Skip to main content

Home/ Sensorica Knowledge/ Group items tagged study

Rss Feed Group items tagged

Tiberius Brastaviceanu

Open Source Completely 3-D Printable Centrifuge - Appropedia, the sustainability wiki - 0 views

  •  
    "Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)- or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open source software. This paper provides the complete open source plans, including instructions for the fabrication and operation of a hand-powered centrifuge. This study successfully tested and validated the instrument, which can be operated anywhere in the world with no electricity inputs, obtaining a radial velocity of over 1750 rpm and over 50 N of relative centrifugal force. Using commercial filament, the instrument costs about U.S. $25, which is less than half of all commercially available systems. However, the costs can be dropped further using recycled plastics on open source systems for over 99% savings. The results are discussed in the context of resource-constrained medical and scientific facilities."
Tiberius Brastaviceanu

http://www.iao.fraunhofer.de/images/iao-news/studie_managing_open-innovation.pdf - 0 views

  •  
    Paper on open innovation - survey and conclusions. The definition of open innovation is quite large. The study focuses on traditional businesses.
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

Making the Tools to Do-It-Together: Open-source Compression Screw Manufacturing Case St... - 0 views

  •  
    "Making the Tools to Do-It-Together: Open-source Compression Screw Manufacturing Case Study"
Francois Bergeron

A model for device development | Researchers at the Stanford University Program in Biod... - 2 views

  • clinical need.
  • estimated market size and clinical impact associated with each.
  • prior art related
  • ...4 more annotations...
  • barriers to further development exist from an intellectual property perspective
  • Inventors must also determine if they are in a position to efficiently seize the market opportunity.
  • regulatory considerations, reimbursement strategies, intellectual property, and business development objectives. This leads to Phase I of the development model.
  • R&D in Phase II is responsible for generating early concepts. Brainstorming sessions are often held during this stage of development with members of R&D, marketing, and physician consultants. Computational analyses, such as stress and flow studies, are conducted to further understand the behavior of a proposed device. The team often develops a 3D CAD model of a proposed device
  •  
    medical device development steps
Kurt Laitner

Forget the Foundations - In These Times - 0 views

  • Their “actions” didn’t involve writing grant proposals, discussing their concerns with a board of directors or contacting state agencies. They tested water samples themselves, and, in 1979, produced a study revealing high levels of radioactive contamination, a high percentage of pregnancies complicated by excessive bleeding or terminated in abortion and large numbers of children born with birth defects. Despite their work, the Centers for Disease Control and Indian Health Services discredited the study, and WARN wasn’t vindicated until the South Dakota School of Mines substantiated their claims that same year.
  • But unlike Erin Brockovich, this tale of local activists fighting against faceless institutions doesn’t have a happy ending: The Nuclear Regulatory Commission simply raised the level of “acceptable contamination,” and Indian Health Services started providing bottled water in one area. Congress authorized a new water pipeline to the reservation in 2002–only to have the funding diverted by the financial demands of the wars in Iraq and Afghanistan.
  • who defer responsibility onto do-nothing organizations, only later to complain about their lack of agency
  • ...12 more annotations...
  • that foundations perpetuate First World interests and free-market capitalism, thus preserving many of the problems radical activists wish to eradicate, such as the unregulated concentration of wealth.
  • Foundations were created in the early 20th century by multimillionaire robber barons, such as John D. Rockefeller and Andrew Carnegie, to evade corporate and estate taxes.
  • foundations divert money away from the collective tax base
  • who are more interested in supporting milquetoast reformers than social-justice organizations
  • federal and state funding for education and healthcare has shrunk
  • This is a culture of noblesse oblige, Ahn writes, where the “privileged are obliged to help those less fortunate, without examining how that wealth was created or the dangerous implications of conceding such power to the wealthy.”
  • is the power those with money wield over community leaders.
  • consequently realigning their interests (i.e., maintaining their jobs) with maintaining the system
  • This allegiance keeps community leaders from challenging the root causes of social inequities–the social-change work–at the same time that they pedal to keep up by providing for the needs of individuals devastated by institutional exploitation.
  • Kivel concedes this is valuable work, but points out the inherent injustice of this paradigm: “When temporary shelter becomes a substitute for permanent housing, emergency food a substitute for a decent job … we have shifted our attention from the redistribution of wealth to the temporary provision of social services to keep people alive.”
  • University of Southern California Professor Ruth Wilson Gilmore urges contemporary grassroots activists to stop seeking a “pure way of doing things.” “Many are looking for an organizational structure and a resource capability that will somehow be impervious to co-optation,”
  • transitioning from foundation support to a volunteer collective reliant solely on grassroots dollars
Tiberius Brastaviceanu

