Skip to main content

Home/ TOK Friends/ Group items tagged predictive processing

Rss Feed Group items tagged

Javier E

Reality is your brain's best guess - Big Think - 0 views

  • Andy Clark admits it’s strange that he took up “predictive processing,” an ambitious leading theory of how the brain works. A philosopher of mind at the University of Sussex, he has devoted his career to how thinking doesn’t occur just between the ears—that it flows through our bodies, tools, and environments. “The external world is functioning as part of our cognitive machinery
  • But 15 years ago, he realized that had to come back to the center of the system: the brain. And he found that predictive processing provided the essential links among the brain, body, and world.
  • There’s a traditional view that goes back at least to Descartes that perception was about the imprinting of the outside world onto the sense organs. In 20th-century artificial intelligence and neuroscience, vision was a feed-forward process in which you took in pixel-level information, refined it into a two and a half–dimensional sketch, and then refined that into a full world model.
  • ...9 more annotations...
  • a new book, The Experience Machine: How Our Minds Predict and Shape Reality, which is remarkable for how it connects the high-level concepts to everyday examples of how our brains make predictions, how that process can lead us astray, and what we can do about it.
  • being driven to stay within your own viability envelope is crucial to the kind of intelligence that we know about—the kind of intelligence that we are
  • If you ask what is a predictive brain for, the answer has to be: staying alive. Predictive brains are a way of staying within your viability envelope as an embodied biological organism: getting food when you need it, getting water when you need it.
  • in predictive processing, perception is structured around prediction. Perception is about the brain having a guess at what’s most likely to be out there and then using sensory information to refine the guess.
  • artificial curiosity. Predictive-processing systems automatically have that. They’re set up so that they predict the conditions of their own survival, and they’re always trying to get rid of prediction errors. But if they’ve solved all their practical problems and they’ve got nothing else to do, then they’ll just explore. Getting rid of any error is going to be a good thing for them. If you’re a creature like that, you’re going to be a really good learning system. You’re going to love to inhabit the environments that you can learn most from, where the problems are not too simple, not too hard, but just right.
  • It’s an effect that you also see in Marieke Jepma et al.’s work on pain. They showed that if you predict intense pain, the signal that you get will be interpreted as more painful than it would otherwise be, and vice versa. Then they asked why you don’t correct your misimpression. If it’s my expectation that is making it feel more painful, why don’t I get prediction errors that correct it?
  • The reason is that there are no errors. You’re expecting a certain level of pain, and your prediction helps bring that level about; there is nothing for you to correct. In fact, you’ve got confirmation of your own prediction. So it can be a vicious circle
  • Do you think this self-fulfilling loop in psychosis and pain perception helps to account for misinformation in our society’s and people’s susceptibility to certain narratives?Absolutely. We all have these vulnerabilities and self-fulfilling cycles. We look at the places that tend to support the models that we already have, because that’s often how we judge whether the information is good or not
  • Given that we know we’re vulnerable to self-fulfilling information loops, how can we make sure we don’t get locked into a belief?Unfortunately, it’s really difficult. The most potent intervention is to remind ourselves that we sample the world in ways that are guided by the models that we’ve currently got. The structures of science are there to push back against our natural tendency to cherry-pick.
Javier E

Do Political Experts Know What They're Talking About? | Wired Science | Wired... - 1 views

  • I often joke that every cable news show should be forced to display a disclaimer, streaming in a loop at the bottom of the screen. The disclaimer would read: “These talking heads have been scientifically proven to not know what they are talking about. Their blather is for entertainment purposes only.” The viewer would then be referred to Tetlock’s most famous research project, which began in 1984.
  • He picked a few hundred political experts – people who made their living “commenting or offering advice on political and economic trends” – and began asking them to make predictions about future events. He had a long list of pertinent questions. Would George Bush be re-elected? Would there be a peaceful end to apartheid in South Africa? Would Quebec secede from Canada? Would the dot-com bubble burst? In each case, the pundits were asked to rate the probability of several possible outcomes. Tetlock then interrogated the pundits about their thought process, so that he could better understand how they made up their minds.
  • Most of Tetlock’s questions had three possible answers; the pundits, on average, selected the right answer less than 33 percent of the time. In other words, a dart-throwing chimp would have beaten the vast majority of professionals. These results are summarized in his excellent Expert Political Judgment.
  • ...5 more annotations...
  • Some experts displayed a top-down style of reasoning: politics as a deductive art. They started with a big-idea premise about human nature, society, or economics and applied it to the specifics of the case. They tended to reach more confident conclusions about the future. And the positions they reached were easier to classify ideologically: that is the Keynesian prediction and that is the free-market fundamentalist prediction and that is the worst-case environmentalist prediction and that is the best case technology-driven growth prediction etc. Other experts displayed a bottom-up style of reasoning: politics as a much messier inductive art. They reached less confident conclusions and they are more likely to draw on a seemingly contradictory mix of ideas in reaching those conclusions (sometimes from the left, sometimes from the right). We called the big-idea experts “hedgehogs” (they know one big thing) and the more eclectic experts “foxes” (they know many, not so big things).
  • The most consistent predictor of consistently more accurate forecasts was “style of reasoning”: experts with the more eclectic, self-critical, and modest cognitive styles tended to outperform the big-idea people (foxes tended to outperform hedgehogs).
  • Lehrer: Can non-experts do anything to encourage a more effective punditocracy?
  • Tetlock: Yes, non-experts can encourage more accountability in the punditocracy. Pundits are remarkably skillful at appearing to go out on a limb in their claims about the future, without actually going out on one. For instance, they often “predict” continued instability and turmoil in the Middle East (predicting the present) but they virtually never get around to telling you exactly what would have to happen to disconfirm their expectations. They are essentially impossible to pin down. If pundits felt that their public credibility hinged on participating in level playing field forecasting exercises in which they must pit their wits against an extremely difficult-to-predict world, I suspect they would be learn, quite quickly, to be more flexible and foxlike in their policy pronouncements.
  • tweetmeme_style = 'compact'; Digg Stumble Upon Delicious Reddit if(typeof CN!=='undefined' && CN.dart){ CN.dart.call("blogsBody",{sz: "300x250", kws : ["bottom"]}); } Disqus Login About Disqus Like Dislike and 5 others liked this. Glad you liked it. Would you like to share? Facebook Twitter Share No thanks Sharing this page … Thanks! Close Login Add New Comment Post as … Image http://mediacdn.disqus.com/1312506743/build/system/upload.html#xdm_e=http%3A%2F%2Fwww.wired.com&xdm_c=default5471&xdm_p=1&f=wiredscience&t=do_political_experts_know_what_they8217re_talking_
Javier E

They're Watching You at Work - Don Peck - The Atlantic - 2 views

  • Predictive statistical analysis, harnessed to big data, appears poised to alter the way millions of people are hired and assessed.
  • By one estimate, more than 98 percent of the world’s information is now stored digitally, and the volume of that data has quadrupled since 2007.
  • The application of predictive analytics to people’s careers—an emerging field sometimes called “people analytics”—is enormously challenging, not to mention ethically fraught
  • ...52 more annotations...
  • By the end of World War II, however, American corporations were facing severe talent shortages. Their senior executives were growing old, and a dearth of hiring from the Depression through the war had resulted in a shortfall of able, well-trained managers. Finding people who had the potential to rise quickly through the ranks became an overriding preoccupation of American businesses. They began to devise a formal hiring-and-management system based in part on new studies of human behavior, and in part on military techniques developed during both world wars, when huge mobilization efforts and mass casualties created the need to get the right people into the right roles as efficiently as possible. By the 1950s, it was not unusual for companies to spend days with young applicants for professional jobs, conducting a battery of tests, all with an eye toward corner-office potential.
  • But companies abandoned their hard-edged practices for another important reason: many of their methods of evaluation turned out not to be very scientific.
  • this regime, so widespread in corporate America at mid-century, had almost disappeared by 1990. “I think an HR person from the late 1970s would be stunned to see how casually companies hire now,”
  • Many factors explain the change, he said, and then he ticked off a number of them: Increased job-switching has made it less important and less economical for companies to test so thoroughly. A heightened focus on short-term financial results has led to deep cuts in corporate functions that bear fruit only in the long term. The Civil Rights Act of 1964, which exposed companies to legal liability for discriminatory hiring practices, has made HR departments wary of any broadly applied and clearly scored test that might later be shown to be systematically biased.
  • about a quarter of the country’s corporations were using similar tests to evaluate managers and junior executives, usually to assess whether they were ready for bigger roles.
  • Aptitude, skills, personal history, psychological stability, discretion, loyalty—companies at the time felt they had a need (and the right) to look into them all. That ambit is expanding once again, and this is undeniably unsettling. Should the ideas of scientists be dismissed because of the way they play a game? Should job candidates be ranked by what their Web habits say about them? Should the “data signature” of natural leaders play a role in promotion? These are all live questions today, and they prompt heavy concerns: that we will cede one of the most subtle and human of skills, the evaluation of the gifts and promise of other people, to machines; that the models will get it wrong; that some people will never get a shot in the new workforce.
  • Knack makes app-based video games, among them Dungeon Scrawl, a quest game requiring the player to navigate a maze and solve puzzles, and Wasabi Waiter, which involves delivering the right sushi to the right customer at an increasingly crowded happy hour. These games aren’t just for play: they’ve been designed by a team of neuroscientists, psychologists, and data scientists to suss out human potential. Play one of them for just 20 minutes, says Guy Halfteck, Knack’s founder, and you’ll generate several megabytes of data, exponentially more than what’s collected by the SAT or a personality test. How long you hesitate before taking every action, the sequence of actions you take, how you solve problems—all of these factors and many more are logged as you play, and then are used to analyze your creativity, your persistence, your capacity to learn quickly from mistakes, your ability to prioritize, and even your social intelligence and personality. The end result, Halfteck says, is a high-resolution portrait of your psyche and intellect, and an assessment of your potential as a leader or an innovator.
  • When the results came back, Haringa recalled, his heart began to beat a little faster. Without ever seeing the ideas, without meeting or interviewing the people who’d proposed them, without knowing their title or background or academic pedigree, Knack’s algorithm had identified the people whose ideas had panned out. The top 10 percent of the idea generators as predicted by Knack were in fact those who’d gone furthest in the process.
  • What Knack is doing, Haringa told me, “is almost like a paradigm shift.” It offers a way for his GameChanger unit to avoid wasting time on the 80 people out of 100—nearly all of whom look smart, well-trained, and plausible on paper—whose ideas just aren’t likely to work out.
  • He has encouraged the company’s HR executives to think about applying the games to the recruitment and evaluation of all professional workers.
  • scoring distance from work could violate equal-employment-opportunity standards. Marital status? Motherhood? Church membership? “Stuff like that,” Meyerle said, “we just don’t touch”—at least not in the U.S., where the legal environment is strict. Meyerle told me that Evolv has looked into these sorts of factors in its work for clients abroad, and that some of them produce “startling results.”
  • consider the alternative. A mountain of scholarly literature has shown that the intuitive way we now judge professional potential is rife with snap judgments and hidden biases, rooted in our upbringing or in deep neurological connections that doubtless served us well on the savanna but would seem to have less bearing on the world of work.
  • We may like to think that society has become more enlightened since those days, and in many ways it has, but our biases are mostly unconscious, and they can run surprisingly deep. Consider race. For a 2004 study called “Are Emily and Greg More Employable Than Lakisha and Jamal?,” the economists Sendhil Mullainathan and Marianne Bertrand put white-sounding names (Emily Walsh, Greg Baker) or black-sounding names (Lakisha Washington, Jamal Jones) on similar fictitious résumés, which they then sent out to a variety of companies in Boston and Chicago. To get the same number of callbacks, they learned, they needed to either send out half again as many résumés with black names as those with white names, or add eight extra years of relevant work experience to the résumés with black names.
  • a sociologist at Northwestern, spent parts of the three years from 2006 to 2008 interviewing professionals from elite investment banks, consultancies, and law firms about how they recruited, interviewed, and evaluated candidates, and concluded that among the most important factors driving their hiring recommendations were—wait for it—shared leisure interests.
  • Lacking “reliable predictors of future performance,” Rivera writes, “assessors purposefully used their own experiences as models of merit.” Former college athletes “typically prized participation in varsity sports above all other types of involvement.” People who’d majored in engineering gave engineers a leg up, believing they were better prepared.
  • the prevailing system of hiring and management in this country involves a level of dysfunction that should be inconceivable in an economy as sophisticated as ours. Recent survey data collected by the Corporate Executive Board, for example, indicate that nearly a quarter of all new hires leave their company within a year of their start date, and that hiring managers wish they’d never extended an offer to one out of every five members on their team
  • In the late 1990s, as these assessments shifted from paper to digital formats and proliferated, data scientists started doing massive tests of what makes for a successful customer-support technician or salesperson. This has unquestionably improved the quality of the workers at many firms.
  • In 2010, however, Xerox switched to an online evaluation that incorporates personality testing, cognitive-skill assessment, and multiple-choice questions about how the applicant would handle specific scenarios that he or she might encounter on the job. An algorithm behind the evaluation analyzes the responses, along with factual information gleaned from the candidate’s application, and spits out a color-coded rating: red (poor candidate), yellow (middling), or green (hire away). Those candidates who score best, I learned, tend to exhibit a creative but not overly inquisitive personality, and participate in at least one but not more than four social networks, among many other factors. (Previous experience, one of the few criteria that Xerox had explicitly screened for in the past, turns out to have no bearing on either productivity or retention
  • the idea that hiring was a science fell out of favor. But now it’s coming back, thanks to new technologies and methods of analysis that are cheaper, faster, and much-wider-ranging than what we had before
  • Gone are the days, Ostberg told me, when, say, a small survey of college students would be used to predict the statistical validity of an evaluation tool. “We’ve got a data set of 347,000 actual employees who have gone through these different types of assessments or tools,” he told me, “and now we have performance-outcome data, and we can split those and slice and dice by industry and location.”
  • Evolv’s tests allow companies to capture data about everybody who applies for work, and everybody who gets hired—a complete data set from which sample bias, long a major vexation for industrial-organization psychologists, simply disappears. The sheer number of observations that this approach makes possible allows Evolv to say with precision which attributes matter more to the success of retail-sales workers (decisiveness, spatial orientation, persuasiveness) or customer-service personnel at call centers (rapport-building)
  • There are some data that Evolv simply won’t use, out of a concern that the information might lead to systematic bias against whole classes of people
  • When Xerox started using the score in its hiring decisions, the quality of its hires immediately improved. The rate of attrition fell by 20 percent in the initial pilot period, and over time, the number of promotions rose. Xerox still interviews all candidates in person before deciding to hire them, Morse told me, but, she added, “We’re getting to the point where some of our hiring managers don’t even want to interview anymore”
  • what most excites him are the possibilities that arise from monitoring the entire life cycle of a worker at any given company.
  • Mullainathan expressed amazement at how little most creative and professional workers (himself included) know about what makes them effective or ineffective in the office. Most of us can’t even say with any certainty how long we’ve spent gathering information for a given project, or our pattern of information-gathering, never mind know which parts of the pattern should be reinforced, and which jettisoned. As Mullainathan put it, we don’t know our own “production function.”
  • What begins with an online screening test for entry-level workers ends with the transformation of nearly every aspect of hiring, performance assessment, and management.
  • I turned to Sandy Pentland, the director of the Human Dynamics Laboratory at MIT. In recent years, Pentland has pioneered the use of specialized electronic “badges” that transmit data about employees’ interactions as they go about their days. The badges capture all sorts of information about formal and informal conversations: their length; the tone of voice and gestures of the people involved; how much those people talk, listen, and interrupt; the degree to which they demonstrate empathy and extroversion; and more. Each badge generates about 100 data points a minute.
  • he tried the badges out on about 2,500 people, in 21 different organizations, and learned a number of interesting lessons. About a third of team performance, he discovered, can usually be predicted merely by the number of face-to-face exchanges among team members. (Too many is as much of a problem as too few.) Using data gathered by the badges, he was able to predict which teams would win a business-plan contest, and which workers would (rightly) say they’d had a “productive” or “creative” day. Not only that, but he claimed that his researchers had discovered the “data signature” of natural leaders, whom he called “charismatic connectors” and all of whom, he reported, circulate actively, give their time democratically to others, engage in brief but energetic conversations, and listen at least as much as they talk.
  • His group is developing apps to allow team members to view their own metrics more or less in real time, so that they can see, relative to the benchmarks of highly successful employees, whether they’re getting out of their offices enough, or listening enough, or spending enough time with people outside their own team.
  • Torrents of data are routinely collected by American companies and now sit on corporate servers, or in the cloud, awaiting analysis. Bloomberg reportedly logs every keystroke of every employee, along with their comings and goings in the office. The Las Vegas casino Harrah’s tracks the smiles of the card dealers and waitstaff on the floor (its analytics team has quantified the impact of smiling on customer satisfaction). E‑mail, of course, presents an especially rich vein to be mined for insights about our productivity, our treatment of co-workers, our willingness to collaborate or lend a hand, our patterns of written language, and what those patterns reveal about our intelligence, social skills, and behavior.
  • people analytics will ultimately have a vastly larger impact on the economy than the algorithms that now trade on Wall Street or figure out which ads to show us. He reminded me that we’ve witnessed this kind of transformation before in the history of management science. Near the turn of the 20th century, both Frederick Taylor and Henry Ford famously paced the factory floor with stopwatches, to improve worker efficiency.
  • “The quantities of data that those earlier generations were working with,” he said, “were infinitesimal compared to what’s available now. There’s been a real sea change in the past five years, where the quantities have just grown so large—petabytes, exabytes, zetta—that you start to be able to do things you never could before.”
  • People analytics will unquestionably provide many workers with more options and more power. Gild, for example, helps companies find undervalued software programmers, working indirectly to raise those people’s pay. Other companies are doing similar work. One called Entelo, for instance, specializes in using algorithms to identify potentially unhappy programmers who might be receptive to a phone cal
  • He sees it not only as a boon to a business’s productivity and overall health but also as an important new tool that individual employees can use for self-improvement: a sort of radically expanded The 7 Habits of Highly Effective People, custom-written for each of us, or at least each type of job, in the workforce.
  • the most exotic development in people analytics today is the creation of algorithms to assess the potential of all workers, across all companies, all the time.
  • The way Gild arrives at these scores is not simple. The company’s algorithms begin by scouring the Web for any and all open-source code, and for the coders who wrote it. They evaluate the code for its simplicity, elegance, documentation, and several other factors, including the frequency with which it’s been adopted by other programmers. For code that was written for paid projects, they look at completion times and other measures of productivity. Then they look at questions and answers on social forums such as Stack Overflow, a popular destination for programmers seeking advice on challenging projects. They consider how popular a given coder’s advice is, and how widely that advice ranges.
  • The algorithms go further still. They assess the way coders use language on social networks from LinkedIn to Twitter; the company has determined that certain phrases and words used in association with one another can distinguish expert programmers from less skilled ones. Gild knows these phrases and words are associated with good coding because it can correlate them with its evaluation of open-source code, and with the language and online behavior of programmers in good positions at prestigious companies.
  • having made those correlations, Gild can then score programmers who haven’t written open-source code at all, by analyzing the host of clues embedded in their online histories. They’re not all obvious, or easy to explain. Vivienne Ming, Gild’s chief scientist, told me that one solid predictor of strong coding is an affinity for a particular Japanese manga site.
  • Gild’s CEO, Sheeroy Desai, told me he believes his company’s approach can be applied to any occupation characterized by large, active online communities, where people post and cite individual work, ask and answer professional questions, and get feedback on projects. Graphic design is one field that the company is now looking at, and many scientific, technical, and engineering roles might also fit the bill. Regardless of their occupation, most people leave “data exhaust” in their wake, a kind of digital aura that can reveal a lot about a potential hire.
  • professionally relevant personality traits can be judged effectively merely by scanning Facebook feeds and photos. LinkedIn, of course, captures an enormous amount of professional data and network information, across just about every profession. A controversial start-up called Klout has made its mission the measurement and public scoring of people’s online social influence.
  • Now the two companies are working together to marry pre-hire assessments to an increasing array of post-hire data: about not only performance and duration of service but also who trained the employees; who has managed them; whether they were promoted to a supervisory role, and how quickly; how they performed in that role; and why they eventually left.
  • Over time, better job-matching technologies are likely to begin serving people directly, helping them see more clearly which jobs might suit them and which companies could use their skills. In the future, Gild plans to let programmers see their own profiles and take skills challenges to try to improve their scores. It intends to show them its estimates of their market value, too, and to recommend coursework that might allow them to raise their scores even more. Not least, it plans to make accessible the scores of typical hires at specific companies, so that software engineers can better see the profile they’d need to land a particular job
  • Knack, for its part, is making some of its video games available to anyone with a smartphone, so people can get a better sense of their strengths, and of the fields in which their strengths would be most valued. (Palo Alto High School recently adopted the games to help students assess careers.) Ultimately, the company hopes to act as matchmaker between a large network of people who play its games (or have ever played its games) and a widening roster of corporate clients, each with its own specific profile for any given type of job.
  • When I began my reporting for this story, I was worried that people analytics, if it worked at all, would only widen the divergent arcs of our professional lives, further gilding the path of the meritocratic elite from cradle to grave, and shutting out some workers more definitively. But I now believe the opposite is likely to happen, and that we’re headed toward a labor market that’s fairer to people at every stage of their careers
  • For decades, as we’ve assessed people’s potential in the professional workforce, the most important piece of data—the one that launches careers or keeps them grounded—has been educational background: typically, whether and where people went to college, and how they did there. Over the past couple of generations, colleges and universities have become the gatekeepers to a prosperous life. A degree has become a signal of intelligence and conscientiousness, one that grows stronger the more selective the school and the higher a student’s GPA, that is easily understood by employers, and that, until the advent of people analytics, was probably unrivaled in its predictive powers.
  • the limitations of that signal—the way it degrades with age, its overall imprecision, its many inherent biases, its extraordinary cost—are obvious. “Academic environments are artificial environments,” Laszlo Bock, Google’s senior vice president of people operations, told The New York Times in June. “People who succeed there are sort of finely trained, they’re conditioned to succeed in that environment,” which is often quite different from the workplace.
  • because one’s college history is such a crucial signal in our labor market, perfectly able people who simply couldn’t sit still in a classroom at the age of 16, or who didn’t have their act together at 18, or who chose not to go to graduate school at 22, routinely get left behind for good. That such early factors so profoundly affect career arcs and hiring decisions made two or three decades later is, on its face, absurd.
  • I spoke with managers at a lot of companies who are using advanced analytics to reevaluate and reshape their hiring, and nearly all of them told me that their research is leading them toward pools of candidates who didn’t attend college—for tech jobs, for high-end sales positions, for some managerial roles. In some limited cases, this is because their analytics revealed no benefit whatsoever to hiring people with college degrees; in other cases, and more often, it’s because they revealed signals that function far better than college history,
  • Google, too, is hiring a growing number of nongraduates. Many of the people I talked with reported that when it comes to high-paying and fast-track jobs, they’re reducing their preference for Ivy Leaguers and graduates of other highly selective schools.
  • This process is just beginning. Online courses are proliferating, and so are online markets that involve crowd-sourcing. Both arenas offer new opportunities for workers to build skills and showcase competence. Neither produces the kind of instantly recognizable signals of potential that a degree from a selective college, or a first job at a prestigious firm, might. That’s a problem for traditional hiring managers, because sifting through lots of small signals is so difficult and time-consuming.
  • all of these new developments raise philosophical questions. As professional performance becomes easier to measure and see, will we become slaves to our own status and potential, ever-focused on the metrics that tell us how and whether we are measuring up? Will too much knowledge about our limitations hinder achievement and stifle our dreams? All I can offer in response to these questions, ironically, is my own gut sense, which leads me to feel cautiously optimistic.
  • Google’s understanding of the promise of analytics is probably better than anybody else’s, and the company has been changing its hiring and management practices as a result of its ongoing analyses. (Brainteasers are no longer used in interviews, because they do not correlate with job success; GPA is not considered for anyone more than two years out of school, for the same reason—the list goes on.) But for all of Google’s technological enthusiasm, these same practices are still deeply human. A real, live person looks at every résumé the company receives. Hiring decisions are made by committee and are based in no small part on opinions formed during structured interviews.
margogramiak

