of-center concern. One reason the topic of climate has become so anathema to many conservatives is that so many of the proposed solutions have the flavor, and often the price tag, of old-fashioned statism
  • 4) Be honest about the nature of the challenge. Talk of an imminent climate catastrophe is probably misleading, at least in the way most people understand “imminent.”
  • A more accurate description of the challenge might be a “potentially imminent tipping point,” meaning the worst consequences of climate change can still be far off but our ability to reverse them is drawing near. Again, the metaphor of cancer — never safe to ignore and always better to deal with at Stage 2 than at Stage 4 — can be helpful.
  • 5) Be humble about the nature of the solutions. The larger the political and financial investment in a “big fix” response to climate change on the scale of the Energiewende, the greater the loss in time, capital and (crucially) public trust when it doesn’t work as planned
  • 6) Begin solving problems our great-grandchildren will face. Start with sea-level rise
  • We can also stop providing incentives for building in flood-prone areas by raising the price of federal flood insurance to reflect the increased risk more accurately.
  • 7) Stop viewing economic growth as a problem. Industrialization may be the leading cause of climate change. But we cannot and will not reverse it through some form of deindustrialization, which would send the world into poverty and deprivation
  • 8) Get serious about the environmental trade-offs that come with clean energy. You cannot support wind farms but hinder the transmission lines needed to bring their power to the markets where they are needed.
  • 9) A problem for the future is, by its very nature, a moral one. A conservative movement that claims to care about what we owe the future has the twin responsibility of setting an example for its children and at the same time preparing for that future.
Javier E

Biden's Climate Law Is Ending 40 Years of Hands-off Government - The Atlantic - 0 views