Open Source 3-D Printed Nutating Mixer - Appropedia, the sustainability wiki - 0 views

  •  
    "As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood samples) without foam formation. The custom components for the nutating mixer are designed using open source FreeCAD software to enable customization. All of the non-readily available components can be fabricated with a low-cost RepRap 3-D printer using an open source software tool chain from common thermoplastics. All of the designs are open sourced and can be configured to add more functionality to the equipment in the future. It is relatively easy to assemble and is accessible to both the science education of younger students as well as state-of-the-art research laboratories. Overall, the open source nutating mixer can be fabricated with US$37 in parts, which is 1/10th of the cost of proprietary nutating mixers with similar capabilities. The open source nature of the device allow it to be easily repaired or upgraded with digital files, as well as to accommodate custom sample sizes and mixing velocities with minimal additional costs."
Tiberius Brastaviceanu

Welcome to the new reputation economy (Wired UK) - 1 views

  • banks take into account your online reputation alongside traditional credit ratings to determine your loan
  • headhunters hire you based on the expertise you've demonstrated on online forums
  • reputation data becomes the window into how we behave, what motivates us, how our peers view us and ultimately whether we can or can't be trusted.
  • ...37 more annotations...
  • At the heart of Movenbank is a concept call CRED.
  • The difference today is our ability to capture data from across an array of digital services. With every trade we make, comment we leave, person we "friend", spammer we flag or badge we earn, we leave a trail of how well we can or can't be trusted.
  • An aggregated online reputation having a real-world value holds enormous potential
  • peer-to-peer marketplaces, where a high degree of trust is required between strangers; and where a traditional approach based on disjointed information sources is currently inefficient, such as recruiting.
  • opportunity to reinvent the way people found jobs through online reputation
  • "It's not about your credit, but your credibility," King says.
  • But this wealth of data raises an important question -- who owns our reputation? Shouldn't our hard-earned online status be portable? If you're a SuperHost on Airbnb, shouldn't you be able to use that reputation to, say, get a loan, or start selling on Etsy?
  • "People are currently underusing their networks and reputation," King says. "I want to help people to understand and build their influence and reputation, and think of it as capital they can put to good use."
  • Social scientists have long been trying to quantify the value of reputation.
  • Using functional magnetic resonance imaging, the researchers monitored brain activity
  • "The implication of our study is that different types of reward are coded by the same currency system." In other words, our brains neurologically compute personal reputation to be as valuable as money.
  • Personal reputation has been a means of making socioeconomic decisions for thousands of years. The difference today is that network technologies are digitally enabling the trust we used to experience face-to-face -- meaning that interactions and exchanges are taking place between total strangers.
  • Trust and reputation become acutely important in peer-to-peer marketplaces such as WhipCar and Airbnb, where members are taking a risk renting out their cars or their homes.
  • When you are trading peer-to-peer, you can't count on traditional credit scores. A different measurement is needed. Reputation fills this gap because it's the ultimate output of how much a community trusts you.
  • Welcome to the reputation economy, where your online history becomes more powerful than your credit history.
  • Presently, reputation data doesn't transfer between verticals.
  • A wave of startups, including Connect.Me, TrustCloud, TrustRank, Legit and WhyTrusted, are trying to solve this problem by designing systems that correlate reputation data. By building a system based on "reputation API" -- a combination of a user's activity, ratings and reviews across sites -- Legit is working to build a service that gives users a score from zero to 100. In trying to create a universal metric for a person's trustworthiness, they are trying to "become the credit system of the sharing economy", says Jeremy Barton, the 27-year-old San Francisco-based cofounder of Legit.
  • His company, and other reputation ventures, face some big challenges if they are to become, effectively, the PayPal of trust. The most obvious is coming up with algorithms that can't be easily gamed or polluted by trolls. And then there's the critical hurdle of convincing online marketplaces not just to open up their reputation vaults, but create a standardised format for how they frame and collect reputation data. "We think companies will share reputation data for the same reasons banks give credit data to credit bureaux," says Rob Boyle, Legit cofounder and CTO. "It is beneficial for one company to give up their slice of reputation data if in return they get access to the bigger picture: aggregated data from other companies."
  • PeerIndex, Kred and Klout,
  • are measuring social influence, not reputation. "Influence measures your ability to drag someone into action,"
  • "Reputation is an indicator of whether a person is good or bad and, ultimately, are they trustworthy?"
  • Early influence and reputation aggregators will undoubtedly learn by trial and error -- but they will also face the significant challenge of pioneering the use of reputation data in a responsible way. And there's a challenge beyond that: reputation is largely contextual, so it's tricky to transport it to other situations.
  • Many of the ventures starting to make strides in the reputation economy are measuring different dimensions of reputation.
  • reputation is a measure of knowledge
  • a measure of trust
  • a measure of propensity to pay
  • measure of influence
  • Reputation capital is not about combining a selection of different measures into a single number -- people are too nuanced and complex to be distilled into single digits or binary ratings.
  • It's the culmination of many layers of reputation you build in different places that genuinely reflect who you are as a person and figuring out exactly how that carries value in a variety of contexts.
  • The most basic level is verification of your true identity
  • reliability and helpfulness
  • do what we say we are going to do
  • respect another person's property
  • trusted to pay on time
  • we will be able to perform a Google- or Facebook-like search and see a picture of a person's behaviour in many different contexts, over a length of time. Slivers of data that have until now lived in secluded isolation online will be available in one place. Answers on Quora, reviews on TripAdvisor, comments on Amazon, feedback on Airbnb, videos posted on YouTube, social groups joined, or presentations on SlideShare; as well as a history and real-time stream of who has trusted you, when, where and why. The whole package will come together in your personal reputation dashboard, painting a comprehensive, definitive picture of your intentions, capabilities and values.
  • idea of global reputation
  • By the end of the decade, a good online reputation could be the most valuable currency in your possession.
Francois Bergeron