We hear what we expect to hear -- ScienceDaily - 0 views

  • Despite senses being the only window to the outside world, people do rarely question how faithfully they represent the external physical reality.
  • Despite senses being the only window to the outside world, people do rarely question how faithfully they represent the external physical reality.
    • margogramiak
       
      We've questioned our senses A LOT in TOK!
  • the cerebral cortex constantly generates predictions on what will happen next, and that neurons in charge of sensory processing only encode the difference between our predictions and the actual reality.
    • margogramiak
       
      That's really interesting. We've touched on similar concepts, but nothing exactly like this.
  • ...5 more annotations...
  • that not only the cerebral cortex, but the entire auditory pathway, represents sounds according to prior expectations.
    • margogramiak
       
      So, multiple parts of our brain make predictions about what's going to happen next.
  • Although participants recognised the deviant faster when it was placed on positions where they expected it, the subcortical nuclei encoded the sounds only when they were placed in unexpected positions.
    • margogramiak
       
      That's interesting. How will this research affect medicine etc?
  • Predictive coding assumes that the brain is constantly generating predictions about how the physical world will look, sound, feel, and smell like in the next instant, and that neurons in charge of processing our senses save resources by representing only the differences between these predictions and the actual physical world.
    • margogramiak
       
      I remember from class that the brain looks for patterns with its senses. Does that apply here?
  • e have now shown that this process also dominates the most primitive and evolutionary conserved parts of the brain. All that we perceive might be deeply contaminated by our subjective beliefs on the physical world."
    • margogramiak
       
      Perception is crazy...
  • Developmental dyslexia, the most wide-spread learning disorder, has already been linked to altered responses in subcortical auditory pathway and to difficulties on exploiting stimulus regularities in auditory perception.
    • margogramiak
       
      That's interesting. I can see why that would affect learning.
Javier E

Covid-19 expert Karl Friston: 'Germany may have more immunological "dark matter"' | Wor... - 0 views

  • Our approach, which borrows from physics and in particular the work of Richard Feynman, goes under the bonnet. It attempts to capture the mathematical structure of the phenomenon – in this case, the pandemic – and to understand the causes of what is observed. Since we don’t know all the causes, we have to infer them. But that inference, and implicit uncertainty, is built into the models
  • That’s why we call them generative models, because they contain everything you need to know to generate the data. As more data comes in, you adjust your beliefs about the causes, until your model simulates the data as accurately and as simply as possible.
  • A common type of epidemiological model used today is the SEIR model, which considers that people must be in one of four states – susceptible (S), exposed (E), infected (I) or recovered (R). Unfortunately, reality doesn’t break them down so neatly. For example, what does it mean to be recovered?
  • ...12 more annotations...
  • SEIR models start to fall apart when you think about the underlying causes of the data. You need models that can allow for all possible states, and assess which ones matter for shaping the pandemic’s trajectory over time.
  • These techniques have enjoyed enormous success ever since they moved out of physics. They’ve been running your iPhone and nuclear power stations for a long time. In my field, neurobiology, we call the approach dynamic causal modelling (DCM). We can’t see brain states directly, but we can infer them given brain imaging data
  • Epidemiologists currently tackle the inference problem by number-crunching on a huge scale, making use of high-performance computers. Imagine you want to simulate an outbreak in Scotland. Using conventional approaches, this would take you a day or longer with today’s computing resources. And that’s just to simulate one model or hypothesis – one set of parameters and one set of starting conditions.
  • Using DCM, you can do the same thing in a minute. That allows you to score different hypotheses quickly and easily, and so to home in sooner on the best one.
  • This is like dark matter in the universe: we can’t see it, but we know it must be there to account for what we can see. Knowing it exists is useful for our preparations for any second wave, because it suggests that targeted testing of those at high risk of exposure to Covid-19 might be a better approach than non-selective testing of the whole population.
  • Our response as individuals – and as a society – becomes part of the epidemiological process, part of one big self-organising, self-monitoring system. That means it is possible to predict not only numbers of cases and deaths in the future, but also societal and institutional responses – and to attach precise dates to those predictions.
  • How well have your predictions been borne out in this first wave of infections?For London, we predicted that hospital admissions would peak on 5 April, deaths would peak five days later, and critical care unit occupancy would not exceed capacity – meaning the Nightingale hospitals would not be required. We also predicted that improvements would be seen in the capital by 8 May that might allow social distancing measures to be relaxed – which they were in the prime minister’s announcement on 10 May. To date our predictions have been accurate to within a day or two, so there is a predictive validity to our models that the conventional ones lack.
  • What do your models say about the risk of a second wave?The models support the idea that what happens in the next few weeks is not going to have a great impact in terms of triggering a rebound – because the population is protected to some extent by immunity acquired during the first wave. The real worry is that a second wave could erupt some months down the line when that immunity wears off.
  • the important message is that we have a window of opportunity now, to get test-and-trace protocols in place ahead of that putative second wave. If these are implemented coherently, we could potentially defer that wave beyond a time horizon where treatments or a vaccine become available, in a way that we weren’t able to before the first one.
  • We’ve been comparing the UK and Germany to try to explain the comparatively low fatality rates in Germany. The answers are sometimes counterintuitive. For example, it looks as if the low German fatality rate is not due to their superior testing capacity, but rather to the fact that the average German is less likely to get infected and die than the average Brit. Why? There are various possible explanations, but one that looks increasingly likely is that Germany has more immunological “dark matter” – people who are impervious to infection, perhaps because they are geographically isolated or have some kind of natural resistance
  • Any other advantages?Yes. With conventional SEIR models, interventions and surveillance are something you add to the model – tweaks or perturbations – so that you can see their effect on morbidity and mortality. But with a generative model these things are built into the model itself, along with everything else that matters.
  • Are generative models the future of disease modelling?That’s a question for the epidemiologists – they’re the experts. But I would be very surprised if at least some part of the epidemiological community didn’t become more committed to this approach in future, given the impact that Feynman’s ideas have had in so many other disciplines.
Javier E

Opinion | Noam Chomsky: The False Promise of ChatGPT - The New York Times - 0 views

  • we fear that the most popular and fashionable strain of A.I. — machine learning — will degrade our science and debase our ethics by incorporating into our technology a fundamentally flawed conception of language and knowledge.
  • OpenAI’s ChatGPT, Google’s Bard and Microsoft’s Sydney are marvels of machine learning. Roughly speaking, they take huge amounts of data, search for patterns in it and become increasingly proficient at generating statistically probable outputs — such as seemingly humanlike language and thought
  • if machine learning programs like ChatGPT continue to dominate the field of A.I
  • ...22 more annotations...
  • , we know from the science of linguistics and the philosophy of knowledge that they differ profoundly from how humans reason and use language. These differences place significant limitations on what these programs can do, encoding them with ineradicable defects.
  • It is at once comic and tragic, as Borges might have noted, that so much money and attention should be concentrated on so little a thing — something so trivial when contrasted with the human mind, which by dint of language, in the words of Wilhelm von Humboldt, can make “infinite use of finite means,” creating ideas and theories with universal reach.
  • The human mind is not, like ChatGPT and its ilk, a lumbering statistical engine for pattern matching, gorging on hundreds of terabytes of data and extrapolating the most likely conversational response or most probable answer to a scientific question
  • the human mind is a surprisingly efficient and even elegant system that operates with small amounts of information; it seeks not to infer brute correlations among data points but to create explanations
  • such programs are stuck in a prehuman or nonhuman phase of cognitive evolution. Their deepest flaw is the absence of the most critical capacity of any intelligence: to say not only what is the case, what was the case and what will be the case — that’s description and prediction — but also what is not the case and what could and could not be the case
  • Those are the ingredients of explanation, the mark of true intelligence.
  • Here’s an example. Suppose you are holding an apple in your hand. Now you let the apple go. You observe the result and say, “The apple falls.” That is a description. A prediction might have been the statement “The apple will fall if I open my hand.”
  • an explanation is something more: It includes not only descriptions and predictions but also counterfactual conjectures like “Any such object would fall,” plus the additional clause “because of the force of gravity” or “because of the curvature of space-time” or whatever. That is a causal explanation: “The apple would not have fallen but for the force of gravity.” That is thinking.
  • The crux of machine learning is description and prediction; it does not posit any causal mechanisms or physical laws
  • any human-style explanation is not necessarily correct; we are fallible. But this is part of what it means to think: To be right, it must be possible to be wrong. Intelligence consists not only of creative conjectures but also of creative criticism. Human-style thought is based on possible explanations and error correction, a process that gradually limits what possibilities can be rationally considered.
  • ChatGPT and similar programs are, by design, unlimited in what they can “learn” (which is to say, memorize); they are incapable of distinguishing the possible from the impossible.
  • Whereas humans are limited in the kinds of explanations we can rationally conjecture, machine learning systems can learn both that the earth is flat and that the earth is round. They trade merely in probabilities that change over time.
  • For this reason, the predictions of machine learning systems will always be superficial and dubious.
  • some machine learning enthusiasts seem to be proud that their creations can generate correct “scientific” predictions (say, about the motion of physical bodies) without making use of explanations (involving, say, Newton’s laws of motion and universal gravitation). But this kind of prediction, even when successful, is pseudoscienc
  • While scientists certainly seek theories that have a high degree of empirical corroboration, as the philosopher Karl Popper noted, “we do not seek highly probable theories but explanations; that is to say, powerful and highly improbable theories.”
  • The theory that apples fall to earth because mass bends space-time (Einstein’s view) is highly improbable, but it actually tells you why they fall. True intelligence is demonstrated in the ability to think and express improbable but insightful things.
  • This means constraining the otherwise limitless creativity of our minds with a set of ethical principles that determines what ought and ought not to be (and of course subjecting those principles themselves to creative criticism)
  • True intelligence is also capable of moral thinking
  • To be useful, ChatGPT must be empowered to generate novel-looking output; to be acceptable to most of its users, it must steer clear of morally objectionable content
  • In 2016, for example, Microsoft’s Tay chatbot (a precursor to ChatGPT) flooded the internet with misogynistic and racist content, having been polluted by online trolls who filled it with offensive training data. How to solve the problem in the future? In the absence of a capacity to reason from moral principles, ChatGPT was crudely restricted by its programmers from contributing anything novel to controversial — that is, important — discussions. It sacrificed creativity for a kind of amorality.
  • Here, ChatGPT exhibits something like the banality of evil: plagiarism and apathy and obviation. It summarizes the standard arguments in the literature by a kind of super-autocomplete, refuses to take a stand on anything, pleads not merely ignorance but lack of intelligence and ultimately offers a “just following orders” defense, shifting responsibility to its creators.
  • In short, ChatGPT and its brethren are constitutionally unable to balance creativity with constraint. They either overgenerate (producing both truths and falsehoods, endorsing ethical and unethical decisions alike) or undergenerate (exhibiting noncommitment to any decisions and indifference to consequences). Given the amorality, faux science and linguistic incompetence of these systems, we can only laugh or cry at their popularity.
Javier E

Economics of Good and Evil: The Quest for Economic Meaning from Gilgamesh to Wall Stree... - 1 views