  • It is no exaggeration to say that his signature immediately severed the history of climate change in America into two eras. Before the IRA, climate campaigners spent decades trying and failing to get a climate bill through the Senate. After it, the federal government will spend $374 billion on clean energy and climate resilience over the next 10 years. The bill is estimated to reduce the country’s greenhouse-gas emissions by about 40 percent below their all-time high, getting the country two-thirds of the way to meeting its 2030 goal under the Paris Agreement.
  • Far less attention has been paid to the ideas that animate the IRA.
  • , the IRA makes a particularly interesting and all-encompassing wager—a bet relevant to anyone who plans to buy or sell something in the U.S. in the next decade, or who plans to trade with an American company, or who relies on American military power
  • ...36 more annotations...
  • Every law embodies a particular hypothesis about how the world works, a hope that if you pull on levers A and B, then outcomes C and D will result
  • Democrats hope to create an economy where the government doesn’t just help Americans buy green technologies; it also helps nurture the industries that produce that technology.
  • The idea is this: The era of passive, hands-off government is over. The laws embrace an approach to governing the economy that scholars call “industrial policy,” a catch-all name for a wide array of tools and tactics that all assume the government can help new domestic industries get started, grow, and reach massive scale.
  • If “this country used to make things,” as the saying goes, and if it wants to make things again, then the government needs to help it. And if the country believes that certain industries bestow a strategic advantage, then it needs to protect them against foreign interference.
  • From its founding to the 1970s, the country had an economic doctrine that was defined by its pragmatism and the willingness of its government to find new areas of growth.
  • It’s more like a toolbox of different approaches that act in concert to help push technologies to grow and reach commercial scale. The IRA and the two other new laws prefer four tools in particular.
  • “Yes, there was an ‘invisible hand,’” Stephen Cohen and Brad DeLong write in their history of the topic, Concrete Economics. “But the invisible hand was repeatedly lifted at the elbow by the government, and placed in a new position from where it could go on to perform its magic.”
  • That pragmatism faded in the 1980s, when industrial policy became scorned as one more instance of Big Government coming in to pick so-called winners and losers.
  • The two other large bills passed by this Congress—the $1 trillion bipartisan infrastructure law and the CHIPS and Science Act—make down payments on the future as well; both laws, notably, were passed by bipartisan majorities.
  • it is in the IRA that these general commitments become specific, and therefore transformative.
  • Since the 1980s, when Congress has wanted to spur technological progress, it has usually thrown money exclusively at R&D. We have had a science policy, not an industrial policy
  • inextricable from that turn is Washington’s consuming anxiety over China’s rise—and China has embraced industrial policy.
  • although not a single Republican voted for the IRA, its wager is not especially partisan or even ideological.
  • the demonstration project. A demonstration project helps a technology that has previously existed only in the lab get out in the real world for the first time
  • supply-push policies. As the name suggests, these tools “push” on the supply side of an industry by underwriting new factories or assuring that those factories have access to cheap inputs to make things.
  • demand-pull policies, which create a market for whatever is coming out of those new factories. The government can “pull” on demand by buying those products itself or by subsidizing them for consumers.
  • protective policies, meant to insulate industries—especially new ones that are still growing—from foreign interference
  • Although both parties have moved to embrace industrial policy, Democrats are clearly ahead of their Republican colleagues. You can see it in their policy: While the bipartisan infrastructure law sets up lots of demonstration projects, and the CHIPS Act adopts some supply-push and protectionist theory, only the IRA uses all four tools.
  • In order to stop climate change, experts believe, the United States must do three things: clean up its power grid, replacing coal and gas power plants with zero-carbon sources; electrify everything it can, swapping fossil-fueled vehicles and boilers with electric vehicles and heat pumps; and mop up the rest, mitigating carbon pollution from impossible-to-electrify industrial activities. The IRA aims to nurture every industry needed to realize that vision.
  • Hydrogen and carbon removal are going to benefit from nearly every tool the government has. The bipartisan infrastructure law will spend more than $11 billion on hydrogen and carbon-removal “hubs,” huge demonstration projects
  • These hubs will also foster geographic concentration, the economic idea that when you put lots of people working on the same problem near one another, they solve it faster. You can see such clustering at work in San Francisco’s tech industry, and also in China, which now creates hubs for virtually every activity that it wants to dominate globally—even soccer.
  • Then the IRA will take over and deploy some good ol’ supply push and demand pull. It includes new programs to underwrite new hydrogen factories; on the demand side, a powerful new tax credit will pay companies for every kilogram of low-carbon hydrogen that they produce
  • Another tax credit will boost the demand of carbon removal by paying firms a $180 bounty for trapping a ton of carbon dioxide and pumping it undergroun
  • Today, not only does China make most batteries worldwide; it alone makes the tools that make the batteries, Nathan Iyer, an analyst at RMI, a nonpartisan energy think tank, told me. This extreme geographic concentration—which afflicts not only the battery industry but also the solar-panel industry—could slow down the energy transition and make it more expensive
  • the new tax credit is also supply-minded, arguably even protectionist. Under the new scheme, very few electric cars and trucks will immediately qualify for that full $7,500 subsidy; it will go only toward vehicles whose batteries are primarily made in North America and where a certain percentage of minerals are mined and processed in the U.S. or one of its allies. Will these policies accelerate the shift to EVs? Well, no, not immediately. But the idea is that by boosting domestic production of EVs, batteries will become cheaper and more abundant—and the U.S. will avoid subsidizing one of China’s growth industries.
  • Right now, next to no solar panels are made in the U.S., even though the technology was invented here. The IRA endeavors to change that by—you guessed it—a mix of supply-push, demand-pull, and protectionist policies. Under the law, the government will underwrite new factories to make every subcomponent of the solar supply chain; then it will pay those factories for every item that they produce
  • “It’s realistic that within four to five years, [U.S. solar manufacturers] could completely meet domestic demand for solar,” Scott Moskowitz, the head of public affairs for the solar manufacturer Q CELLS, told me.
  • In each of these industries, you’ll notice that the government isn’t only subsidizing factories; it is actually paying them to operate. That choice, which is central to the IRA’s approach, is “really defending against the mistakes of the 2009 bill,” Iyer told me. In its stimulus bill passed during the Great Recession, the Obama administration tried to do green industrial policy, underwriting new solar-panel factories across the country. But then Chinese firms began exporting cheap solar panels by the millions, saturating domestic demand and leaving those sparkly new factories idle
  • So many other industries will also be touched by these laws. There’s a new program to nurture a low-carbon aviation-fuel industry in the U.S. (Long-distance jet travel is one of those climate problems that nobody knows how to solve yet.)
  • the revelation of the IRA is that decarbonizing the United States may require re-industrializing it. A net-zero America may have more refineries, more factories, and more goods production than a fossil-fueled America—while also having cheaper cars, healthier air, and fewer natural disasters. And once the U.S. gets there, then it can keep going: It can set an example for the world that a populous, affluent country can reduce its emissions while enjoying all the trappings of modernity,
  • There are a slew of policies meant to grow and decarbonize the U.S. industrial sector; every tax credit pays out a bonus if you use U.S.-made steel, cement, or concrete. “You would need thousands and thousands of words to capture the industries that will be transformed by this,” Josh Freed, the climate and energy leader at Third Way, a center-left think tank, told me.
  • Five EVs were sold in China last year for every one EV sold in the United States; that larger domestic market will provide a significant economy of scale when Chinese EV makers begin exporting their cars abroad. For that reason and others, many people in China are “deeply skeptical” that the U.S. can catch up with its lead,
  • We are about to have a huge new set of vested interests who want the economy to be clean and benefit from that. We’ve literally never had that before,” Freed told me.
  • “This is going to change everything,” he said
  • that is the IRA’s biggest idea, its biggest hypothesis: that America can improve its standard of living and preserve its global preeminence while ruthlessly eliminating carbon pollution; that climate change, actually, doesn’t change everything, and that in fact it can be addressed by changing as little as possible.
  • This hypothesis has already proved itself out in one important way, which is that the IRA passed, and the previous 30 years of climate proposals did not. Now comes the real test.
Javier E