  • Instead of self-confident and self-centered answers, the author humbly asks fundamental questions: What is economics? What is its meaning? Where does this new religion, as it is sometimes called, come from? What are its possibilities and its limitations and borders, if there are any? Why are we so dependent on permanent growing of growth and growth of growing of growth? Where did the idea of progress come from, and where is it leading us? Why are so many economic debates accompanied by obsession and fanaticism?
  • The majority of our political parties act with a narrow materialistic focus when, in their programs, they present the economy and finance first; only then, somewhere at the end, do we find culture as something pasted on or as a libation for a couple of madmen.
  • most of them—consciously or unconsciously—accept and spread the Marxist thesis of the economic base and the spiritual superstructure.
  • ...297 more annotations...
  • He tries to break free of narrow specialization and cross the boundaries between scientific disciplines. Expeditions beyond economics’ borders and its connection to history, philosophy, psychology, and ancient myths are not only refreshing, but necessary for understanding the world of the twenty-first century.
  • Reality is spun from stories, not from material. Zdeněk Neubauer
  • Before it was emancipated as a field, economics lived happily within subsets of philosophy—ethics, for example—miles away from today’s concept of economics as a mathematical-allocative science that views “soft sciences” with a scorn born from positivistic arrogance. But our thousand-year “education” is built on a deeper, broader, and oftentimes more solid base. It is worth knowing about.
  • Outside of our history, we have nothing more.
  • The study of the history of a certain field is not, as is commonly held, a useless display of its blind alleys or a collection of the field’s trials and errors (until we got it right), but history is the fullest possible scope of study of a menu that the given field can offer.
  • History of thought helps us to get rid of the intellectual brainwashing of the age, to see through the intellectual fashion of the day, and to take a couple of steps back.
  • “The separation between the history of a science, its philosophy, and the science itself dissolves into thin air, and so does the separation between science and non-science; differences between the scientific and unscientific are vanishing.”
  • we seek to chart the development of the economic ethos. We ask questions that come before any economic thinking can begin—both philosophically and, to a degree, historically. The area here lies at the very borders of economics—and often beyond. We may refer to this as protoeconomics (to borrow a term from protosociology) or, perhaps more fittingly, metaeconomics (to borrow a term from metaphysics).
  • stories; Adam Smith believed. As he puts it in The Theory of Moral Sentiments, “the desire of being believed, or the desire of persuading, of leading and directing other people, seems to be one of the strongest of all our natural desires.”
  • “The human mind is built to think in terms of narratives … in turn, much of human motivation comes from living through a story of our lives, a story that we tell to ourselves and that creates a framework of our motivation. Life could be just ‘one damn thing after another’ if it weren’t for such stories. The same is true for confidence in a nation, a company, or an institution. Great leaders are foremost creators of stories.”
  • contrary to what our textbooks say, economics is predominantly a normative field. Economics not only describes the world but is frequently about how the world should be (it should be effective, we have an ideal of perfect competition, an ideal of high-GDP growth in low inflation, the effort to achieve high competitiveness …). To this end, we create models, modern parables,
  • I will try to show that mathematics, models, equations, and statistics are just the tip of the iceberg of economics; that the biggest part of the iceberg of economic knowledge consists of everything else; and that disputes in economics are rather a battle of stories and various metanarratives than anything else.
  • That is the reason for this book: to look for economic thought in ancient myths and, vice versa, to look for myths in today’s economics.
  • is a paradox that a field that primarily studies values wants to be value-free. One more paradox is this: A field that believes in the invisible hand of the market wants to be without mysteries.
  • Almost all of the key concepts by which economics operates, both consciously and unconsciously, have a long history, and their roots extend predominantly outside the range of economics, and often completely beyond that of science.
  • The History of Animal Spirits: Dreams Never Sleep
  • In this sense, “the study of economics is too narrow and too fragmentary to lead to valid insight, unless complemented and completed by a study of metaeconomics.”17
  • The more important elements of a culture or field of inquiry such as economics are found in fundamental assumptions that adherents of all the various systems within the epoch unconsciously presuppose. Such assumptions appear so obvious that people do not know what they are assuming, because no other way of putting things has ever occurred to them, as the philosopher Alfred Whitehead notes in Adventures of Ideas.
  • I argue that economic questions were with mankind long before Adam Smith. I argue that the search for values in economics did not start with Adam Smith but culminated with him.
  • We should go beyond economics and study what beliefs are “behind the scenes,” ideas that have often become the dominant yet unspoken assumptions in our theories. Economics is surprisingly full of tautologies that economists are predominantly unaware of. I
  • argue that economics should seek, discover, and talk about its own values, although we have been taught that economics is a value-free science. I argue that none of this is true and that there is more religion, myth, and archetype in economics than there is mathematics.
  • In a way, this is a study of the evolution of both homo economicus and, more importantly, the history of the animal spirits within him. This book tries to study the evolution of the rational as well as the emotional and irrational side of human beings.
  • I argue that his most influential contribution to economics was ethical. His other thoughts had been clearly expressed long before him, whether on specialization, or on the principle of the invisible hand of the market. I try to show that the principle of the invisible hand of the market is much more ancient and developed long before Adam Smith. Traces of it appear even in the Epic of Gilgamesh, Hebrew thought, and in Christianity, and it is expressly stated by Aristophanes and Thomas Aquinas.
  • This is not a book on the thorough history of economic thought. The author aims instead to supplement certain chapters on the history of economic thought with a broader perspective and analysis of the influences that often escape the notice of economists and the wider public.
  • Progress (Naturalness and Civilization)
  • The Economy of Good and Evil
  • from his beginnings, man has been marked as a naturally unnatural creature, who for unique reasons surrounds himself with external possessions. Insatiability, both material and spiritual, are basic human metacharacteristics, which appear as early as the oldest myths and stories.
  • the Hebrews, with linear time, and later the Christians gave us the ideal (or amplified the Hebrew ideal) we now embrace. Then the classical economists secularized progress. How did we come to today’s progression of progress, and growth for growth’s sake?
  • The Need for Greed: The History of Consumption and Labor
  • Metamathematics From where did economics get the concept of numbers as the very foundation of the world?
  • mathematics at the core of economics, or is it just the icing of the cake, the tip of the iceberg of our field’s inquiry?
  • idea that we can manage to utilize our natural egoism, and that this evil is good for something, is an ancient philosophical and mythical concept. We will also look into the development of the ethos of homo economicus, the birth of “economic man.”
  • All of economics is, in the end, economics of good and evil. It is the telling of stories by people of people to people. Even the most sophisticated mathematical model is, de facto, a story, a parable, our effort to (rationally) grasp the world around us.
  • Masters of the Truth
  • Originally, truth was a domain of poems and stories, but today we perceive truth as something much more scientific, mathematical. Where does one go (to shop) for the truth? And who “has the truth” in our epoch?
  • Our animal spirits (something of a counterpart to rationality) are influenced by the archetype of the hero and our concept of what is good.
  • The entire history of ethics has been ruled by an effort to create a formula for the ethical rules of behavior. In the final chapter we will show the tautology of Max Utility, and we will discuss the concept of Max Good.
  • The History of the Invisible Hand of the Market and Homo Economicus
  • We understand “economics” to mean a broader field than just the production, distribution, and consumption of goods and services. We consider economics to be the study of human relations that are sometimes expressible in numbers, a study that deals with tradables, but one that also deals with nontradables (friendship, freedom, efficiency, growth).
  • When we mention economics in this book, we mean the mainstream perception of it, perhaps as best represented by Paul Samuelson.
  • By the term homo economicus, we mean the primary concept of economic anthropology. It comes from the concept of a rational individual, who, led by narrowly egotistical motives, sets out to maximize his benefit.
  • the Epic of Gilgamesh bears witness to the opposite—despite the fact that the first written clay fragments (such as notes and bookkeeping) of our ancestors may have been about business and war, the first written story is mainly about great friendship and adventure.
  • there is no mention of either money or war; for example, not once does anyone in the whole epic sell or purchase something.5 No nation conquers another, and we do not encounter a mention even of the threat of violence.
  • is a story of nature and civilization, of heroism, defiance, and the battle against the gods, and evil; an epic about wisdom, immortality, and also futility.
  • Gilgamesh becomes a hero not only due to his strength, but also due to discoveries and deeds whose importance were in large part economic—direct gaining of construction materials in the case of felling the cedar forest, stopping Enkidu from devastating Uruk’s economy, and discovering new desert routes during his expeditions.
  • Even today, we often consider the domain of humanity (human relations, love, friendship, beauty, art, etc.) to be unproductive;
  • Even today we live in Gilgamesh’s vision that human relations—and therefore humanity itself—are a disturbance to work and efficiency; that people would perform better if they did not “waste” their time and energy on nonproductive things.
  • But it is in friendship where—often by-the-way, as a side product, an externality—ideas and deeds are frequently performed or created that together can altogether change the face of society.19 Friendship can go against an ingrained system in places where an individual does not have the courage to do so himself or herself.
  • As Joseph Stiglitz says, One of the great “tricks” (some say “insights”) of neoclassical economics is to treat labour like any other factor of production. Output is written as a function of inputs—steel, machines, and labour. The mathematics treats labour like any other commodity, lulling one into thinking of labour like an ordinary commodity, such as steel or plastic.
  • Even the earliest cultures were aware of the value of cooperation on the working level—today we call this collegiality, fellowship, or, if you want to use a desecrated term, comradeship. These “lesser relationships” are useful and necessary for society and for companies because work can be done much faster and more effectively if people get along with each other on a human level
  • But true friendship, which becomes one of the central themes of the Epic of Gilgamesh, comes from completely different material than teamwork. Friendship, as C. S. Lewis accurately describes it, is completely uneconomical, unbiological, unnecessary for civilization, and an unneeded relationship
  • Here we have a beautiful example of the power of friendship, one that knows how to transform (or break down) a system and change a person. Enkidu, sent to Gilgamesh as a punishment from the gods, in the end becomes his faithful friend, and together they set out against the gods. Gilgamesh would never have gathered the courage to do something like that on his own—nor would Enkidu.
  • Due to their friendship, Gilgamesh and Enkidu then intend to stand up to the gods themselves and turn a holy tree into mere (construction) material they can handle almost freely, thereby making it a part of the city-construct, part of the building material of civilization, thus “enslaving” that which originally was part of wild nature. This is a beautiful proto-example of the shifting of the borders between the sacred and profane (secular)—and to a certain extent also an early illustration of the idea that nature is there to provide cities and people with raw material and production resources.
  • started with Babylonians—rural nature becomes just a supplier of raw materials, resources (and humans the source of human resources). Nature is not the garden in which humans were created and placed, which they should care for and which they should reside in, but becomes a mere reservoir for natural (re)sources.
  • But labour is unlike any other commodity. The work environment is of no concern for steel; we do not care about steel’s well-being.16
  • Both heroes change—each from opposite poles—into humans. In this context, a psychological dimension to the story may be useful: “Enkidu (…) is Gilgamesh’s alter ego, the dark, animal side of his soul, the complement to his restless heart. When Gilgamesh found Enkidu, he changed from a hated tyrant into the protector of his city. (…)
  • To be human seems to be somewhere in between, or both of these two. We
  • this moment of rebirth from an animal to a human state, the world’s oldest preserved epic implicitly hints at something highly important. Here we see what early cultures considered the beginning of civilization. Here is depicted the difference between people and animals or, better, savages. Here the epic quietly describes birth, the awakening of a conscious, civilized human. We are witnesses to the emancipation of humanity from animals,
  • The entire history of culture is dominated by an effort to become as independent as possible from the whims of nature.39 The more developed a civilization is, the more an individual is protected from nature and natural influences and knows how to create around him a constant or controllable environment to his liking.
  • The price we pay for independence from the whims of nature is dependence on our societies and civilizations. The more sophisticated a given society is as a whole, the less its members are able to survive on their own as individuals, without society.
  • The epic captures one of the greatest leaps in the development of the division of labor. Uruk itself is one of the oldest cities of all, and in the epic it reflects a historic step forward in specialization—in the direction of a new social city arrangement. Because of the city wall, people in the city can devote themselves to things other than worrying about their own safety, and they can continue to specialize more deeply.
  • Human life in the city gains a new dimension and suddenly it seems more natural to take up issues going beyond the life span of an individual. “The city wall symbolizes as well as founds the permanence of the city as an institution which will remain forever and give its inhabitants the certainty of unlimited safety, allowing them to start investing with an outlook reaching far beyond the borders of individual life.
  • The wall around the city of Uruk is, among other things, a symbol of an internal distancing from nature, a symbol of revolts against submission to laws that do not come under the control of man and that man can at most discover and use to his benefit.
  • “The chief thing which the common-sense individual wants is not satisfactions for the wants he had, but more, and better wants.”47
  • If a consumer buys something, theoretically it should rid him of one of his needs—and the aggregate of things they need should be decreased by one item. In reality, though, the aggregate of “I want to have” expands together with the growing aggregate of “I have.”
  • can be said that Enkidu was therefore happy in his natural state, because all of his needs were satiated. On the other hand, with people, it appears that the more a person has, the more developed and richer, the greater the number of his needs (including the unsaturated ones).
  • the Old Testament, this relationship is perceived completely differently. Man (humanity) is created in nature, in a garden. Man was supposed to care for the Garden of Eden and live in harmony with nature and the animals. Soon after creation, man walks naked and is not ashamed, de facto the same as the animals. What is characteristic is that man dresses (the natural state of creation itself is not enough for him), and he (literally and figuratively) covers52 himself—in shame after the fall.53
  • Nature is where one goes to hunt, collect crops, or gather the harvest. It is perceived as the saturator of our needs and nothing more. One goes back to the city to sleep and be “human.” On the contrary, evil resides in nature. Humbaba lives in the cedar forest, which also happens to be the reason to completely eradicate it.
  • Symbolically, then, we can view the entire issue from the standpoint of the epic in the following way: Our nature is insufficient, bad, evil, and good (humane) occurs only after emancipation from nature (from naturalness), through culturing and education. Humanity is considered as being in civilization.
  • The city was frequently (at least in older Jewish writings) a symbol of sin, degeneration, and decadence—nonhumanity. The Hebrews were originally a nomadic nation, one that avoided cities. It is no accident that the first important city57 mentioned in the Bible is proud Babylon,58 which God later turns to dust.
  • is enough, for example, to read the Book of Revelation to see how the vision of paradise developed from the deep Old Testament period, when paradise was a garden. John describes his vision of heaven as a city—paradise is in New Jerusalem, a city where the dimensions of the walls(!) are described in detail, as are the golden streets and gates of pearl.
  • Hebrews later also chose a king (despite the unanimous opposition of God’s prophets) and settled in cities, where they eventually founded the Lord’s Tabernacle and built a temple for Him. The city of Jerusalem later gained an illustrious position in all of religion.
  • this time Christianity (as well as the influence of the Greeks) does not consider human naturalness to be an unambiguous good, and it does not have such an idyllic relationship to nature as the Old Testament prophets.
  • If a tendency toward good is not naturally endowed in people, it must be imputed from above through violence or at least the threat of violence.
  • If we were to look at human naturalness as a good, then collective social actions need a much weaker ruling hand. If people themselves have a natural tendency (propensity) toward good, this role does not have to be supplied by the state, ruler, or, if you wish, Leviathan.
  • How does this affect economics?
  • us return for the last time to the humanization of the wild Enkidu, which is a process we can perceive with a bit of imagination as the first seed of the principle of the market’s invisible hand, and therefore the parallels with one of the central schematics of economic thinking.
  • Sometimes it is better to “harness the devil to the plow” than to fight with him. Instead of summoning up enormous energy in the fight against evil, it is better to use its own energy to reach a goal we desire; setting up a mill on the turbulent river instead of futile efforts to remove the current. This is also how Saint Prokop approached it in one of the oldest Czech legends.
  • Enkidu caused damage and it was impossible to fight against him. But with the help of a trap, trick, this evil was transformed into something that greatly benefited civilization.
  • By culturing and “domesticating” Enkidu, humanity tamed the uncontrollable wild and chaotic evil
  • Enkidu devastated the doings (the external, outside-the-walls) of the city. But he was later harnessed and fights at the side of civilization against nature, naturalness, the natural state of things.
  • A similar motif appears a thousand years after the reversal, which is well known even to noneconomists as the central idea of economics: the invisible hand of the market.
  • A similar story (reforming something animally wild and uncultivated in civilizational achievement) is used by Thomas Aquinas in his teachings. Several centuries later, this idea is fully emancipated in the hands of Bernard Mandeville and his Fable of the Bees: or, Private Vices, Publick Benefits. The economic and political aspects of this idea are—often incorrectly—ascribed to Adam Smith.
  • Here the individual does not try anymore to maximize his goods or profits, but what is important is writing his name in human memory in the form of heroic acts or deeds.
  • immortality, one connected with letters and the cult of the word: A name and especially a written name survives the body.”77
  • After this disappointment, he comes to the edge of the sea, where the innkeeper Siduri lives. As tonic for his sorrow, she offers him the garden of bliss, a sort of hedonistic fortress of carpe diem, where a person comes to terms with his mortality and at least in the course of the end of his life maximizes earthly pleasures, or earthly utility.
  • In the second stage, after finding his friend Enkidu, Gilgamesh abandons the wall and sets out beyond the city to maximalize heroism. “In his (…) search of immortal life, Gilgamesh
  • The hero refuses hedonism in the sense of maximizing terrestrial pleasure and throws himself into things that will exceed his life. In the blink of an eye, the epic turns on its head the entire utility maximization role that mainstream economics has tirelessly tried to sew on people as a part of their nature.81
  • It is simpler to observe the main features of our civilization at a time when the picture was more readable—at a time when our civilization was just being born and was still “half-naked.” In other words, we have tried to dig down to the bedrock of our written civilization;
  • today remember Gilgamesh for his story of heroic friendship with Enkidu, not for his wall, which no longer reaches monumental heights.
  • the eleventh and final tablet, Gilgamesh again loses what he sought. Like Sisyphus, he misses his goal just before the climax
  • is there something from it that is valid today? Have we found in Gilgamesh certain archetypes that are in us to this day?
  • The very existence of questions similar to today’s economic ones can be considered as the first observation. The first written considerations of the people of that time were not so different from those today. In other words: The epic is understandable for us, and we can identify with it.
  • We have also been witnesses to the very beginnings of man’s culturing—a great drama based on a liberation and then a distancing from the natural state.
  • Let us take this as a memento in the direction of our restlessness, our inherited dissatisfaction and the volatility connected to it. Considering that they have lasted five thousand years and to this day we find ourselves in harmony with a certain feeling of futility, perhaps these characteristics are inherent in man.
  • Gilgamesh had a wall built that divided the city from wild nature and created a space for the first human culture. Nevertheless, “not even far-reaching works of civilization could satisfy human desire.”
  • Friendship shows us new, unsuspected adventures, gives us the opportunity to leave the wall and to become neither its builder nor its part—to not be another brick in the wall.
  • with the phenomenon of the creation of the city, we have seen how specialization and the accumulation of wealth was born, how holy nature was transformed into a secular supplier of resources, and also how humans’ individualistic ego was emancipated.
  • to change the system, to break down that which is standing and go on an expedition against the gods (to awaken, from naïveté to awakening) requires friendship.
  • For small acts (hunting together, work in a factory), small love is enough: Camaraderie. For great acts, however, great love is necessary, real love: Friendship. Friendship that eludes the economic understanding of quid pro quo. Friendship gives. One friend gives (fully) for the other. That is friendship for life and death,
  • The thought that humanity comes at the expense of efficiency is just as old as humanity itself—as we have shown, subjects without emotion are the ideal of many tyrants.
  • The epic later crashes this idea through the friendship of Gilgamesh and Enkidu. Friendship—the biologically least essential love, which at first sight appears to be unnecessary
  • less a civilized, city person is dependent on nature, the more he or she is dependent on the rest of society. Like Enkidu, we have exchanged nature for society; harmony with (incalculable) nature for harmony with (incalculable) man.
  • human nature good or evil? To this day these questions are key for economic policy: If we believe that man is evil in his nature, therefore that a person himself is dog eat dog (animal), then the hard hand of a ruler is called for. If we believe that people in and of themselves, in their nature, gravitate toward good, then it is possible to loosen up the reins and live in a society that is more laissez-faire.
  • For a concept of historical progress, for the undeification of heroes, rulers, and nature, mankind had to wait for the Hebrews.
  • Because nature is not undeified, it is beyond consideration to explore it, let alone intervene in it (unless a person was a two-thirds god like Gilgamesh). It
  • They practiced money lending, traded in many assets (…) and especially were engaged in the trading of shares on capital markets, worked in currency exchange and frequently figured as mediators in financial transactions (…), they functioned as bankers and participated in emissions of all possible forms.
  • As regards modern capitalism (as opposed to the ancient and medieval periods) … there are activities in it which are, in certain forms, inherently (and completely necessarily) present—both from an economic and legal standpoint.7
  • As early as the “dark” ages, the Jews commonly used economic tools that were in many ways ahead of their time and that later became key elements of the modern economy:
  • Gilgamesh’s story ends where it began. There is a consistency in this with Greek myths and fables: At the end of the story, no progress occurs, no essential historic change; the story is set in indefinite time, something of a temporal limbo.
  • Jews believe in historical progress, and that progress is in this world.
  • For a nation originally based on nomadism, where did this Jewish business ethos come from? And can the Hebrews truly be considered as the architects of the values that set the direction of our civilization’s economic thought?
  • Hebrew religiosity is therefore strongly connected with this world, not with any abstract world, and those who take pleasure in worldly possessions are not a priori doing anything wrong.
  • PROGRESS: A SECULARIZED RELIGION One of the things the writers of the Old Testament gave to mankind is the idea and notion of progress. The Old Testament stories have their development; they change the history of the Jewish nation and tie in to each other. The Jewish understanding of time is linear—it has a beginning and an end.
  • The observance of God’s Commandments in Judaism leads not to some ethereal other world, but to an abundance of material goods (Genesis 49:25–26, Leviticus 26:3–13, Deuteronomy 28:1–13) (…) There are no accusing fingers pointed at
  • There are no echoes of asceticism nor for the cleansing and spiritual effect of poverty. It is fitting therefore, that the founders of Judaism, the Patriarchs Abraham, Isaac and Jacob, were all wealthy men.12
  • about due to a linear understanding of history. If history has a beginning as well as an end, and they are not the same point, then exploration suddenly makes sense in areas where the fruits are borne only in the next generation.
  • What’s more, economic progress has almost become an assumption of modern functional societies. We expect growth. We take it automatically. Today, if nothing “new” happens, if GDP does not grow (we say it stagnates) for several quarters, we consider it an anomaly.
  • however, the idea of progress itself underwent major changes, and today we perceive it very differently. As opposed to the original spiritual conceptions, today we perceive progress almost exclusively in an economic or scientific-technological sense.
  • Because care for the soul has today been replaced by care for external things,
  • This is why we must constantly grow, because we (deep down and often implicitly) believe that we are headed toward an (economic) paradise on Earth.
  • Only since the period of scientific-technological revolution (and at a time when economics was born as an independent field) is material progress automatically assumed.
  • Jewish thought is the most grounded, most realistic school of thought of all those that have influenced our culture.17 An abstract world of ideas was unknown to the Jews. To this day it is still forbidden to even depict God, people, and animals in symbols, paintings, statues, and drawings.
  • economists have become key figures of great importance in our time (Kacířské eseje o filosofii dějin [Heretical Essays in the Philosophy of History]). They are expected to perform interpretations of reality, give prophetic services (macroeconomic forecasts), reshape reality (mitigate the impacts of the crisis, speed up growth), and, in the long run, provide leadership on the way to the Promised Land—paradise on Earth.
  • REALISM AND ANTIASCETICISM Aside from ideas of progress, the Hebrews brought another very fundamental contribution to our culture: The desacralization of heroes, nature, and rulers.
  • Voltaire writes: “It certain fact is, that in his public laws he [Moses] never so much as once made mention of a life to come, limiting all punishments and all rewards to the present life.”21
  • As opposed to Christianity, the concept of an extraterrestrial paradise or heaven was not developed much in Hebrew thought.19 The paradise of the Israelites—Eden—was originally placed on Earth at a given place in Mesopotamia20 and at a given time,
  • The Hebrews consider the world to be real—not just a shadow reflection of a better world somewhere in the cloud of ideas, something the usual interpretation of history ascribes to Plato. The soul does not struggle against the body and is not its prisoner, as Augustine would write later.
  • The land, the world, the body, and material reality are for Jews the paramount setting for divine history, the pinnacle of creation. This idea is the conditio sine qua non of the development of economics, something of an utterly earthly making,
  • The mythology of the hero-king was strongly developed in that period, which Claire Lalouette summarizes into these basic characteristics: Beauty (a perfect face, on which it is “pleasant to look upon,” but also “beauty,” expressed in the Egyptian word nefer, not only means aesthetics, but contains moral qualities as well),
  • THE HERO AND HIS UNDEIFICATION: THE DREAM NEVER SLEEPS The concept of the hero is more important than it might appear. It may be the remote origin of Keynes’s animal spirits, or the desire to follow a kind of internal archetype that a given individual accepts as his own and that society values.
  • This internal animator of ours, our internal mover, this dream, never sleeps and it influences our behavior—including economic behavior—more than we want to realize.
  • manliness and strength,28 knowledge and intelligence,29 wisdom and understanding, vigilance and performance, fame and renown (fame which overcomes enemies because “a thousand men would not be able to stand firmly in his presence”);30 the hero is a good shepherd (who takes care of his subordinates), is a copper-clad rampart, the shield of the land, and the defender of heroes.
  • Each of us probably has a sort of “hero within”—a kind of internal role-model, template, an example that we (knowingly or not) follow. It is very important what kind of archetype it is, because its role is dominantly irrational and changes depending on time and the given civilization.
  • The oldest was the so-called Trickster—a fraudster; then the culture bearer—Rabbit; the musclebound hero called Redhorn; and finally the most developed form of hero: the Twins.
  • the Egyptian ruler, just as the Sumerian, was partly a god, or the son of a god.31
  • Jacob defrauds his father Isaac and steals his brother Esau’s blessing of the firstborn. Moses murders an Egyptian. King David seduces the wife of his military commander and then has him killed. In his old age, King Solomon turns to pagan idols, and so on.
  • Anthropology knows several archetypes of heroes. The Polish-born American anthropologist Paul Radin examined the myths of North American Indians and, for example, in his most influential book, The Trickster, he describes their four basic archetypes of heroes.
  • The Torah’s heroes (if that term can be used at all) frequently make mistakes and their mistakes are carefully recorded in the Bible—maybe precisely so that none of them could be deified.32
  • We do not have to go far for examples. Noah gets so drunk he becomes a disgrace; Lot lets his own daughters seduce him in a similar state of drunkenness. Abraham lies and (repeatedly) tries to sell his wife as a concubine.
  • the Hebrew heroes correspond most to the Tricksters, the Culture Bearers, and the Twins. The divine muscleman, that dominant symbol we think of when we say hero, is absent here.
  • To a certain extent it can be said that the Hebrews—and later Christianity—added another archetype, the archetype of the heroic Sufferer.35 Job
  • Undeification, however, does not mean a call to pillage or desecration; man was put here to take care of nature (see the story of the Garden of Eden or the symbolism of the naming of the animals). This protection and care of nature is also related to the idea of progress
  • For the heroes who moved our civilization to where it is today, the heroic archetypes of the cunning trickster, culture bearer, and sufferer are rather more appropriate.
  • the Old Testament strongly emphasizes the undeification of nature.37 Nature is God’s creation, which speaks of divinity but is not the domain of moody gods
  • This is very important for democratic capitalism, because the Jewish heroic archetype lays the groundwork much better for the development of the later phenomenon of the hero, which better suits life as we know it today. “The heroes laid down their arms and set about trading to become wealthy.”
  • in an Old Testament context, the pharaoh was a mere man (whom one could disagree with, and who could be resisted!).
  • RULERS ARE MERE MEN In a similar historical context, the Old Testament teachings carried out a similar desacralization of rulers, the so-called bearers of economic policy.
  • Ultimately the entire idea of a political ruler stood against the Lord’s will, which is explicitly presented in the Torah. The Lord unequivocally preferred the judge as the highest form of rule—an
  • The needs of future generations will have to be considered; after all humankind are the guardians of God’s world. Waste of natural resources, whether privately owned or nationally owned is forbidden.”39
  • Politics lost its character of divine infallibility, and political issues were subject to questioning. Economic policy could become a subject of examination.
  • 44 God first creates with the word and then on individual days He divides light from darkness, water from dry land, day from night, and so forth—and He gives order to things.45 The world is created orderly— it is wisely, reasonably put together. The way of the world is put together at least partially46 decipherably by any other wise and reasonable being who honors rational rules.
  • which for the methodology of science and economics is very important because disorder and chaos are difficult to examine scientifically.43 Faith in some kind of rational and logical order in a system (society, the economy) is a silent assumption of any (economic) examination.
  • THE PRAISE OF ORDER AND WISDOM: MAN AS A PERFECTER OF CREATION The created world has an order of sorts, an order recognizable by us as people,
  • From the very beginning, when God distances Himself from the entire idea, there is an anticipation that there is nothing holy, let alone divine, in politics. Rulers make mistakes, and it is possible to subject them to tough criticism—which frequently occurs indiscriminately through the prophets in the Old Testament.
  • Hebrew culture laid the foundations for the scientific examination of the world.
  • Examining the world is therefore an absolutely legitimate activity, and one that is even requested by God—it is a kind of participation in the Creator’s work.51 Man is called on to understand himself and his surroundings and to use his knowledge for good.
  • I was there when he set heavens in place, when he marked out the horizon on the face of the deep (…) Then I was the craftsman at his side.47
  • There are more urgings to gain wisdom in the Old Testament. “Wisdom calls aloud in the street (…): ‘How long will you simple ones love your simple ways?’”49 Or several chapters later: “Wisdom is supreme; therefore get wisdom. Though it cost all you have, get understanding.”50
  • examination is not forbidden. The fact that order can be grasped by human reason is another unspoken assumption that serves as a cornerstone of any scientific examination.
  • then, my sons, listen to me; blessed are those who keep my ways (…) Blessed is the man who listens to me, watching daily at my doors, waiting at my doorway. For whoever finds me finds life and receives favor from the Lord.
  • the rational examination of nature has its roots, surprisingly, in religion.
  • The Lord brought me forth as the first of his works, before his deeds of old. I was appointed from eternity, from the beginning, before the world began. When there were no oceans, I was given birth, when there were no springs abounding with water, before the mountains were settled in place,
  • The Book of Proverbs emphasizes specifically several times that it was wisdom that was present at the creation of the world. Wisdom personified calls out:
  • The last act, final stroke of the brush of creation, naming of the animals—this act is given to a human, it is not done by God, as one would expect. Man was given the task of completing the act of creation that the Lord began:
  • MAN AS A FINISHER OF CREATION The creation of the world, as it is explained in Jewish teachings, is described in the Book of Genesis. Here God (i) creates, (ii) separates, and (iii) names [my emphasis]:
  • Naming is a symbolic expression. In Jewish culture (and also in our culture to this day), the right to name meant sovereign rights and belonged, for example, to explorers (new places), inventors (new principles), or parents (children)—that is, to those who were there at the genesis, at the origin. This right was handed over by God to mankind.
  • The Naming itself (the capital N is appropriate) traditionally belongs to the crowning act of the Creator and represents a kind of grand finale of creation, the last move of the brush to complete the picture—a signature of the master.
  • Without naming, reality does not exist; it is created together with language. Wittgenstein tightly names this in his tractatus—the limits of our language are the limits of our world.53
  • He invented (fictitiously and completely abstractly!) a framework that was generally accepted and soon “made into” reality. Marx invented similarly; he created the notion of class exploitation. Through his idea, the perception of history and reality was changed for a large part of the world for nearly an entire century.
  • Reality is not a given; it is not passive. Perceiving reality and “facts” requires man’s active participation. It is man who must take the last step, an act (and we
  • How does this relate to economics? Reality itself, our “objective” world, is cocreated, man himself participates in the creation; creation, which is somewhat constantly being re-created.
  • Our scientific models put the finishing touches on reality, because (1) they interpret, (2) they give phenomena a name, (3) they enable us to classify the world and phenomena according to logical forms, and (4) through these models we de facto perceive reality.
  • When man finds a new linguistic framework or analytical model, or stops using the old one, he molds or remolds reality. Models are only in our heads; they are not “in objective reality.” In this sense, Newton invented (not merely discovered!) gravity.
  • A real-ization act on our part represents the creation of a construct, the imputation of sense and order (which is beautifully expressed by the biblical act of naming, or categorization, sorting, ordering).
  • Keynes enters into the history of economic thought from the same intellectual cadence; his greatest contribution to economics was precisely the resurrection of the imperceptible—for example in the form of animal spirits or uncertainty. The economist Piero Mini even ascribes Keynes’s doubting and rebellious approach to his almost Talmudic education.63
  • God connects man with the task of guarding and protecting the Garden of Eden, and thus man actually cocreates the cultural landscape. The Czech philosopher Zdeněk Neubauer also describes this: “Such is reality, and it is so deep that it willingly crystallizes into worlds. Therefore I profess that reality is a creation and not a place of occurrence for objectively given phenomena.”61
  • in this viewpoint it is possible to see how Jewish thought is mystical—it admits the role of the incomprehensible. Therefore, through its groundedness, Jewish thought indulges mystery and defends itself against a mechanistic-causal explanation of the world: “The Jewish way of thinking, according to Veblen, emphasizes the spiritual, the miraculous, the intangible.
  • The Jews believed the exact opposite. The world is created by a good God, and evil appears in it as a result of immoral human acts. Evil, therefore, is induced by man.66 History unwinds according to the morality of human acts.
  • What’s more, history seems to be based on morals; morals seem to be the key determining factors of history. For the Hebrews, history proceeds according to how morally its actors behave.
  • The Sumerians believed in dualism—good and evil deities exist, and the earth of people becomes their passive battlefield.
  • GOOD AND EVIL IN US: A MORAL EXPLANATION OF WELL-BEING We have seen that in the Epic of Gilgamesh, good and evil are not yet addressed systematically on a moral level.
  • This was not about moral-human evil, but rather a kind of natural evil. It is as if good and evil were not touched by morality at all. Evil simply occurred. Period.
  • the epic, good and evil are not envisaged morally—they are not the result of an (a)moral act. Evil was not associated with free moral action or individual will.
  • Hebrew thought, on the other hand, deals intensively with moral good and evil. A moral dimension touches the core of its stories.65
  • discrepancy between savings and investment, and others are convinced of the monetary essence
  • The entire history of the Jewish nation is interpreted and perceived in terms of morality. Morality has become, so to speak, a mover and shaker of Hebrew history.
  • sunspots. The Hebrews came up with the idea that morals were behind good and bad years, behind the economic cycle. But we would be getting ahead of ourselves. Pharaoh’s Dream: Joseph and the First Business Cycle To
  • It is the Pharaoh’s well-known dream of seven fat and seven lean cows, which he told to Joseph, the son of Jacob. Joseph interpreted the dream as a macroeconomic prediction of sorts: Seven years of abundance were to be followed by seven years of poverty, famine, and misery.
  • Self-Contradicting Prophecy Here, let’s make several observations on this: Through taxation74 on the level of one-fifth of a crop75 in good years to save the crop and then open granaries in bad years, the prophecy was de facto prevented (prosperous years were limited and hunger averted—through a predecessor of fiscal stabilization).
  • The Old Testament prophesies therefore were not any deterministic look into the future, but warnings and strategic variations of the possible, which demanded some kind of reaction. If the reaction was adequate, what was prophesied would frequently not occur at all.
  • This principle stands directly against the self-fulfilling prophecy,80 the well-known concept of social science. Certain prophecies become self-fulfilling when expressed (and believed) while others become self-contradicting prophecies when pronounced (and believed).
  • If the threat is anticipated, it is possible to totally or at least partially avoid it. Neither Joseph nor the pharaoh had the power to avoid bounty or crop failure (in this the dream interpretation was true and the appearance of the future mystical), but they avoided the impacts and implications of the prophecy (in this the interpretation of the dream was “false”)—famine did not ultimately occur in Egypt, and this was due to the application of reasonable and very intuitive economic policy.
  • Let us further note that the first “macroeconomic forecast” appears in a dream.
  • back to Torah: Later in this story we will notice that there is no reason offered as to why the cycle occurs (that will come later). Fat years will simply come, and then lean years after them.
  • Moral Explanation of a Business Cycle That is fundamentally different from later Hebrew interpretations, when the Jewish nation tries to offer reasons why the nation fared well or poorly. And those reasons are moral.
  • If you pay attention to these laws and are careful to follow them, then the Lord your God will keep his covenant of love with you, as he swore to your forefathers. He will love you and bless you and increase your numbers.
  • Only in recent times have some currents of economics again become aware of the importance of morals and trust in the form of measuring the quality of institutions, the level of justice, business ethics, corruption, and so forth, and examining their influence on the economy,
  • From today’s perspective, we can state that the moral dimension entirely disappeared from economic thought for a long time, especially due to the implementation of Mandeville’s concept of private vices that contrarily support the public welfare
  • Without being timid, we can say this is the first documented attempt to explain the economic cycle. The economic cycle, the explanation of which is to this day a mystery to economists, is explained morally in the Old Testament.
  • But how do we consolidate these two conflicting interpretations of the economic cycle: Can ethics be responsible for it or not? Can we influence reality around us through our acts?
  • it is not within the scope of this book to answer that question; justice has been done to the question if it manages to sketch out the main contours of possible searches for answers.
  • THE ECONOMICS OF GOOD AND EVIL: DOES GOOD PAY OFF? This is probably the most difficult moral problem we could ask.
  • Kant, the most important modern thinker in the area of ethics, answers on the contrary that if we carry out a “moral” act on the basis of economic calculus (therefore we carry out an hedonistic consideration; see below) in the expectation of later recompense, its morality is lost. Recompense, according to the strict Kant, annuls ethics.
  • Inquiring about the economics of good and evil, however, is not that easy. Where would Kant’s “moral dimension of ethics” go if ethics paid? If we do good for profit, the question of ethics becomes a mere question of rationality.
  • Job’s friends try to show that he must have sinned in some way and, in doing so, deserved God’s punishment. They are absolutely unable to imagine a situation in which Job, as a righteous man, would suffer without (moral) cause. Nevertheless, Job insists that he deserves no punishment because he has committed no offense: “God has wronged me and drawn his net around me.”94
  • But Job remains righteous, even though it does not pay to do so: Though he slay me, yet will I hope in him.95 And till I die, I will not deny my integrity I will maintain my righteousness and never let go of it; my conscience will not reproach me as long as I live.96
  • He remains righteous, even if his only reward is death. What economic advantage could he have from that?
  • morals cannot be considered in the economic dimension of productivity and calculus. The role of the Hebrews was to do good, whether it paid off or not. If good (outgoing) is rewarded by incoming goodness, it is a bonus,99 not a reason to do outgoing good. Good and reward do not correlate to each other.
  • This reasoning takes on a dimension of its own in the Old Testament. Good (incoming) has already happened to us. We must do good (outgoing) out of gratitude for the good (incoming) shown to us in the past.
  • So why do good? After all, suffering is the fate of many biblical figures. The answer can only be: For good itself. Good has the power to be its own reward. In this sense, goodness gets its reward, which may or may not take on a material dimension.
  • the Hebrews offered an interesting compromise between the teachings of the Stoics and Epicureans. We will go into it in detail later, so only briefly
  • constraint. It calls for bounded optimalization (with limits). A kind of symbiosis existed between the legitimate search for one’s own utility (or enjoyment of life) and maintaining rules, which are not negotiable and which are not subject to optimalization.
  • In other words, clear (exogenously given) rules exist that must be observed and cannot be contravened. But within these borders it is absolutely possible, and even recommended, to increase utility.
  • the mining of enjoyment must not come at the expense of exogenously given rules. “Judaism comes therefore to train or educate the unbounded desire … for wealth, so that market activities and patterns of consumption operate within a God-given morality.”102
  • The Epicureans acted with the goal of maximizing utility without regard for rules (rules developed endogenously, from within the system, computed from that which increased utility—this was one of the main trumps of the Epicurean school; they did not need exogenously given norms, and argued that they could “calculate” ethics (what to do) for every given situation from the situation itself).
  • The Stoics could not seek their enjoyment—or, by another name, utility. They could not in any way look back on it, and in no way could they count on it. They could only live according to rules (the greatest weakness of this school was to defend where exogenously the given rules came from and whether they are universal) and take a indifferent stand to the results of their actions.
  • To Love the Law The Jews not only had to observe the law (perhaps the word covenant would be more appropriate), but they were to love it because it was good.
  • Their relationship to the law was not supposed to be one of duty,105 but one of gratitude, love. Hebrews were to do good (outgoing), because goodness (incoming) has already been done to them.
  • This is in stark contrast with today’s legal system, where, naturally, no mention of love or gratefulness exists. But God expects a full internalization of the commandments and their fulfillment with love, not as much duty. By no means was this on the basis of the cost-benefit analyses so widespread in economics today, which determines when it pays to break the law and when not to (calculated on the basis of probability of being caught and the amount of punishment vis-à-vis the possible gain).
  • And now, O Israel, what does the Lord your God ask of you but to fear the Lord your God, to walk in all his ways, to love him, to serve the Lord your God with all your heart and with all your soul, and to observe the Lord’s commands and decrees that I am giving you today for your own good? To the Lord your God belong the heavens, even the highest heavens, the earth and everything in it. Yet the Lord set his affection on your forefathers and loved them….
  • the principle of doing good (outgoing) on the basis of a priori demonstrated good (incoming) was also taken over by the New Testament. Atonement itself is based on an a priori principle; all our acts are preceded by good.
  • The Hebrews, originally a nomadic tribe, preferred to be unrestrained and grew up in constant freedom of motion.
  • Human laws, if they are in conflict with the responsibilities given by God, are subordinate to personal responsibility, and a Jew cannot simply join the majority, even if it is legally allowed. Ethics, the concept of good, is therefore always superior to all local laws, rules, and customs:
  • THE SHACKLES OF THE CITY Owing to the Hebrew’s liberation from Egyptian slavery, freedom and responsibility become the key values of Jewish thought.
  • Laws given by God are binding for Jews, and God is the absolute source of all values,
  • The Hebrew ideal is represented by the paradise of the Garden of Eden, not a city.116 The despised city civilization or the tendency to see in it a sinful and shackling way of life appears in glimpses and allusions in many places in the Old Testament.
  • The nomadic Jewish ethos is frequently derived from Abraham, who left the Chaldean city of Ur on the basis of a command:
  • In addition, they were aware of a thin two-way line between owner and owned. We own material assets, but—to a certain extent—they own us and tie us down. Once we become used to a certain material
  • This way of life had understandably immense economic impacts. First, such a society lived in much more connected relationships, where there was no doubt that everyone mutually depended on each other. Second, their frequent wanderings meant the inability to own more than they could carry; the gathering up of material assets did not have great weight—precisely because the physical weight (mass) of things was tied to one place.
  • One of Moses’s greatest deeds was that he managed to explain to his nation once and for all that it is better to remain hungry and liberated than to be a slave with food “at no cost.”
  • SOCIAL WELFARE: NOT TO ACT IN THE MANNER OF SODOM
  • regulations is developed in the Old Testament, one we hardly find in any other nation of the time. In Hebrew teachings, aside from individual utility, indications of the concept of maximalizing utility societywide appear for the first time as embodied in the Talmudic principle of Kofin al midat S´dom, which can be translated as “one is compelled not to act in the manner of Sodom” and to take care of the weaker members of society.
  • In a jubilee year, debts were to be forgiven,125 and Israelites who fell into slavery due to their indebtedness were to be set free.126
  • Such provisions can be seen as the antimonopoly and social measures of the time. The economic system even then had a clear tendency to converge toward asset concentration, and therefore power as well. It would appear that these provisions were supposed to prevent this process
  • Land at the time could be “sold,” and it was not sale, but rent. The price (rent) of real estate depended on how long there was until a forgiveness year. It was about the awareness that we may work the land, but in the last instance we are merely “aliens and strangers,” who have the land only rented to us for a fixed time. All land and riches came from the Lord.
  • These provisions express a conviction that freedom and inheritance should not be permanently taken away from any Israelite. Last but not least, this system reminds us that no ownership lasts forever and that the fields we plow are not ours but the Lord’s.
  • Glean Another social provision was the right to glean, which in Old Testament times ensured at least basic sustenance for the poorest. Anyone who owned a field had the responsibility not to harvest it to the last grain but to leave the remains in the field for the poor.
  • Tithes and Early Social Net Every Israelite also had the responsibility of levying a tithe from their entire crop. They had to be aware from whom all ownership comes and, by doing so, express their thanks.
  • “Since the community has an obligation to provide food, shelter, and basic economic goods for the needy, it has a moral right and duty to tax its members for this purpose. In line with this duty, it may have to regulate markets, prices and competition, to protect the interests of its weakest members.”135
  • In Judaism, charity is not perceived as a sign of goodness; it is more of a responsibility. Such a society then has the right to regulate its economy in such a way that the responsibility of charity is carried out to its satisfaction.
  • With a number of responsibilities, however, comes the difficulty of getting them into practice. Their fulfillment, then, in cases when it can be done, takes place gradually “in layers.” Charitable activities are classified in the Talmud according to several target groups with various priorities, classified according to, it could be said, rules of subsidiarity.
  • Do not mistreat an alien or oppress him, for you were aliens in Egypt.140 As one can see, aside from widows and orphans, the Old Testament also includes immigrants in its area of social protection.141 The Israelites had to have the same rules apply for them as for themselves—they could not discriminate on the basis of their origin.
  • ABSTRACT MONEY, FORBIDDEN INTEREST, AND OUR DEBT AGE If it appears to us that today’s era is based on money and debt, and our time will be written into history as the “Debt age,” then it will certainly be interesting to follow how this development occurred.
  • Money is a social abstractum. It is a social agreement, an unwritten contract.
  • The first money came in the form of clay tablets from Mesopotamia, on which debts were written. These debts were transferable, so the debts became currency. In the end, “It is no coincidence that in English the root of ‘credit’ is ‘credo,’ the Latin for ‘I believe.’”
  • To a certain extent it could be said that credit, or trust, was the first currency. It can materialize, it can be embodied in coins, but what is certain is that “money is not metal,” even the rarest metal, “it is trust inscribed,”
  • Inseparably, with the original credit (money) goes interest. For the Hebrews, the problem of interest was a social issue: “If you lend money to one of my people among you who is needy, do not be like a moneylender; charge him no interest.”
  • there were also clearly set rules setting how far one could go in setting guarantees and the nonpayment of debts. No one should become indebted to the extent that they could lose the source of their livelihood:
  • In the end, the term “bank” comes from the Italian banci, or the benches that Jewish lenders sat on.157
  • Money is playing not only its classical roles (as a means of exchange, a holder of value, etc.) but also a much greater, stronger role: It can stimulate, drive (or slow down) the whole economy. Money plays a national economic role.
  • In the course of history, however, the role of loans changed, and the rich borrowed especially for investment purposes,
  • Today the position and significance of money and debt has gone so far and reached such a dominant position in society that operating with debts (fiscal policy) or interest or money supply (monetary policy) means that these can, to a certain extent, direct (or at least strongly influence) the whole economy and society.
  • In such a case a ban on interest did not have great ethical significance. Thomas Aquinas, a medieval scholar (1225-1274), also considers similarly; in his time, the strict ban on lending with usurious interest was loosened, possibly due to him.
  • As a form of energy, money can travel in three dimensions, vertically (those who have capital lend to those who do not) and horizontally (speed and freedom in horizontal or geographic motion has become the by-product—or driving force?—of globalization). But money (as opposed to people) can also travel through time.
  • money is something like energy that can travel through time. And it is a very useful energy, but at the same time very dangerous as well. Wherever
  • Aristotle condemned interest162 not only from a moral standpoint, but also for metaphysical reasons. Thomas Aquinas shared the same fear of interest and he too argued that time does not belong to us, and that is why we must not require interest.
  • MONEY AS ENERGY: TIME TRAVEL AND GROSS DEBT PRODUCT (GDP)
  • Due to this characteristic, we can energy-strip the future to the benefit of the present. Debt can transfer energy from the future to the present.163 On the other hand, saving can accumulate energy from the past and send it to the present.
  • labor was not considered degrading in the Old Testament. On the contrary, the subjugation of nature is even a mission from God that originally belonged to man’s very first blessings.
  • LABOR AND REST: THE SABBATH ECONOMY
  • The Jews as well as Aristotle behaved very guardedly toward loans. The issue of interest/usury became one of the first economic debates. Without having an inkling of the future role of economic policy (fiscal and monetary), the ancient Hebrews may have unwittingly felt that they were discovering in interest a very powerful weapon, one that can be a good servant, but (literally) an enslaving master as well.
  • It’s something like a dam. When we build one, we are preventing periods of drought and flooding in the valley; we are limiting nature’s whims and, to a large extent, avoiding its incalculable cycles. Using dams, we can regulate the flow of water to nearly a constant. With it we tame the river (and we can also gain
  • But if we do not regulate the water wisely, it may happen that we would overfill the dam and it would break. For the cities lying in the valley, their end would be worse than if a dam were never there.
  • If man lived in harmony with nature before, now, after the fall, he must fight; nature stands against him and he against it and the animals. From the Garden we have moved unto a (battle)field.
  • Only after man’s fall does labor turn into a curse.168 It could even be said that this is actually the only curse, the curse of the unpleasantness of labor, that the Lord places on Adam.
  • Both Plato and Aristotle consider labor to be necessary for survival, but that only the lower classes should devote themselves to it so that the elites would not have to be bothered with it and so that they could devote themselves to “purely spiritual matters—art, philosophy, and politics.”
  • Work is also not only a source of pleasure but a social standing; It is considered an honor. “Do you see a man skilled in his work? He will serve before kings.”170 None of the surrounding cultures appreciate work as much. The idea of the dignity of labor is unique in the Hebrew tradition.
  • Hebrew thinking is characterized by a strict separation of the sacred from the profane. In life, there are simply areas that are holy, and in which it is not allowed to economize, rationalize, or maximize efficiency.
  • good example is the commandment on the Sabbath. No one at all could work on this day, not even the ones who were subordinate to an observant Jew:
  • the message of the commandment on Saturday communicated that people were not primarily created for labor.
  • Paradoxically, it is precisely this commandment out of all ten that is probably the most violated today.
  • Aristotle even considers labor to be “a corrupted waste of time which only burdens people’s path to true honour.”
  • we have days when we must not toil connected (at least lexically) with the word meaning emptiness: the English term “vacation” (or emptying), as with the French term, les vacances, or German die Freizeit, meaning open time, free time, but also…
  • Translated into economic language: The meaning of utility is not to increase it permanently but to rest among existing gains. Why do we learn how to constantly increase gains but not how to…
  • This dimension has disappeared from today’s economics. Economic effort has no goal at which it would be possible to rest. Today we only know growth for growth’s sake, and if our company or country prospers, that does not…
  • Six-sevenths of time either be dissatisfied and reshape the world into your own image, man, but one-seventh you will rest and not change the creation. On the seventh day, enjoy creation and enjoy the work of your hands.
  • the purpose of creation was not just creating but that it had an end, a goal. The process was just a process, not a purpose. The whole of Being was created so…
  • Saturday was not established to increase efficiency. It was a real ontological break that followed the example of the Lord’s seventh day of creation. Just as the Lord did not rest due to tiredness or to regenerate strength; but because He was done. He was done with His work, so that He could enjoy it, to cherish in His creation.
  • If we believe in rest at all today, it is for different reasons. It is the rest of the exhausted machine, the rest of the weak, and the rest of those who can’t handle the tempo. It’s no wonder that the word “rest…
  • Related to this, we have studied the first mention of a business cycle with the pharaoh’s dream as well as seen a first attempt (that we may call…
  • We have tried to show that the quest for a heaven on Earth (similar to the Jewish one) has, in its desacralized form, actually also been the same quest for many of the…
  • We have also seen that the Hebrews tried to explain the business cycle with morality and ethics. For the Hebrews,…
  • ancient Greek economic ethos, we will examine two extreme approaches to laws and rules. While the Stoics considered laws to be absolutely valid, and utility had infinitesimal meaning in their philosophy, the Epicureans, at least in the usual historical explanation, placed utility and pleasure in first place—rules were to be made based on the principle of utility.
  • CONCLUSION: BETWEEN UTILITY AND PRINCIPLE The influence of Jewish thought on the development of market democracy cannot be overestimated. The key heritage for us was the lack of ascetic perception of the world, respect to law and private…
  • We have tried to show how the Torah desacralized three important areas in our lives: the earthly ruler, nature,…
  • What is the relationship between the good and evil that we do (outgoing) and the utility of disutility that we (expect to) get as a reward (incoming)? We have seen…
  • The Hebrews never despised material wealth; on contrary, the Jewish faith puts great responsibility on property management. Also the idea of progress and the linear perception of time gives our (economic)…
  • the Hebrews managed to find something of a happy compromise between both of these principles.
  • will not be able to completely understand the development of the modern notion of economics without understanding the disputes between the Epicureans and the Stoics;
  • poets actually went even further, and with their speech they shaped and established reality and truth. Honor, adventure, great deeds, and the acclaim connected with them played an important role in the establishment of the true, the real.
  • those who are famous will be remembered by people. They become more real, part of the story, and they start to be “realized,” “made real” in the lives of other people. That which is stored in memory is real; that which is forgotten is as if it never existed.
  • Today’s scientific truth is founded on the notion of exact and objective facts, but poetic truth stands on an interior (emotional) consonance with the story or poem. “It is not addressed first to the brain … [myth] talks directly to the feeling system.”
  • “epic and tragic poets were widely assumed to be the central ethical thinkers and teachers of Greece; nobody thought of their work as less serious, less aimed at truth, than the speculative prose treatises of historians and philosophers.”5 Truth and reality were hidden in speech, stories, and narration.
  • Ancient philosophy, just as science would later, tries to find constancy, constants, quantities, inalterabilities. Science seeks (creates?) order and neglects everything else as much as it can. In their own experiences, everyone knows that life is not like that,
  • Just as scientists do today, artists drew images of the world that were representative, and therefore symbolic, picturelike, and simplifying (but thus also misleading), just like scientific models, which often do not strive to be “realistic.”
  • general? In the end, poetry could be more sensitive to the truth than the philosophical method or, later, the scientific method. “Tragic poems, in virtue of their subject matter and their social function, are likely to confront and explore problems about human beings and luck that a philosophical text might be able to omit or avoid.”8
Javier E