Wind and Solar Power Advance, but Carbon Refuses to Retreat - The New York Times - 0 views

  • carbon intensity of energy. Advertisement Continue reading the main story The term refers to a measure of the amount of CO2 spewed into the air for each unit of energy consumed. It offers some bad news: It has not budged since that chilly autumn day in Kyoto 20 years ago.
  • Even among the highly industrialized nations in the Organization for Economic Cooperation and Development, the carbon intensity of energy has declined by a paltry 4 percent since then
  • Perhaps renewables are not the answer.
  • ...10 more annotations...
  • Over the past 10 years, governments and private investors have collectively spent $2 trillion on infrastructure to draw electricity from the wind and the sun,
  • Capacity from renewable sources has grown by leaps and bounds, outpacing growth from all other sources — including coal, natural gas and nuclear power — in recent years. Solar and wind capacity installed in 2015 was more than 10 times what the International Energy Agency had forecast a decade before.
  • Still, except for very limited exceptions, all this wind and sun has not brought about much decarbonization. Indeed, it has not added much clean power to the grid.
  • “We will need twice as much investment over a sustained period of time to get anywhere close to achieving 2 degrees,”
  • Integrating renewable sources requires vast investments in electricity transmission — to move power from intermittently windy and sunny places to places where power is consumed. It requires maintaining a backstop of idle plants that burn fossil fuel, for the times when there is no wind or sun to be had. It requires investing in power-storage systems at a large scale.
  • These costs will ultimately be reflected in power prices. One concern is that by raising the retail cost of electricity they will discourage electrification, encouraging consumers to rely on alternative energy sources like gas — and pushing CO2 emissions up.
  • Another concern is that they will drive wholesale energy prices down too far. Because they produce the most energy when the sun is up and the wind is blowing, renewable generators can flood the grid at critical times of the day, slashing the price of power. This not only threatens the solvency of nuclear reactors, which cannot shut down on a dime and must therefore pay for the grid to accept their power, but also reduces the return on additional investment in renewables.
  • there is some evidence that among investors, at least, the excitement may be waning. After half a decade of sustained increases, investment in solar and wind energy has been fairly flat since 2010, at around $250 billion per year. While that is a lot of money, it is nowhere near enough.
  • Environmental Progress performed an analysis of the evolution of the carbon intensity of energy in 68 countries since 1965. It found no correlation between the additions of solar and wind power and the carbon intensity of energy: Despite additions of renewable capacity, carbon intensity remained flat.
  • I would suggest that the challenge is not just to raise more money. Building a zero-carbon energy system requires broader thinking about the technological mix.
Javier E