Opinion | Do You Live in a 'Tight' State or a 'Loose' One? Turns Out It Matters Quite a... - 0 views

  • Political biases are omnipresent, but what we don’t fully understand yet is how they come about in the first place.
  • In 2014, Michele J. Gelfand, a professor of psychology at the Stanford Graduate School of Business formerly at the University of Maryland, and Jesse R. Harrington, then a Ph.D. candidate, conducted a study designed to rank the 50 states on a scale of “tightness” and “looseness.”
  • titled “Tightness-Looseness Across the 50 United States,” the study calculated a catalog of measures for each state, including the incidence of natural disasters, disease prevalence, residents’ levels of openness and conscientiousness, drug and alcohol use, homelessness and incarceration rates.
  • ...64 more annotations...
  • Gelfand and Harrington predicted that “‘tight’ states would exhibit a higher incidence of natural disasters, greater environmental vulnerability, fewer natural resources, greater incidence of disease and higher mortality rates, higher population density, and greater degrees of external threat.”
  • The South dominated the tight states: Mississippi, Alabama Arkansas, Oklahoma, Tennessee, Texas, Louisiana, Kentucky, South Carolina and North Carolina
  • states in New England and on the West Coast were the loosest: California, Oregon, Washington, Maine, Massachusetts, Connecticut, New Hampshire and Vermont.
  • Cultural differences, Gelfand continued, “have a certain logic — a rationale that makes good sense,” noting that “cultures that have threats need rules to coordinate to survive (think about how incredibly coordinated Japan is in response to natural disasters).
  • “Rule Makers, Rule Breakers: How Tight and Loose Cultures Wire the World” in 2018, in which she described the results of a 2016 pre-election survey she and two colleagues had commissioned
  • The results were telling: People who felt the country was facing greater threats desired greater tightness. This desire, in turn, correctly predicted their support for Trump. In fact, desired tightness predicted support for Trump far better than other measures. For example, a desire for tightness predicted a vote for Trump with 44 times more accuracy than other popular measures of authoritarianism.
  • The 2016 election, Gelfand continued, “turned largely on primal cultural reflexes — ones that had been conditioned not only by cultural forces, but by a candidate who was able to exploit them.”
  • Gelfand said:Some groups have much stronger norms than others; they’re tight. Others have much weaker norms; they’re loose. Of course, all cultures have areas in which they are tight and loose — but cultures vary in the degree to which they emphasize norms and compliance with them.
  • In both 2016 and 2020, Donald Trump carried all 10 of the top “tight” states; Hillary Clinton and Joe Biden carried all 10 of the top “loose” states.
  • The tight-loose concept, Gelfand argued,is an important framework to understand the rise of President Donald Trump and other leaders in Poland, Hungary, Italy, and France,
  • cultures that don’t have a lot of threat can afford to be more permissive and loose.”
  • The gist is this: when people perceive threat — whether real or imagined, they want strong rules and autocratic leaders to help them survive
  • My research has found that within minutes of exposing study participants to false information about terrorist incidents, overpopulation, pathogen outbreaks and natural disasters, their minds tightened. They wanted stronger rules and punishments.
  • Gelfand writes that tightness encourages conscientiousness, social order and self-control on the plus side, along with close-mindedness, conventional thinking and cultural inertia on the minus side.
  • Looseness, Gelfand posits, fosters tolerance, creativity and adaptability, along with such liabilities as social disorder, a lack of coordination and impulsive behavior.
  • If liberalism and conservatism have historically played a complementary role, each checking the other to constrain extremism, why are the left and right so destructively hostile to each other now, and why is the contemporary political system so polarized?
  • Along the same lines, if liberals and conservatives hold differing moral visions, not just about what makes a good government but about what makes a good life, what turned the relationship between left and right from competitive to mutually destructive?
  • As a set, Niemi wrote, conservative binding values encompassthe values oriented around group preservation, are associated with judgments, decisions, and interpersonal orientations that sacrifice the welfare of individuals
  • She cited research thatfound 47 percent of the most extreme conservatives strongly endorsed the view that “The world is becoming a more and more dangerous place,” compared to 19 percent of the most extreme liberals
  • Conservatives and liberals, Niemi continued,see different things as threats — the nature of the threat and how it happens to stir one’s moral values (and their associated emotions) is a better clue to why liberals and conservatives react differently.
  • Unlike liberals, conservatives strongly endorse the binding moral values aimed at protecting groups and relationships. They judge transgressions involving personal and national betrayal, disobedience to authority, and disgusting or impure acts such as sexually or spiritually unchaste behavior as morally relevant and wrong.
  • Underlying these differences are competing sets of liberal and conservative moral priorities, with liberals placing more stress than conservatives on caring, kindness, fairness and rights — known among scholars as “individualizing values
  • conservatives focus more on loyalty, hierarchy, deference to authority, sanctity and a higher standard of disgust, known as “binding values.”
  • Niemi contended that sensitivity to various types of threat is a key factor in driving differences between the far left and far right.
  • For example, binding values are associated with Machiavellianism (e.g., status-seeking and lying, getting ahead by any means, 2013); victim derogation, blame, and beliefs that victims were causal contributors for a variety of harmful acts (2016, 2020); and a tendency to excuse transgressions of ingroup members with attributions to the situation rather than the person (2023).
  • Niemi cited a paper she and Liane Young, a professor of psychology at Boston College, published in 2016, “When and Why We See Victims as Responsible: The Impact of Ideology on Attitudes Toward Victims,” which tested responses of men and women to descriptions of crimes including sexual assaults and robberies.
  • We measured moral values associated with unconditionally prohibiting harm (“individualizing values”) versus moral values associated with prohibiting behavior that destabilizes groups and relationships (“binding values”: loyalty, obedience to authority, and purity)
  • Increased endorsement of binding values predicted increased ratings of victims as contaminated, increased blame and responsibility attributed to victims, increased perceptions of victims’ (versus perpetrators’) behaviors as contributing to the outcome, and decreased focus on perpetrators.
  • A central explanation typically offered for the current situation in American politics is that partisanship and political ideology have developed into strong social identities where the mass public is increasingly sorted — along social, partisan, and ideological lines.
  • What happened to people ecologically affected social-political developments, including the content of the rules people made and how they enforced them
  • Just as ecological factors differing from region to region over the globe produced different cultural values, ecological factors differed throughout the U.S. historically and today, producing our regional and state-level dimensions of culture and political patterns.
  • Joshua Hartshorne, who is also a professor of psychology at Boston College, took issue with the binding versus individualizing values theory as an explanation for the tendency of conservatives to blame victims:
  • I would guess that the reason conservatives are more likely to blame the victim has less to do with binding values and more to do with the just-world bias (the belief that good things happen to good people and bad things happen to bad people, therefore if a bad thing happened to you, you must be a bad person).
  • Belief in a just world, Hartshorne argued, is crucial for those seeking to protect the status quo:It seems psychologically necessary for anyone who wants to advocate for keeping things the way they are that the haves should keep on having, and the have-nots have got as much as they deserve. I don’t see how you could advocate for such a position while simultaneously viewing yourself as moral (and almost everyone believes that they themselves are moral) without also believing in the just world
  • Conversely, if you generally believe the world is not just, and you view yourself as a moral person, then you are likely to feel like you have an obligation to change things.
  • I asked Lene Aaroe, a political scientist at Aarhus University in Denmark, why the contemporary American political system is as polarized as it is now, given that the liberal-conservative schism is longstanding. What has happened to produce such intense hostility between left and right?
  • There is variation across countries in hostility between left and right. The United States is a particularly polarized case which calls for a contextual explanatio
  • I then asked Aaroe why surveys find that conservatives are happier than liberals. “Some research,” she replied, “suggests that experiences of inequality constitute a larger psychological burden to liberals because it is more difficult for liberals to rationalize inequality as a phenomenon with positive consequences.”
  • Numerous factors potentially influence the evolution of liberalism and conservatism and other social-cultural differences, including geography, topography, catastrophic events, and subsistence styles
  • Steven Pinker, a professor of psychology at Harvard, elaborated in an email on the link between conservatism and happiness:
  • t’s a combination of factors. Conservatives are likelier to be married, patriotic, and religious, all of which make people happier
  • They may be less aggrieved by the status quo, whereas liberals take on society’s problems as part of their own personal burdens. Liberals also place politics closer to their identity and striving for meaning and purpose, which is a recipe for frustration.
  • Some features of the woke faction of liberalism may make people unhappier: as Jon Haidt and Greg Lukianoff have suggested, wokeism is Cognitive Behavioral Therapy in reverse, urging upon people maladaptive mental habits such as catastrophizing, feeling like a victim of forces beyond one’s control, prioritizing emotions of hurt and anger over rational analysis, and dividing the world into allies and villains.
  • Why, I asked Pinker, would liberals and conservatives react differently — often very differently — to messages that highlight threat?
  • It may be liberals (or at least the social-justice wing) who are more sensitive to threats, such as white supremacy, climate change, and patriarchy; who may be likelier to moralize, seeing racism and transphobia in messages that others perceive as neutral; and being likelier to surrender to emotions like “harm” and “hurt.”
  • While liberals and conservatives, guided by different sets of moral values, may make agreement on specific policies difficult, that does not necessarily preclude consensus.
  • there are ways to persuade conservatives to support liberal initiatives and to persuade liberals to back conservative proposals:
  • While liberals tend to be more concerned with protecting vulnerable groups from harm and more concerned with equality and social justice than conservatives, conservatives tend to be more concerned with moral issues like group loyalty, respect for authority, purity and religious sanctity than liberals are. Because of these different moral commitments, we find that liberals and conservatives can be persuaded by quite different moral arguments
  • For example, we find that conservatives are more persuaded by a same-sex marriage appeal articulated in terms of group loyalty and patriotism, rather than equality and social justice.
  • Liberals who read the fairness argument were substantially more supportive of military spending than those who read the loyalty and authority argument.
  • We find support for these claims across six studies involving diverse political issues, including same-sex marriage, universal health care, military spending, and adopting English as the nation’s official language.”
  • In one test of persuadability on the right, Feinberg and Willer assigned some conservatives to read an editorial supporting universal health care as a matter of “fairness (health coverage is a basic human right)” or to read an editorial supporting health care as a matter of “purity (uninsured people means more unclean, infected, and diseased Americans).”
  • Conservatives who read the purity argument were much more supportive of health care than those who read the fairness case.
  • “political arguments reframed to appeal to the moral values of those holding the opposing political position are typically more effective
  • In “Conservative and Liberal Attitudes Drive Polarized Neural Responses to Political Content,” Willer, Yuan Chang Leong of the University of Chicago, Janice Chen of Johns Hopkins and Jamil Zaki of Stanford address the question of how partisan biases are encoded in the brain:
  • society. How do such biases arise in the brain? We measured the neural activity of participants watching videos related to immigration policy. Despite watching the same videos, conservative and liberal participants exhibited divergent neural responses. This “neural polarization” between groups occurred in a brain area associated with the interpretation of narrative content and intensified in response to language associated with risk, emotion, and morality. Furthermore, polarized neural responses predicted attitude change in response to the videos.
  • The four authors argue that their “findings suggest that biased processing in the brain drives divergent interpretations of political information and subsequent attitude polarization.” These results, they continue, “shed light on the psychological and neural underpinnings of how identical information is interpreted differently by conservatives and liberals.”
  • The authors used neural imaging to follow changes in the dorsomedial prefrontal cortex (known as DMPFC) as conservatives and liberals watched videos presenting strong positions, left and right, on immigration.
  • or each video,” they write,participants with DMPFC activity time courses more similar to that of conservative-leaning participants became more likely to support the conservative positio
  • Conversely, those with DMPFC activity time courses more similar to that of liberal-leaning participants became more likely to support the liberal position. These results suggest that divergent interpretations of the same information are associated with increased attitude polarizatio
  • Together, our findings describe a neural basis for partisan biases in processing political information and their effects on attitude change.
  • Describing their neuroimaging method, the authors point out that theysearched for evidence of “neural polarization” activity in the brain that diverges between people who hold liberal versus conservative political attitudes. Neural polarization was observed in the dorsomedial prefrontal cortex (DMPFC), a brain region associated with the interpretation of narrative content.
  • The question is whether the political polarization that we are witnessing now proves to be a core, encoded aspect of the human mind, difficult to overcome — as Leong, Chen, Zaki and Willer sugges
  • — or whether, with our increased knowledge of the neural basis of partisan and other biases, we will find more effective ways to manage these most dangerous of human predispositions.
Javier E

How Did Consciousness Evolve? - The Atlantic - 0 views

  • Theories of consciousness come from religion, from philosophy, from cognitive science, but not so much from evolutionary biology. Maybe that’s why so few theories have been able to tackle basic questions such as: What is the adaptive value of consciousness? When did it evolve and what animals have it?
  • The Attention Schema Theory (AST), developed over the past five years, may be able to answer those questions.
  • The theory suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others, and in the AST, consciousness is the ultimate result of that evolutionary sequence
  • ...23 more annotations...
  • Even before the evolution of a central brain, nervous systems took advantage of a simple computing trick: competition.
  • It coordinates something called overt attention – aiming the satellite dishes of the eyes, ears, and nose toward anything important.
  • Selective enhancement therefore probably evolved sometime between hydras and arthropods—between about 700 and 600 million years ago, close to the beginning of complex, multicellular life
  • The next evolutionary advance was a centralized controller for attention that could coordinate among all senses. In many animals, that central controller is a brain area called the tectum
  • At any moment only a few neurons win that intense competition, their signals rising up above the noise and impacting the animal’s behavior. This process is called selective signal enhancement, and without it, a nervous system can do almost nothing.
  • With the evolution of reptiles around 350 to 300 million years ago, a new brain structure began to emerge – the wulst. Birds inherited a wulst from their reptile ancestors. Mammals did too, but our version is usually called the cerebral cortex and has expanded enormously
  • According to fossil and genetic evidence, vertebrates evolved around 520 million years ago. The tectum and the central control of attention probably evolved around then, during the so-called Cambrian Explosion when vertebrates were tiny wriggling creatures competing with a vast range of invertebrates in the sea.
  • The tectum is a beautiful piece of engineering. To control the head and the eyes efficiently, it constructs something called an internal model, a feature well known to engineers. An internal model is a simulation that keeps track of whatever is being controlled and allows for predictions and planning.
  • The tectum’s internal model is a set of information encoded in the complex pattern of activity of the neurons. That information simulates the current state of the eyes, head, and other major body parts, making predictions about how these body parts will move next and about the consequences of their movement
  • In fish and amphibians, the tectum is the pinnacle of sophistication and the largest part of the brain. A frog has a pretty good simulation of itself.
  • All vertebrates—fish, reptiles, birds, and mammals—have a tectum. Even lampreys have one, and they appeared so early in evolution that they don’t even have a lower jaw. But as far as anyone knows, the tectum is absent from all invertebrates
  • The cortex also takes in sensory signals and coordinates movement, but it has a more flexible repertoire. Depending on context, you might look toward, look away, make a sound, do a dance, or simply store the sensory event in memory in case the information is useful for the future.
  • The most important difference between the cortex and the tectum may be the kind of attention they control. The tectum is the master of overt attention—pointing the sensory apparatus toward anything important. The cortex ups the ante with something called covert attention. You don’t need to look directly at something to covertly attend to it. Even if you’ve turned your back on an object, your cortex can still focus its processing resources on it
  • The cortex needs to control that virtual movement, and therefore like any efficient controller it needs an internal model. Unlike the tectum, which models concrete objects like the eyes and the head, the cortex must model something much more abstract. According to the AST, it does so by constructing an attention schema—a constantly updated set of information that describes what covert attention is doing moment-by-moment and what its consequences are
  • Covert attention isn’t intangible. It has a physical basis, but that physical basis lies in the microscopic details of neurons, synapses, and signals. The brain has no need to know those details. The attention schema is therefore strategically vague. It depicts covert attention in a physically incoherent way, as a non-physical essence
  • this, according to the theory, is the origin of consciousness. We say we have consciousness because deep in the brain, something quite primitive is computing that semi-magical self-description.
  • I’m reminded of Teddy Roosevelt’s famous quote, “Do what you can with what you have where you are.” Evolution is the master of that kind of opportunism. Fins become feet. Gill arches become jaws. And self-models become models of others. In the AST, the attention schema first evolved as a model of one’s own covert attention. But once the basic mechanism was in place, according to the theory, it was further adapted to model the attentional states of others, to allow for social prediction. Not only could the brain attribute consciousness to itself, it began to attribute consciousness to others.
  • In the AST’s evolutionary story, social cognition begins to ramp up shortly after the reptilian wulst evolved. Crocodiles may not be the most socially complex creatures on earth, but they live in large communities, care for their young, and can make loyal if somewhat dangerous pets.
  • If AST is correct, 300 million years of reptilian, avian, and mammalian evolution have allowed the self-model and the social model to evolve in tandem, each influencing the other. We understand other people by projecting ourselves onto them. But we also understand ourselves by considering the way other people might see us.
  • t the cortical networks in the human brain that allow us to attribute consciousness to others overlap extensively with the networks that construct our own sense of consciousness.
  • Language is perhaps the most recent big leap in the evolution of consciousness. Nobody knows when human language first evolved. Certainly we had it by 70 thousand years ago when people began to disperse around the world, since all dispersed groups have a sophisticated language. The relationship between language and consciousness is often debated, but we can be sure of at least this much: once we developed language, we could talk about consciousness and compare notes
  • Maybe partly because of language and culture, humans have a hair-trigger tendency to attribute consciousness to everything around us. We attribute consciousness to characters in a story, puppets and dolls, storms, rivers, empty spaces, ghosts and gods. Justin Barrett called it the Hyperactive Agency Detection Device, or HADD
  • the HADD goes way beyond detecting predators. It’s a consequence of our hyper-social nature. Evolution turned up the amplitude on our tendency to model others and now we’re supremely attuned to each other’s mind states. It gives us our adaptive edge. The inevitable side effect is the detection of false positives, or ghosts.
Sophia C

Thomas Kuhn: Revolution Against Scientific Realism* - 1 views

  • as such a complex system that nobody believed that it corresponded to the physical reality of the universe. Although the Ptolemaic system accounted for observations-"saved the appearances"-its epicycles and deferents were never intended be anything more than a mathematical model to use in predicting the position of heavenly bodies. [3]
  • lileo that he was free to continue his work with Copernican theory if he agreed that the theory did not describe physical reality but was merely one of the many potential mathematical models. [10] Galileo continued to work, and while he "formally (23)claimed to prove nothing," [11] he passed his mathematical advances and his observational data to Newton, who would not only invent a new mathematics but would solve the remaining problems posed by Copernicus. [12]
  • Thus without pretending that his method could find the underlying causes of things such as gravity, Newton believed that his method produced theory, based upon empirical evidence, that was a close approximation of physical reality.
  • ...27 more annotations...
  • Medieval science was guided by "logical consistency."
  • The logical empiricist's conception of scientific progress was thus a continuous one; more comprehensive theory replaced compatible, older theory
  • Hempel also believed that science evolved in a continuous manner. New theory did not contradict past theory: "theory does not simply refute the earlier empirical generalizations in its field; rather, it shows that within a certain limited range defined by qualifying conditions, the generalizations hold true in fairly close approximation." [21]
  • New theory is more comprehensive; the old theory can be derived from the newer one and is one special manifestation" [22] of the more comprehensive new theory.
  • movement combined induction, based on empiricism, and deduction in the form of logic
  • It was the truth, and the prediction and control that came with it, that was the goal of logical-empirical science.
  • Each successive theory's explanation was closer to the truth than the theory before.
  • e notion of scientific realism held by Newton led to the evolutionary view of the progress of science
  • he entities and processes of theory were believed to exist in nature, and science should discover those entities and processes
  • Particularly disturbing discoveries were made in the area of atomic physics. For instance, Heisenberg's indeterminacy (25)principle, according to historian of science Cecil Schneer, yielded the conclusion that "the world of nature is indeterminate.
  • "even the fundamental principle of causality fail[ed] ."
  • was not until the second half of the twentieth century that the preservers of the evolutionary idea of scientific progress, the logical empiricists, were seriously challenged
  • revolutionary model of scientific change and examined the role of the scientific community in preventing and then accepting change. Kuhn's conception of scientific change occurring through revolutions undermined the traditional scientific goal, finding "truth" in nature
  • Textbooks inform scientists-to-be about this common body of knowledge and understanding.
  • for the world is too huge and complex to be explored randomly.
  • a scientist knows what facts are relevant and can build on past research
  • Normal science, as defined by Kuhn, is cumulative. New knowledge fills a gap of ignorance
  • ne standard product of the scientific enterprise is missing. Normal science does not aim at novelties of fact or theory and, when successful, finds none."
  • ntain a mechanism that uncovers anomaly, inconsistencies within the paradigm.
  • eventually, details arise that are inconsistent with the current paradigm
  • hese inconsistencies are eventually resolved or are ignored.
  • y concern a topic of central importance, a crisis occurs and normal science comes to a hal
  • that the scientists re-examine the foundations of their science that they had been taking for granted
  • it resolves the crisis better than the others, it offers promise for future research, and it is more aesthetic than its competitors. The reasons for converting to a new paradigm are never completely rational.
  • Unlike evolutionary science, in which new knowledge fills a gap of ignorance, in Kuhn's model new knowledge replaces incompatible knowledge.
  • Thus science is not a continuous or cumulative endeavor: when a paradigm shift occurs there is a revolution similar to a political revolution, with fundamental and pervasive changes in method and understanding. Each successive vision about the nature of the universe makes the past vision obsolete; predictions, though more precise, remain similar to the predictions of the past paradigm in their general orientation, but the new explanations do not accommodate the old
  • In a sense, we have circled back to the ancient and medieval practice of separating scientific theory from physical reality; both medieval scientists and Kuhn would agree that no theory corresponds to reality and therefore any number of theories might equally well explain a natural phenomenon. [36] Neither twentieth-century atomic theorists nor medieval astronomers are able to claim that their theories accurately describe physical phenomena. The inability to return to scientific realism suggests a tripartite division of the history of science, with a period of scientific realism fitting between two periods in which there is no insistence that theory correspond to reality. Although both scientific realism and the evolutionary idea of scientific progress appeal to common sense, both existed for only a few hundred years.
oliviaodon

How Do We Learn Languages? | Brain Blogger - 0 views

  • The use of sound is one of the most common methods of communication both in the animal kingdom and between humans.
  • human speech is a very complex process and therefore needs intensive postnatal learning to be used effectively. Furthermore, to be effective the learning phase should happen very early in life and it assumes a normally functioning hearing and brain systems.
  • Nowadays, scientists and doctors are discovering the important brain zones involved in the processing of language information. Those zones are reassembled in a number of a language networks including the Broca, the Wernicke, the middle temporal, the inferior parietal and the angular gyrus. The variety of such brain zones clearly shows that the language processing is a very complex task. On the functional level, decoding a language begins in the ear where the incoming sounds are summed in the auditory nerve as an electrical signal and delivered to the auditory cortex where neurons extract auditory objects from that signal.
  • ...6 more annotations...
  • The effectiveness of this process is so great that human brain is able to accurately identify words and whole phrases from a noisy background. This power of analysis brings to minds the great similarity between the brain and powerful supercomputers.
  • Until the last decade few studies compared the language acquisition in adults and children. Thanks to modern imaging and electroencephalography we are now able to address this question.
  • infants begin their lives with a very flexible brain that allows them to acquire virtually any language they are exposed to. Moreover, they can learn a language words almost equally by listening or by visual coding. This brain plasticity is the motor drive of the children capability of “cracking the speech code” of a language. With time, this ability is dramatically decreased and adults find it harder to acquire a new language.
  • clearly demonstrated that there are anatomical brain differences between fast and slow learners of foreign languages. By analyzing a group of people having a homogenous language background, scientists found that differences in specific brain regions can predict the capacity of a person to learn a second language.
  • Functional imaging of the brain revealed that activated brain parts are different between native and non-native speakers. The superior temporal gyrus is an important brain region involved in language learning. For a native speaker this part is responsible for automated processing of lexical retrieval and the build of phrase structure. In native speakers this zone is much more activated than in non-native ones.
  • Language acquisition is a long-term process by which information are stored in the brain unconsciously making them appropriate to oral and written usage. In contrast, language learning is a conscious process of knowledge acquisition that needs supervision and control by the person.
  •  
    Another cool article about how the brain works and language (inductive reasoning). 
Javier E

Forecasting Fox - NYTimes.com - 0 views

  • Intelligence Advanced Research Projects Agency, to hold a forecasting tournament to see if competition could spur better predictions.
  • In the fall of 2011, the agency asked a series of short-term questions about foreign affairs, such as whether certain countries will leave the euro, whether North Korea will re-enter arms talks, or whether Vladimir Putin and Dmitri Medvedev would switch jobs. They hired a consulting firm to run an experimental control group against which the competitors could be benchmarked.
  • Tetlock and his wife, the decision scientist Barbara Mellers, helped form a Penn/Berkeley team, which bested the competition and surpassed the benchmarks by 60 percent in Year 1. How did they make such accurate predictions? In the first place, they identified better forecasters. It turns out you can give people tests that usefully measure how open-minded they are.
  • ...5 more annotations...
  • The teams with training that engaged in probabilistic thinking performed best. The training involved learning some of the lessons included in Daniel Kahneman’s great work, “Thinking, Fast and Slow.” For example, they were taught to alternate between taking the inside view and the outside view.
  • Most important, participants were taught to turn hunches into probabilities. Then they had online discussions with members of their team adjusting the probabilities, as often as every day
  • In these discussions, hedgehogs disappeared and foxes prospered. That is, having grand theories about, say, the nature of modern China was not useful. Being able to look at a narrow question from many vantage points and quickly readjust the probabilities was tremendously useful.
  • In the second year of the tournament, Tetlock and collaborators skimmed off the top 2 percent of forecasters across experimental conditions, identifying 60 top performers and randomly assigning them into five teams of 12 each. These “super forecasters” also delivered a far-above-average performance in Year 2. Apparently, forecasting skill cannot only be taught, it can be replicated.
  • He believes that this kind of process may help depolarize politics. If you take Republicans and Democrats and ask them to make a series of narrow predictions, they’ll have to put aside their grand notions and think clearly about the imminently falsifiable.
manhefnawi