Why The CHIPS and Science Act Is a Climate Bill - The Atlantic - 0 views

  • Over the next five years, the CHIPS Act will direct an estimated $67 billion, or roughly a quarter of its total funding, toward accelerating the growth of zero-carbon industries and conducting climate-relevant research, according to an analysis from RMI, a nonpartisan energy think tank based in Colorado.
  • That means that the CHIPS Act is one of the largest climate bills ever passed by Congress. It exceeds the total amount of money that the government spent on renewable-energy tax credits from 2005 to 2019
  • And it’s more than half the size of the climate spending in President Barack Obama’s 2009 stimulus bill. That’s all the more remarkable because the CHIPS Act was passed by large bipartisan majorities, with 41 Republicans and nearly all Democrats supporting it in the House and the Senate.
  • ...15 more annotations...
  • When viewed with the Inflation Reduction Act, which the House is poised to pass later this week, and last year’s bipartisan infrastructure law, a major shift in congressional climate spending comes into focus. According to the RMI analysis, these three laws are set to more than triple the federal government’s average annual spending on climate and clean energy this decade, compared with the 2010s.
  • Within a few years, when the funding has fully ramped up, the government will spend roughly $80 billion a year on accelerating the development and deployment of zero-carbon energy and preparing for the impacts of climate change. That exceeds the GDP of about 120 of the 192 countries that have signed the Paris Agreement on Climate Change
  • The law, for instance, establishes a new $20 billion Directorate for Technology, which will specialize in pushing new technologies from the prototype stage into the mass market. It is meant to prevent what happened with the solar industry—where America invented a new technology, only to lose out on commercializing it—from happening again
  • the bill’s programs focus on the bleeding edge of the decarbonization problem, investing money in technology that should lower emissions in the 2030s and beyond.
  • The International Energy Association has estimated that almost half of global emissions reductions by 2050 will come from technologies that exist only as prototypes or demonstration projects today.
  • To get those technologies ready in time, we need to deploy those new ideas as fast as we can, then rapidly get them to commercial scale, Carey said. “What used to take two decades now needs to take six to 10 years.” That’s what the CHIPS Act is supposed to do
  • By the end of the decade, the federal government will have spent more than $521 billion
  • Congress has explicitly tasked the new office with studying “natural and anthropogenic disaster prevention or mitigation” as well as “advanced energy and industrial efficiency technologies,” including next-generation nuclear reactors.
  • The bill also directs about $12 billion in new research, development, and demonstration funding to the Department of Energy, according to RMI’s estimate. That includes doubling the budget for ARPA-E, the department’s advanced-energy-projects skunk works.
  • it allocates billions to upgrade facilities at the government’s in-house defense and energy research institutes, including the National Renewable Energy Laboratory, the Princeton Plasma Physics Laboratory, and Berkeley Lab, which conducts environmental-science research.
  • RMI’s estimate of the climate spending in the CHIPS bill should be understood as just that: an estimate. The bill text rarely specifies how much of its new funding should go to climate issues.
  • When you add CHIPS, the IRA, and the infrastructure law together, Washington appears to be unifying behind a new industrial policy, focused not only on semiconductors and defense technology but clean energy
  • The three bills combine to form a “a coordinated, strategic policy for accelerating the transition to the technologies that are going to define the 21st century,”
  • scholars and experts have speculated about whether industrial policy—the intentional use of law to nurture and grow certain industries—might make a comeback to help fight climate change. Industrial policy was central to some of the Green New Deal’s original pitch, and it has helped China develop a commanding lead in the global solar industry.
  • “Industrial policy,” he said, “is back.”
Javier E

Most Americans comfortable with solar panels, turbines in their communities, Post-UMD p... - 0 views