Two New Studies Explore the Neuroscience of Negative Emotions | Mental Floss - 0 views

  • We've all had experiences we'd prefer not to remember. That's especially true for people who have gone through a traumatic event such as childhood abuse, combat-related PTSD, or a bad accident. But there may be positive health applications for identifying, predicting, and retrieving negative emotions in the brain, according to two new studies. 
  • Researchers identified the different networks in the brain that all work together during a participant’s negative emotional experience, which they call a “brain signature.” Then, they used machine-learning algorithms to find global patterns of brain activity that best predicted the participants’ responses. “What we’re calling a 'brain signature' is basically a configuration—a brain pattern that is predictive of a state,” Chang tells mental_floss. He compares the process to the way that Netflix predicts who is watching a certain type of show based on the watcher’s choices in programming.
  • MEMORIES CAUSED—AND LOST—BY TRAUMA
  • ...2 more annotations...
  • Many psychologists believe that in order for patients to recover from trauma, they often need to be able to recall what happened to them. The second study, published in Nature Neuroscience, investigated how the brain stores negative memories, known as “state-dependent learning.” The study, conducted in mice at Northwestern University’s Feinberg School of Medicine, suggests that negative memories caused—and then “lost”—by traumatic experiences may be retrieved by re-creating the state of the brain in which the memory first occurred.
  • The study suggests that in response to trauma, the brain activates this extra-synaptic GABA system, which appears to encode memories of fear-inducing events and hide them away from consciousness, rather than the glutamate system, which helps to store all memories, positive and negative. This research may provide a window into how to access these traumatic memories when needed for therapeutic reasons.
Javier E

Opinion | A New Dark Age Looms - The New York Times - 0 views

  • IMAGINE a future in which humanity’s accumulated wisdom about Earth — our vast experience with weather trends, fish spawning and migration patterns, plant pollination and much more — turns increasingly obsolete. As each decade passes, knowledge of Earth’s past becomes progressively less effective as a guide to the future. Civilization enters a dark age in its practical understanding of our planet.
  • as Earth warms, our historical understanding will turn obsolete faster than we can replace it with new knowledge. Some patterns will change significantly; others will be largely unaffected, though it will be difficult to say what will change, by how much, and when.
  • Until then, farmers will struggle to reliably predict new seasonal patterns and regularly plant the wrong crops. Early signs of major drought will go unrecognized, so costly irrigation will be built in the wrong places. Disruptive societal impacts will be widespread.
  • ...11 more annotations...
  • Such a dark age is a growing possibility. In a recent report, the National Academies of Sciences, Engineering and Medicine concluded that human-caused global warming was already altering patterns of some extreme weather events
  • disrupting nature’s patterns could extend well beyond extreme weather, with far more pervasive impacts.
  • Our foundation of Earth knowledge, largely derived from historically observed patterns, has been central to society’s progress.
  • Science has accelerated this learning process through advanced observation methods and pattern discovery techniques. These allow us to anticipate the future with a consistency unimaginable to our ancestors
  • As Earth’s warming stabilizes, new patterns begin to appear. At first, they are confusing and hard to identify. Scientists note similarities to Earth’s emergence from the last ice age. These new patterns need many years — sometimes decades or more — to reveal themselves fully, even when monitored with our sophisticated observing systems
  • The list of possible disruptions is long and alarming. We could see changes to the prevalence of crop and human pests, like locust plagues set off by drought conditions; forest fire frequency; the dynamics of the predator-prey food chain; the identification and productivity of reliably arable land, and the predictability of agriculture output.
  • Historians of the next century will grasp the importance of this decline in our ability to predict the future. They may mark the coming decades of this century as the period during which humanity, despite rapid technological and scientific advances, achieved “peak knowledge” about the planet it occupies
  • The intermediate time period is our big challenge. Without substantial scientific breakthroughs, we will remain reliant on pattern-based methods for time periods between a month and a decade. The problem is, as the planet warms, these patterns will become increasingly difficult to discern.
  • The oceans, which play a major role in global weather patterns, will also see substantial changes as global temperatures rise. Ocean currents and circulation patterns evolve on time scales of decades and longer, and fisheries change in response. We lack reliable, physics-based models to tell us how this occurs
  • Civilization’s understanding of Earth has expanded enormously in recent decades, making humanity safer and more prosperous. As the patterns that we have come to expect are disrupted by warming temperatures, we will face huge challenges feeding a growing population and prospering within our planet’s finite resources. New developments in science offer our best hope for keeping up, but this is by no means guaranteed
  • Our grandchildren could grow up knowing less about the planet than we do today. This is not a legacy we want to leave them. Yet we are on the verge of ensuring this happens.
caelengrubb

How Cognitive Bias Affects Your Business - 0 views

  • Human beings often act in irrational and unexpected ways when it comes to business decisions, money, and finance.
  • Behavioral finance tries to explain the difference between what economic theory predicts people will do and what they actually do in the heat of the moment. 
  • There are two main types of biases that people commit causing them to deviate from rational decision-making: cognitive and emotional.
  • ...13 more annotations...
  • Cognitive errors result from incomplete information or the inability to analyze the information that is available. These cognitive errors can be classified as either belief perseverance or processing errors
  • Processing errors occur when an individual fails to manage and organize information properly, which can be due in part to the mental effort required to compute and analyze data.
  • Conservatism bias, where people emphasize original, pre-existing information over new data.
  • Base rate neglect is the opposite effect, whereby people put too little emphasis on the original information. 
  • Confirmation bias, where people seek information that affirms existing beliefs while discounting or discarding information that might contradict them.
  • Anchoring and Adjustment happens when somebody fixates on a target number, such as the result of a calculation or valuation.
  • Hindsight bias occurs when people perceive actual outcomes as reasonable and expected, but only after the fact.
  • Sample size neglect is an error made when people infer too much from a too-small sample size.
  • Mental accounting is when people earmark certain funds for certain goals and keep them separate. When this happens, the risk and reward of projects undertaken to achieve these goals are not considered as an overall portfolio and the effect of one on another is ignored.
  • Availability bias, or recency bias skews perceived future probabilities based on memorable past events
  • Framing bias is when a person will process the same information differently depending on how it is presented and received.
  • Cognitive errors in the way people process and analyze information can lead them to make irrational decisions which can negatively impact business or investing decisions
  • . These information processing errors could have arisen to help primitive humans survive in a time before money or finance came into existence.
Javier E

The decline effect and the scientific method : The New Yorker - 3 views

  • The test of replicability, as it’s known, is the foundation of modern research. Replicability is how the community enforces itself. It’s a safeguard for the creep of subjectivity. Most of the time, scientists know what results they want, and that can influence the results they get. The premise of replicability is that the scientific community can correct for these flaws.
  • But now all sorts of well-established, multiply confirmed findings have started to look increasingly uncertain. It’s as if our facts were losing their truth: claims that have been enshrined in textbooks are suddenly unprovable.
  • This phenomenon doesn’t yet have an official name, but it’s occurring across a wide range of fields, from psychology to ecology.
  • ...39 more annotations...
  • If replication is what separates the rigor of science from the squishiness of pseudoscience, where do we put all these rigorously validated findings that can no longer be proved? Which results should we believe?
  • Schooler demonstrated that subjects shown a face and asked to describe it were much less likely to recognize the face when shown it later than those who had simply looked at it. Schooler called the phenomenon “verbal overshadowing.”
  • The most likely explanation for the decline is an obvious one: regression to the mean. As the experiment is repeated, that is, an early statistical fluke gets cancelled out. The extrasensory powers of Schooler’s subjects didn’t decline—they were simply an illusion that vanished over time.
  • yet Schooler has noticed that many of the data sets that end up declining seem statistically solid—that is, they contain enough data that any regression to the mean shouldn’t be dramatic. “These are the results that pass all the tests,” he says. “The odds of them being random are typically quite remote, like one in a million. This means that the decline effect should almost never happen. But it happens all the time!
  • this is why Schooler believes that the decline effect deserves more attention: its ubiquity seems to violate the laws of statistics
  • In 2001, Michael Jennions, a biologist at the Australian National University, set out to analyze “temporal trends” across a wide range of subjects in ecology and evolutionary biology. He looked at hundreds of papers and forty-four meta-analyses (that is, statistical syntheses of related studies), and discovered a consistent decline effect over time, as many of the theories seemed to fade into irrelevance.
  • Jennions admits that his findings are troubling, but expresses a reluctance to talk about them
  • publicly. “This is a very sensitive issue for scientists,” he says. “You know, we’re supposed to be dealing with hard facts, the stuff that’s supposed to stand the test of time. But when you see these trends you become a little more skeptical of things.”
  • Sterling saw that if ninety-seven per cent of psychology studies were proving their hypotheses, either psychologists were extraordinarily lucky or they published only the outcomes of successful experiments.
  • Jennions, similarly, argues that the decline effect is largely a product of publication bias, or the tendency of scientists and scientific journals to prefer positive data over null results, which is what happens when no effect is found. The bias was first identified by the statistician Theodore Sterling, in 1959, after he noticed that ninety-seven per cent of all published psychological studies with statistically significant data found the effect they were looking for
  • While publication bias almost certainly plays a role in the decline effect, it remains an incomplete explanation. For one thing, it fails to account for the initial prevalence of positive results among studies that never even get submitted to journals. It also fails to explain the experience of people like Schooler, who have been unable to replicate their initial data despite their best efforts.
  • One of his most cited papers has a deliberately provocative title: “Why Most Published Research Findings Are False.”
  • suspects that an equally significant issue is the selective reporting of results—the data that scientists choose to document in the first place. Palmer’s most convincing evidence relies on a statistical tool known as a funnel graph. When a large number of studies have been done on a single subject, the data should follow a pattern: studies with a large sample size should all cluster around a common value—the true result—whereas those with a smaller sample size should exhibit a random scattering, since they’re subject to greater sampling error. This pattern gives the graph its name, since the distribution resembles a funnel.
  • after Palmer plotted every study of fluctuating asymmetry, he noticed that the distribution of results with smaller sample sizes wasn’t random at all but instead skewed heavily toward positive results. Palmer has since documented a similar problem in several other contested subject areas. “Once I realized that selective reporting is everywhere in science, I got quite depressed,” Palmer told me. “As a researcher, you’re always aware that there might be some nonrandom patterns, but I had no idea how widespread it is.”
  • Palmer summarized the impact of selective reporting on his field: “We cannot escape the troubling conclusion that some—perhaps many—cherished generalities are at best exaggerated in their biological significance and at worst a collective illusion nurtured by strong a-priori beliefs often repeated.”
  • Palmer emphasizes that selective reporting is not the same as scientific fraud. Rather, the problem seems to be one of subtle omissions and unconscious misperceptions, as researchers struggle to make sense of their results. Stephen Jay Gould referred to this as the “sho
  • horning” process.
  • “A lot of scientific measurement is really hard,” Simmons told me. “If you’re talking about fluctuating asymmetry, then it’s a matter of minuscule differences between the right and left sides of an animal. It’s millimetres of a tail feather. And so maybe a researcher knows that he’s measuring a good male”—an animal that has successfully mated—“and he knows that it’s supposed to be symmetrical. Well, that act of measurement is going to be vulnerable to all sorts of perception biases. That’s not a cynical statement. That’s just the way human beings work.”
  • One of the classic examples of selective reporting concerns the testing of acupuncture in different countries. While acupuncture is widely accepted as a medical treatment in various Asian countries, its use is much more contested in the West. These cultural differences have profoundly influenced the results of clinical trials.
  • John Ioannidis, an epidemiologist at Stanford University, argues that such distortions are a serious issue in biomedical research. “These exaggerations are why the decline has become so common,” he says. “It’d be really great if the initial studies gave us an accurate summary of things. But they don’t. And so what happens is we waste a lot of money treating millions of patients and doing lots of follow-up studies on other themes based on results that are misleading.”
  • In 2005, Ioannidis published an article in the Journal of the American Medical Association that looked at the forty-nine most cited clinical-research studies in three major medical journals.
  • the data Ioannidis found were disturbing: of the thirty-four claims that had been subject to replication, forty-one per cent had either been directly contradicted or had their effect sizes significantly downgraded.
  • the most troubling fact emerged when he looked at the test of replication: out of four hundred and thirty-two claims, only a single one was consistently replicable. “This doesn’t mean that none of these claims will turn out to be true,” he says. “But, given that most of them were done badly, I wouldn’t hold my breath.”
  • According to Ioannidis, the main problem is that too many researchers engage in what he calls “significance chasing,” or finding ways to interpret the data so that it passes the statistical test of significance—the ninety-five-per-cent boundary invented by Ronald Fisher.
  • For Simmons, the steep rise and slow fall of fluctuating asymmetry is a clear example of a scientific paradigm, one of those intellectual fads that both guide and constrain research: after a new paradigm is proposed, the peer-review process is tilted toward positive results. But then, after a few years, the academic incentives shift—the paradigm has become entrenched—so that the most notable results are now those that disprove the theory.
  • The problem of selective reporting is rooted in a fundamental cognitive flaw, which is that we like proving ourselves right and hate being wrong.
  • “It feels good to validate a hypothesis,” Ioannidis said. “It feels even better when you’ve got a financial interest in the idea or your career depends upon it. And that’s why, even after a claim has been systematically disproven”—he cites, for instance, the early work on hormone replacement therapy, or claims involving various vitamins—“you still see some stubborn researchers citing the first few studies
  • That’s why Schooler argues that scientists need to become more rigorous about data collection before they publish. “We’re wasting too much time chasing after bad studies and underpowered experiments,”
  • The current “obsession” with replicability distracts from the real problem, which is faulty design.
  • “Every researcher should have to spell out, in advance, how many subjects they’re going to use, and what exactly they’re testing, and what constitutes a sufficient level of proof. We have the tools to be much more transparent about our experiments.”
  • Schooler recommends the establishment of an open-source database, in which researchers are required to outline their planned investigations and document all their results. “I think this would provide a huge increase in access to scientific work and give us a much better way to judge the quality of an experiment,”
  • scientific research will always be shadowed by a force that can’t be curbed, only contained: sheer randomness. Although little research has been done on the experimental dangers of chance and happenstance, the research that exists isn’t encouraging.
  • The disturbing implication of the Crabbe study is that a lot of extraordinary scientific data are nothing but noise. The hyperactivity of those coked-up Edmonton mice wasn’t an interesting new fact—it was a meaningless outlier, a by-product of invisible variables we don’t understand.
  • The problem, of course, is that such dramatic findings are also the most likely to get published in prestigious journals, since the data are both statistically significant and entirely unexpected
  • This suggests that the decline effect is actually a decline of illusion. While Karl Popper imagined falsification occurring with a single, definitive experiment—Galileo refuted Aristotelian mechanics in an afternoon—the process turns out to be much messier than that.
  • Many scientific theories continue to be considered true even after failing numerous experimental tests.
  • Even the law of gravity hasn’t always been perfect at predicting real-world phenomena. (In one test, physicists measuring gravity by means of deep boreholes in the Nevada desert found a two-and-a-half-per-cent discrepancy between the theoretical predictions and the actual data.)
  • Such anomalies demonstrate the slipperiness of empiricism. Although many scientific ideas generate conflicting results and suffer from falling effect sizes, they continue to get cited in the textbooks and drive standard medical practice. Why? Because these ideas seem true. Because they make sense. Because we can’t bear to let them go. And this is why the decline effect is so troubling. Not because it reveals the human fallibility of science, in which data are tweaked and beliefs shape perceptions. (Such shortcomings aren’t surprising, at least for scientists.) And not because it reveals that many of our most exciting theories are fleeting fads and will soon be rejected. (That idea has been around since Thomas Kuhn.)
  • The decline effect is troubling because it reminds us how difficult it is to prove anything. We like to pretend that our experiments define the truth for us. But that’s often not the case. Just because an idea is true doesn’t mean it can be proved. And just because an idea can be proved doesn’t mean it’s true. When the experiments are done, we still have to choose what to believe. ♦
cvanderloo

Sewage-testing robots process wastewater faster to predict COVID-19 outbreaks sooner - 0 views

  • By using a sewage-handling robot, our laboratory has been able to detect coronavirus in wastewater 30 times faster than nonautomated large-scale systems.
  • When clinical studies emerged showing that people who test positive for SARS-CoV-2 shed the virus in their stool, the sewer seemed like an obvious place to look for it.
  • Surveillance depends on concentrating the viral particles from the wastewater to detect these low levels.
  • ...5 more annotations...
  • Wastewater surveillance is especially useful as an early-alert system for high-risk areas, such as communities where undocumented residents may be cautious about individual testing.
  • Our new protocol concentrates 24 samples in a single 40-minute run.
  • The sewage-handling robot is equipped with a specialized magnetic head that snags the magnetic beads, with viruses attached.
  • Overall, our system can process 96 samples in 4.5 hours, dramatically reducing the time from specimen to result.
  • We’re now using the viral genome sequencing part of our system to track the emergence of new SARS-CoV-2 variants.
Javier E