  • As renewable energy becomes more widespread in the United States, large and bipartisan majorities of Americans say they wouldn’t mind fields of solar panels and wind turbines being built in their communities, according to a Washington Post-University of Maryland poll.
  • Three-quarters of all Americans say they would be comfortable living near solar farms while nearly 7 in 10 report feeling the same about wind turbines. And these attitudes appear to remain largely consistent regardless of where people live.
  • 69 percent of residents in rural and suburban areas say they would be comfortable if wind turbines were constructed in their area, as do 66 percent of urban residents.
  • ...5 more annotations...
  • General comfort with green energy infrastructure crosses party lines, with 66 percent of Republicans saying they are comfortable with a field of solar panels being built in their community and 59 percent comfortable with wind turbines. Among Democrats, 87 percent are comfortable with solar farms and 79 percent with wind farms
  • By contrast, fewer than half of Democrats or Republicans would welcome a nuclear power plant in their community.
  • while backing renewables remains popular among many Americans, experts say progress can be impeded by a small, yet vocal, opposition, which can be driven in part by the sentiment of “Not in My Backyard,” or NIMBYism.
  • “We know things like permitting reform and NIMBYism are a challenge for renewable electricity and transmission projects. The closer that these projects get to where many people are, the more challenges that can arise.”
  • According to the Post-UMD poll, the more concerned people say they are with climate change, the more likely they are to feel comfortable with wind and solar farms being built in their communities.
Javier E

Enemies of the Sun - The New York Times - 0 views

  • by the standards of today’s Republican Party, the Cheney report was enlightened, even left-leaning. One whole chapter was devoted to conservation, another to renewable energy. By contrast, recent speeches by Jeb Bush and Marco Rubio — still the most likely Republican presidential nominees — barely address either topic. When it comes to energy policy, the G.O.P. has become fossilized. That is, it’s fossil fuels, and only fossil fuels, all the way.
  • while it’s true that fracking has led to a boom in U.S. gas and oil production, we’re also living in an era of spectacular progress in wind and solar energy. Why has the right become so hostile to technologies that look more and more like the wave of the future?
  • renewables account for essentially all recent growth in electricity generation capacity in advanced countries.
  • ...4 more annotations...
  • renewables have become major industries in their own right, employing several hundred thousand people in the United States. Employment in the solar industry alone now exceeds the number of coal miners, and solar is adding jobs even as coal declines.
  • Part of the answer is surely that promotion of renewable energy is linked in many people’s minds with attempts to limit climate change — and climate denial has become a key part of conservative identity.
  • you need to follow the money. We used to say that the G.O.P. was the party of Big Energy, but these days it would be more accurate to say that it’s the party of Old Energy. In the 2014 election cycle the oil and gas industry gave 87 percent of its political contributions to Republicans; for coal mining the figure was 96, that’s right, 96 percent. Meanwhile, alternative energy went 56 percent for Democrats.
  • While politicians on the right may talk about encouraging innovation and promoting an energy revolution, they’re actually defenders of the energy status quo, part of a movement trying to block anything that might disrupt the reign of fossil fuels.
Javier E

Germany Runs Up Against the Limits of Renewables - MIT Technology Review - 0 views

  • At one point this month renewable energy sources briefly supplied close to 90 percent of the power on Germany’s electric grid
  • Germany is giving the rest of the world a lesson in just how much can go wrong when you try to reduce carbon emissions solely by installing lots of wind and solar.
  • Germany’s carbon emissions rose slightly in 2015, largely because the country produces much more electricity than it needs.
  • ...9 more annotations...
  • even if there are times when renewables can supply nearly all of the electricity on the grid, the variability of those sources forces Germany to keep other power plants running. And in Germany, which is phasing out its nuclear plants, those other plants primarily burn dirty coal.
  • Now the government is about to reboot its energy strategy, known as the Energiewende. It was launched in 2010 in hopes of dramatically increasing the share of the country’s electricity that comes from renewable energy and slashing the country’s overall carbon emissions to 40 percent below 1990 levels by 2020 (see “The Great German Energy Experiment”
  • Because German law requires renewable energy to be used first on the German grid, when Germany exports excess electricity to its European neighbors it primarily comes from coal plants.
  • Because fossil-fuel power plants cannot easily ramp down generation in response to excess supply on the grid, on sunny, windy days there is sometimes so much power in the system that the price goes negative—in other words, operators of large plants, most of which run on coal or natural gas, must pay commercial customers to consume electricity
  • Instead of subsidizing any electricity produced by solar or wind power, the government will set up an auction system. Power producers will bid to build renewable energy projects up to a capacity level set by the government, and the resulting prices paid for power from those plants will be set by the market, rather than government fiat.
  • It might seem like an easy way to solve the oversupply issue would be to shut down excess power plants, especially ones that burn coal. But not only are the coal plants used to even out periods when wind and solar aren’t available, they’re also lucrative and thus politically hard to shut down.
  • Some aspects of the Energiewende have been successful: renewable sources accounted for nearly one-third of the electricity consumed in Germany in 2015. The country is now the world’s largest solar market. Germany’s carbon emissions in 2014 were 27 percent lower than 1990 levels.
  • Putting a steep price on carbon emissions would hasten the shutdown of German coal plants. But Europe’s Emissions Trading Scheme, designed to establish a continentwide market for trading permits for carbon emissions, has been a bust. Prices for the permits are so low that there is little incentive for power producers to shut down dirty plants.
  • Also helpful would be a Europewide “supergrid” that would enable renewable power to be easily transported across borders, reducing the need for reliable, always-on fossil fuel plants to supplement intermittent electricity from solar and wind.
Javier E

Aptera, the first mass-produced solar-powered car, is due to roll off the assembly line... - 0 views

  • It’s a three-wheel, ultra-aerodynamic electric vehicle covered in 34 square feet of solar cells. The car is so efficient that, on a clear day, those cells alone could provide enough energy to drive about 40 miles — more than twice the distance of the average American’s commute.
  • All-electric vehicles perform much better, but they’re still not perfect. About 10 percent of the energy that goes into them is lost converting alternating current from the electrical grid into direct current for the battery. Inefficiencies in the drive system eat up another 20 percent, and the car must still deal with wind resistance and friction, through regenerative braking systems can reduce some waste.
  • From top to wheels, the Aptera is designed to eliminate as much waste as possible. Its creators say the car is 13 times more efficient than a gas-powered pickup truck and four times more efficient than the average electric vehicle
  • ...3 more annotations...
  • At least 90 percent of the power produced by the Aptera’s solar panels goes toward making the vehicle move, the company says.
  • lengths they can turn into electricity. They don’t perform well when they get hot.
  • Even the best solar panels only convert about 23 percent of the sunlight that hits them into energy. You can get much more power more quickly by simply plugging into a charging station.
lucieperloff

Old Power Gear Is Slowing Use of Clean Energy and Electric Cars - The New York Times - 0 views

  • The local utility’s equipment is so overloaded that there is no place for the electricity produced by the panels to go.
  • have made it hard for homeowners, local governments and businesses to use solar panels, batteries, electric cars, heat pumps and other devices that can help reduce greenhouse gas emissions.
  • Now, homes and businesses are increasingly supplying energy to the grid from their rooftop solar panels.
  • ...9 more annotations...
  • About one out of 10 utility customers in the state have solar power, according to the California Solar and Storage Association.
  • noting that it can take workers up to six months to do so if they are swamped with projects.
  • To achieve its climate goals, the city has already banned the use of natural gas in new buildings, the largest local government in the country to do so.
  • The company added that it supports the use of solar panels by nearly 600,000 of its residential customers and electric cars owned by 360,000 customers.
  • When he was recently charging his Tesla at his home on Long Island, the electrical equipment that connected the utility’s power line to his home became so hot that it melted.
  • People who are pushing for greater investment say the spending will pay off by saving people money on monthly bills and preventing the worst effects of climate change.
  • That’s because people could generate some electricity through rooftop solar panels and store that energy in home batteries.
  • But if regulators allowed more utilities to offer lower electricity rates at night, people would charge cars when there is plenty of spare capacity.
  • Robert Barrosa, senior director of sales and marketing at Electrify America, said that eventually the company could help utilities by taking power when there was too much of it and supplying it when there was not enough of it.
Javier E