How Does Science Really Work? | The New Yorker - 1 views

  • I wanted to be a scientist. So why did I find the actual work of science so boring? In college science courses, I had occasional bursts of mind-expanding insight. For the most part, though, I was tortured by drudgery.
  • I’d found that science was two-faced: simultaneously thrilling and tedious, all-encompassing and narrow. And yet this was clearly an asset, not a flaw. Something about that combination had changed the world completely.
  • “Science is an alien thought form,” he writes; that’s why so many civilizations rose and fell before it was invented. In his view, we downplay its weirdness, perhaps because its success is so fundamental to our continued existence.
  • ...50 more annotations...
  • In school, one learns about “the scientific method”—usually a straightforward set of steps, along the lines of “ask a question, propose a hypothesis, perform an experiment, analyze the results.”
  • That method works in the classroom, where students are basically told what questions to pursue. But real scientists must come up with their own questions, finding new routes through a much vaster landscape.
  • Since science began, there has been disagreement about how those routes are charted. Two twentieth-century philosophers of science, Karl Popper and Thomas Kuhn, are widely held to have offered the best accounts of this process.
  • For Popper, Strevens writes, “scientific inquiry is essentially a process of disproof, and scientists are the disprovers, the debunkers, the destroyers.” Kuhn’s scientists, by contrast, are faddish true believers who promulgate received wisdom until they are forced to attempt a “paradigm shift”—a painful rethinking of their basic assumptions.
  • Working scientists tend to prefer Popper to Kuhn. But Strevens thinks that both theorists failed to capture what makes science historically distinctive and singularly effective.
  • Sometimes they seek to falsify theories, sometimes to prove them; sometimes they’re informed by preëxisting or contextual views, and at other times they try to rule narrowly, based on t
  • Why do scientists agree to this scheme? Why do some of the world’s most intelligent people sign on for a lifetime of pipetting?
  • Strevens thinks that they do it because they have no choice. They are constrained by a central regulation that governs science, which he calls the “iron rule of explanation.” The rule is simple: it tells scientists that, “if they are to participate in the scientific enterprise, they must uncover or generate new evidence to argue with”; from there, they must “conduct all disputes with reference to empirical evidence alone.”
  • , it is “the key to science’s success,” because it “channels hope, anger, envy, ambition, resentment—all the fires fuming in the human heart—to one end: the production of empirical evidence.”
  • Strevens arrives at the idea of the iron rule in a Popperian way: by disproving the other theories about how scientific knowledge is created.
  • The problem isn’t that Popper and Kuhn are completely wrong. It’s that scientists, as a group, don’t pursue any single intellectual strategy consistently.
  • Exploring a number of case studies—including the controversies over continental drift, spontaneous generation, and the theory of relativity—Strevens shows scientists exerting themselves intellectually in a variety of ways, as smart, ambitious people usually do.
  • “Science is boring,” Strevens writes. “Readers of popular science see the 1 percent: the intriguing phenomena, the provocative theories, the dramatic experimental refutations or verifications.” But, he says,behind these achievements . . . are long hours, days, months of tedious laboratory labor. The single greatest obstacle to successful science is the difficulty of persuading brilliant minds to give up the intellectual pleasures of continual speculation and debate, theorizing and arguing, and to turn instead to a life consisting almost entirely of the production of experimental data.
  • Ultimately, in fact, it was good that the geologists had a “splendid variety” of somewhat arbitrary opinions: progress in science requires partisans, because only they have “the motivation to perform years or even decades of necessary experimental work.” It’s just that these partisans must channel their energies into empirical observation. The iron rule, Strevens writes, “has a valuable by-product, and that by-product is data.”
  • Science is often described as “self-correcting”: it’s said that bad data and wrong conclusions are rooted out by other scientists, who present contrary findings. But Strevens thinks that the iron rule is often more important than overt correction.
  • Eddington was never really refuted. Other astronomers, driven by the iron rule, were already planning their own studies, and “the great preponderance of the resulting measurements fit Einsteinian physics better than Newtonian physics.” It’s partly by generating data on such a vast scale, Strevens argues, that the iron rule can power science’s knowledge machine: “Opinions converge not because bad data is corrected but because it is swamped.”
  • Why did the iron rule emerge when it did? Strevens takes us back to the Thirty Years’ War, which concluded with the Peace of Westphalia, in 1648. The war weakened religious loyalties and strengthened national ones.
  • Two regimes arose: in the spiritual realm, the will of God held sway, while in the civic one the decrees of the state were paramount. As Isaac Newton wrote, “The laws of God & the laws of man are to be kept distinct.” These new, “nonoverlapping spheres of obligation,” Strevens argues, were what made it possible to imagine the iron rule. The rule simply proposed the creation of a third sphere: in addition to God and state, there would now be science.
  • Strevens imagines how, to someone in Descartes’s time, the iron rule would have seemed “unreasonably closed-minded.” Since ancient Greece, it had been obvious that the best thinking was cross-disciplinary, capable of knitting together “poetry, music, drama, philosophy, democracy, mathematics,” and other elevating human disciplines.
  • We’re still accustomed to the idea that a truly flourishing intellect is a well-rounded one. And, by this standard, Strevens says, the iron rule looks like “an irrational way to inquire into the underlying structure of things”; it seems to demand the upsetting “suppression of human nature.”
  • Descartes, in short, would have had good reasons for resisting a law that narrowed the grounds of disputation, or that encouraged what Strevens describes as “doing rather than thinking.”
  • In fact, the iron rule offered scientists a more supple vision of progress. Before its arrival, intellectual life was conducted in grand gestures.
  • Descartes’s book was meant to be a complete overhaul of what had preceded it; its fate, had science not arisen, would have been replacement by some equally expansive system. The iron rule broke that pattern.
  • Strevens sees its earliest expression in Francis Bacon’s “The New Organon,” a foundational text of the Scientific Revolution, published in 1620. Bacon argued that thinkers must set aside their “idols,” relying, instead, only on evidence they could verify. This dictum gave scientists a new way of responding to one another’s work: gathering data.
  • it also changed what counted as progress. In the past, a theory about the world was deemed valid when it was complete—when God, light, muscles, plants, and the planets cohered. The iron rule allowed scientists to step away from the quest for completeness.
  • The consequences of this shift would become apparent only with time
  • In 1713, Isaac Newton appended a postscript to the second edition of his “Principia,” the treatise in which he first laid out the three laws of motion and the theory of universal gravitation. “I have not as yet been able to deduce from phenomena the reason for these properties of gravity, and I do not feign hypotheses,” he wrote. “It is enough that gravity really exists and acts according to the laws that we have set forth.”
  • What mattered, to Newton and his contemporaries, was his theory’s empirical, predictive power—that it was “sufficient to explain all the motions of the heavenly bodies and of our sea.”
  • Descartes would have found this attitude ridiculous. He had been playing a deep game—trying to explain, at a fundamental level, how the universe fit together. Newton, by those lights, had failed to explain anything: he himself admitted that he had no sense of how gravity did its work
  • by authorizing what Strevens calls “shallow explanation,” the iron rule offered an empirical bridge across a conceptual chasm. Work could continue, and understanding could be acquired on the other side. In this way, shallowness was actually more powerful than depth.
  • Quantum theory—which tells us that subatomic particles can be “entangled” across vast distances, and in multiple places at the same time—makes intuitive sense to pretty much nobody.
  • Without the iron rule, Strevens writes, physicists confronted with such a theory would have found themselves at an impasse. They would have argued endlessly about quantum metaphysics.
  • ollowing the iron rule, they can make progress empirically even though they are uncertain conceptually. Individual researchers still passionately disagree about what quantum theory means. But that hasn’t stopped them from using it for practical purposes—computer chips, MRI machines, G.P.S. networks, and other technologies rely on quantum physics.
  • One group of theorists, the rationalists, has argued that science is a new way of thinking, and that the scientist is a new kind of thinker—dispassionate to an uncommon degree.
  • As evidence against this view, another group, the subjectivists, points out that scientists are as hopelessly biased as the rest of us. To this group, the aloofness of science is a smoke screen behind which the inevitable emotions and ideologies hide.
  • At least in science, Strevens tells us, “the appearance of objectivity” has turned out to be “as important as the real thing.”
  • The subjectivists are right, he admits, inasmuch as scientists are regular people with a “need to win” and a “determination to come out on top.”
  • But they are wrong to think that subjectivity compromises the scientific enterprise. On the contrary, once subjectivity is channelled by the iron rule, it becomes a vital component of the knowledge machine. It’s this redirected subjectivity—to come out on top, you must follow the iron rule!—that solves science’s “problem of motivation,” giving scientists no choice but “to pursue a single experiment relentlessly, to the last measurable digit, when that digit might be quite meaningless.”
  • If it really was a speech code that instigated “the extraordinary attention to process and detail that makes science the supreme discriminator and destroyer of false ideas,” then the peculiar rigidity of scientific writing—Strevens describes it as “sterilized”—isn’t a symptom of the scientific mind-set but its cause.
  • The iron rule—“a kind of speech code”—simply created a new way of communicating, and it’s this new way of communicating that created science.
  • Other theorists have explained science by charting a sweeping revolution in the human mind; inevitably, they’ve become mired in a long-running debate about how objective scientists really are
  • In “The Knowledge Machine: How Irrationality Created Modern Science” (Liveright), Michael Strevens, a philosopher at New York University, aims to identify that special something. Strevens is a philosopher of science
  • Compared with the theories proposed by Popper and Kuhn, Strevens’s rule can feel obvious and underpowered. That’s because it isn’t intellectual but procedural. “The iron rule is focused not on what scientists think,” he writes, “but on what arguments they can make in their official communications.”
  • Like everybody else, scientists view questions through the lenses of taste, personality, affiliation, and experience
  • geologists had a professional obligation to take sides. Europeans, Strevens reports, tended to back Wegener, who was German, while scholars in the United States often preferred Simpson, who was American. Outsiders to the field were often more receptive to the concept of continental drift than established scientists, who considered its incompleteness a fatal flaw.
  • Strevens’s point isn’t that these scientists were doing anything wrong. If they had biases and perspectives, he writes, “that’s how human thinking works.”
  • Eddington’s observations were expected to either confirm or falsify Einstein’s theory of general relativity, which predicted that the sun’s gravity would bend the path of light, subtly shifting the stellar pattern. For reasons having to do with weather and equipment, the evidence collected by Eddington—and by his colleague Frank Dyson, who had taken similar photographs in Sobral, Brazil—was inconclusive; some of their images were blurry, and so failed to resolve the matter definitively.
  • it was only natural for intelligent people who were free of the rule’s strictures to attempt a kind of holistic, systematic inquiry that was, in many ways, more demanding. It never occurred to them to ask if they might illuminate more collectively by thinking about less individually.
  • In the single-sphered, pre-scientific world, thinkers tended to inquire into everything at once. Often, they arrived at conclusions about nature that were fascinating, visionary, and wrong.
  • How Does Science Really Work?Science is objective. Scientists are not. Can an “iron rule” explain how they’ve changed the world anyway?By Joshua RothmanSeptember 28, 2020
Javier E

A New Dark Age Looms - The New York Times - 1 views

  • picture yourself in our grandchildren’s time, a century hence. Significant global warming has occurred, as scientists predicted. Nature’s longstanding, repeatable patterns — relied on for millenniums by humanity to plan everything from infrastructure to agriculture — are no longer so reliable. Cycles that have been largely unwavering during modern human history are disrupted by substantial changes in temperature and precipitation.
  • As Earth’s warming stabilizes, new patterns begin to appear. At first, they are confusing and hard to identify. Scientists note similarities to Earth’s emergence from the last ice age. These new patterns need many years — sometimes decades or more — to reveal themselves fully, even when monitored with our sophisticated observing systems
  • Disruptive societal impacts will be widespread.
  • ...9 more annotations...
  • Our foundation of Earth knowledge, largely derived from historically observed patterns, has been central to society’s progress. Early cultures kept track of nature’s ebb and flow, passing improved knowledge about hunting and agriculture to each new generation. Science has accelerated this learning process through advanced observation methods and pattern discovery techniques. These allow us to anticipate the future with a consistency unimaginable to our ancestors.
  • But as Earth warms, our historical understanding will turn obsolete faster than we can replace it with new knowledge. Some patterns will change significantly; others will be largely unaffected
  • The list of possible disruptions is long and alarming.
  • Historians of the next century will grasp the importance of this decline in our ability to predict the future. They may mark the coming decades of this century as the period during which humanity, despite rapid technological and scientific advances, achieved “peak knowledge” about the planet it occupies
  • One exception to this pattern-based knowledge is the weather, whose underlying physics governs how the atmosphere moves and adjusts. Because we understand the physics, we can replicate the atmosphere with computer models.
  • But farmers need to think a season or more ahead. So do infrastructure planners as they design new energy and water systems
  • The intermediate time period is our big challenge. Without substantial scientific breakthroughs, we will remain reliant on pattern-based methods for time periods between a month and a decade. The problem is, as the planet warms, these patterns will become increasingly difficult to discern.
  • The oceans, which play a major role in global weather patterns, will also see substantial changes as global temperatures rise. Ocean currents and circulation patterns evolve on time scales of decades and longer, and fisheries change in response. We lack reliable, physics-based models to tell us how this occurs.
  • Our grandchildren could grow up knowing less about the planet than we do today. This is not a legacy we want to leave them. Yet we are on the verge of ensuring this happens.
Javier E

The Navy's USS Gabrielle Giffords and the Future of Work - The Atlantic - 0 views

  • Minimal manning—and with it, the replacement of specialized workers with problem-solving generalists—isn’t a particularly nautical concept. Indeed, it will sound familiar to anyone in an organization who’s been asked to “do more with less”—which, these days, seems to be just about everyone.
  • Ten years from now, the Deloitte consultant Erica Volini projects, 70 to 90 percent of workers will be in so-called hybrid jobs or superjobs—that is, positions combining tasks once performed by people in two or more traditional roles.
  • If you ask Laszlo Bock, Google’s former culture chief and now the head of the HR start-up Humu, what he looks for in a new hire, he’ll tell you “mental agility.
  • ...40 more annotations...
  • “What companies are looking for,” says Mary Jo King, the president of the National Résumé Writers’ Association, “is someone who can be all, do all, and pivot on a dime to solve any problem.”
  • The phenomenon is sped by automation, which usurps routine tasks, leaving employees to handle the nonroutine and unanticipated—and the continued advance of which throws the skills employers value into flux
  • Or, for that matter, on the relevance of the question What do you want to be when you grow up?
  • By 2020, a 2016 World Economic Forum report predicted, “more than one-third of the desired core skill sets of most occupations” will not have been seen as crucial to the job when the report was published
  • I asked John Sullivan, a prominent Silicon Valley talent adviser, why should anyone take the time to master anything at all? “You shouldn’t!” he replied.
  • Minimal manning—and the evolution of the economy more generally—requires a different kind of worker, with not only different acquired skills but different inherent abilities
  • It has implications for the nature and utility of a college education, for the path of careers, for inequality and employability—even for the generational divide.
  • Then, in 2001, Donald Rumsfeld arrived at the Pentagon. The new secretary of defense carried with him a briefcase full of ideas from the corporate world: downsizing, reengineering, “transformational” technologies. Almost immediately, what had been an experimental concept became an article of faith
  • But once cadets got into actual command environments, which tend to be fluid and full of surprises, a different picture emerged. “Psychological hardiness”—a construct that includes, among other things, a willingness to explore “multiple possible response alternatives,” a tendency to “see all experience as interesting and meaningful,” and a strong sense of self-confidence—was a better predictor of leadership ability in officers after three years in the field.
  • Because there really is no such thing as multitasking—just a rapid switching of attention—I began to feel overstrained, put upon, and finally irked by the impossible set of concurrent demands. Shouldn’t someone be giving me a hand here? This, Hambrick explained, meant I was hitting the limits of working memory—basically, raw processing power—which is an important aspect of “fluid intelligence” and peaks in your early 20s. This is distinct from “crystallized intelligence”—the accumulated facts and know-how on your hard drive—which peaks in your 50
  • Others noticed the change but continued to devote equal attention to all four tasks. Their scores fell. This group, Hambrick found, was high in “conscientiousness”—a trait that’s normally an overwhelming predictor of positive job performance. We like conscientious people because they can be trusted to show up early, double-check the math, fill the gap in the presentation, and return your car gassed up even though the tank was nowhere near empty to begin with. What struck Hambrick as counterintuitive and interesting was that conscientiousness here seemed to correlate with poor performance.
  • he discovered another correlation in his test: The people who did best tended to score high on “openness to new experience”—a personality trait that is normally not a major job-performance predictor and that, in certain contexts, roughly translates to “distractibility.”
  • To borrow the management expert Peter Drucker’s formulation, people with this trait are less focused on doing things right, and more likely to wonder whether they’re doing the right things.
  • High in fluid intelligence, low in experience, not terribly conscientious, open to potential distraction—this is not the classic profile of a winning job candidate. But what if it is the profile of the winning job candidate of the future?
  • One concerns “grit”—a mind-set, much vaunted these days in educational and professional circles, that allows people to commit tenaciously to doing one thing well
  • These ideas are inherently appealing; they suggest that dedication can be more important than raw talent, that the dogged and conscientious will be rewarded in the end.
  • he studied West Point students and graduates.
  • Traditional measures such as SAT scores and high-school class rank “predicted leader performance in the stable, highly regulated environment of West Point” itself.
  • It would be supremely ironic if the advance of the knowledge economy had the effect of devaluing knowledge. But that’s what I heard, recurrentl
  • “Fluid, learning-intensive environments are going to require different traits than classical business environments,” I was told by Frida Polli, a co-founder of an AI-powered hiring platform called Pymetrics. “And they’re going to be things like ability to learn quickly from mistakes, use of trial and error, and comfort with ambiguity.”
  • “We’re starting to see a big shift,” says Guy Halfteck, a people-analytics expert. “Employers are looking less at what you know and more and more at your hidden potential” to learn new things
  • advice to employers? Stop hiring people based on their work experience. Because in these environments, expertise can become an obstacle.
  • “The Curse of Expertise.” The more we invest in building and embellishing a system of knowledge, they found, the more averse we become to unbuilding it.
  • All too often experts, like the mechanic in LePine’s garage, fail to inspect their knowledge structure for signs of decay. “It just didn’t occur to him,” LePine said, “that he was repeating the same mistake over and over.
  • The devaluation of expertise opens up ample room for different sorts of mistakes—and sometimes creates a kind of helplessness.
  • Aboard littoral combat ships, the crew lacks the expertise to carry out some important tasks, and instead has to rely on civilian help
  • Meanwhile, the modular “plug and fight” configuration was not panning out as hoped. Converting a ship from sub-hunter to minesweeper or minesweeper to surface combatant, it turned out, was a logistical nightmare
  • So in 2016 the concept of interchangeability was scuttled for a “one ship, one mission” approach, in which the extra 20-plus sailors became permanent crew members
  • “As equipment breaks, [sailors] are required to fix it without any training,” a Defense Department Test and Evaluation employee told Congress. “Those are not my words. Those are the words of the sailors who were doing the best they could to try to accomplish the missions we gave them in testing.”
  • These results were, perhaps, predictable given the Navy’s initial, full-throttle approach to minimal manning—and are an object lesson on the dangers of embracing any radical concept without thinking hard enough about the downsides
  • a world in which mental agility and raw cognitive speed eclipse hard-won expertise is a world of greater exclusion: of older workers, slower learners, and the less socially adept.
  • if you keep going down this road, you end up with one really expensive ship with just a few people on it who are geniuses … That’s not a future we want to see, because you need a large enough crew to conduct multiple tasks in combat.
  • hat does all this mean for those of us in the workforce, and those of us planning to enter it? It would be wrong to say that the 10,000-hours-of-deliberate-practice idea doesn’t hold up at all. In some situations, it clearly does
  • A spinal surgery will not be performed by a brilliant dermatologist. A criminal-defense team will not be headed by a tax attorney. And in tech, the demand for specialized skills will continue to reward expertise handsomely.
  • But in many fields, the path to success isn’t so clear. The rules keep changing, which means that highly focused practice has a much lower return
  • In uncertain environments, Hambrick told me, “specialization is no longer the coin of the realm.”
  • It leaves us with lifelong learning,
  • I found myself the target of career suggestions. “You need to be a video guy, an audio guy!” the Silicon Valley talent adviser John Sullivan told me, alluding to the demise of print media
  • I found the prospect of starting over just plain exhausting. Building a professional identity takes a lot of resources—money, time, energy. After it’s built, we expect to reap gains from our investment, and—let’s be honest—even do a bit of coasting. Are we equipped to continually return to apprentice mode? Will this burn us out?
  • Everybody I met on the Giffords seemed to share that mentality. They regarded every minute on board—even during a routine transit back to port in San Diego Harbor—as a chance to learn something new.
1 - 20 of 83 Next › Last »
Showing 20 items per page