Green Energy's Future Rests on Red State Buy-In - The Atlantic - 0 views

  • The states that are most deeply integrated into the existing fossil-fuel economy, either as producers or as consumers, tend also to be the places that are most resistant to, and separated from, the major demographic, cultural, and economic changes remaking 21st-century American life.
  • These fossil-fuel-reliant states are nearly all among those moving most aggressively to restrict voting, abortion, and LGBTQ rights; to ban books; and to censor what teachers and college professors can say about race, gender, and sexual orientation
  • Most of them have larger populations of white voters who identify as Christian and rely heavily on blue-collar work in the powerhouse industries of the 20th century: production of energy and other natural resources, manufacturing, and agriculture. Republicans dominate their electoral landscape, both in state and federal offices.
  • ...15 more annotations...
  • This convergence of fossil-fuel dependence, cultural conservatism, and isolation from the most dynamic modern industries captures how comprehensively the two parties are divided by their exposure to, and attitudes about, the changes reshaping America.
  • The irony is that the energy transition may represent the best chance for the states most reliant on fossil fuels to benefit from the new sources of economic growth.
  • Last year Walter co-wrote a detailed study on how a shift away from fossil fuels would affect the states. Replacing fossil fuels with lower-carbon energy sources, she said, will create “a tremendous amount of jobs in Republican states.”
  • The 19 states that top the EIA’s latest rankings—for the most carbon emitted per dollar of economic output in 2018—present a singular profile. They begin with Wyoming, West Virginia, Louisiana, North Dakota, and Alaska at the top of the list and then extend across the South (including Mississippi, Alabama, Arkansas, and Texas), the heartland (including Indiana, Iowa, Kentucky, Missouri, Ohio, Oklahoma, Kansas, and Nebraska), and the Mountain West (Montana, New Mexico)
  • The political leadership in these states has opposed most efforts to accelerate the transition away from fossil fuels to clean energy sources. Fourteen of these states, for instance, have joined in a lawsuit (led by West Virginia) now before the Supreme Court that could undercut the Environmental Protection Agency’s ability to regulate carbon emissions.
  • The Republican senators from these states have also uniformly opposed proposals to limit carbon emissions, such as a clean-electricity standard to phase out carbon-emitting electricity.
  • That resistance underscores the extent to which the energy transition has been woven into the larger struggle over the country’s direction between what I’ve called the Democrats’ “coalition of transformation” and the competing Republican “coalition of restoration.”
  • all Senate Republicans are opposing the Build Back Better Act’s more sweeping incentives, which energy analysts agree could enormously accelerate the development of those sources.
  • Almost all of the states fighting the energy transition are expressing equally intense resistance to social change. In effect, they are fighting the future on both fronts.
  • The core problem for these states, Muro notes, is that most of them tend to lack the well-educated workers who are, in essence, the crucial raw material for not only internet, computing, and communications firms but also advanced manufacturing.
  • the torrent of culturally conservative legislation across the fossil-fuel-reliant states (and GOP-controlled states more broadly) adds another barrier to tech companies pursuing significant expansions in them. “They want to decentralize somewhat, but they are very concerned about how this plays with the people they are trying to hire,” Muro says. Companies, he adds, “need to make sure the talent is not put off” by these restrictive social policies.
  • Devashree Saha, a senior associate at the World Resources Institute, told me most economic models project that, overall, the transition from a fossil-fuel to a clean-energy economy will create more jobs than it destroys in energy-related sectors.
  • The bipartisan infrastructure bill that Biden signed last year included several provisions designed to channel jobs in the clean-energy economy toward places that would be hurt by diminished reliance on fossil fuels, such as coal communities. The now-stalled Build Back Better plan contains further incentives to steer that investment, though those haven’t been sufficient to overcome the opposition from Republicans representing the fossil-fuel states, or Manchin.
  • The most important exception to this pattern is that many congressional Republicans have backed tax credits to encourage deployment of wind and solar power.
  • The loud demands for more domestic oil and gas drilling since Russia invaded Ukraine, and the fierce opposition to any regulation of carbon emissions, show how a low-carbon future has become just another count in the indictment Republicans use to convince their voters that Democrats want to uproot America from its deepest traditions and transform it into something unrecognizable
1 - 20 of 99 Next › Last »
Showing 20 items per page