Events - 0 views

  • This multidisciplinary, scientific meeting features plenary and award lectures, pre-meeting workshops, oral and posters sessions
  • 14,000 scientists
  • General fields of study include anatomy, physiology, pathology, biochemistry, nutrition, and pharmacology. 
  •  
    Trade show for the Mosquito
Francois Bergeron

Comparative study technology incubators in Quebec and abroad - 6. Evaluation ... - 0 views

  • evaluation of Inno-centre and trends in incubation.
  • Evaluation of Inno-centre 6.4.1 How does Inno-centre's business model compare with the business models of comparable incubators in Canada and outside Canada?
Kurt Laitner

Goodbye, Dilbert: 'The Rise of the Naked Economy' » Knowledge@Wharton - 2 views

  • “teaming”: bringing together a team of professionals for a specific task
  • The old cubicle-based, static company is increasingly being replaced by a more fluid and mobile model: “the constant assembly, disassembly, and reassembly of people, talent, and ideas around a range of challenges and opportunities.”
  • Therefore, the new economy and its “seminomadic workforce” will require “new places to gather, work, live, and interact.”
  • ...17 more annotations...
  • The consumer electronics company Plantronics, for example, knowing that on any given day 40% of its workforce will be working elsewhere, designed its corporate campus to only 60% capacity
  • Their joint enterprise, NextSpace, became their first venture into what they call “coworking,” or the creation of “shared collaborative workspaces.”
  • also nurtures what the authors call “managed serendipity” — ad hoc collaboration between people with diverging but complementary skills
  • the number of coworking spaces worldwide has shot up from 30 in 2006 to 1,130 in 2011
  • someone needs to keep an eye on the big picture, to “connect the dots.”
  • workspaces are designed on a flexible, on-demand and as-needed basis
  • Coonerty and Neuner found that the most productive collaborations tended to pair highly specialized experts with big-picture thinkers
  • they were struck by the number of entrepreneurs and freelancers working at coffee shops in the area
  • Business Talent Group
  • Clients get the specialized help they need at a cost below that of a full-time employee or traditional consulting firm, and specialists are well compensated and rewarded with flexible schedules and a greater degree of choice about which projects to take.
  • This has produced a new market dynamic in which the headhunter of yesteryear has been replaced by “talent brokers” who connect highly specialized talent with companies on a project-by-project basis
  • Matthew Mullenweg, doesn’t have much faith in traditional office buildings or corporate campuses: “I would argue that most offices are full of people not working.”
  • On the other hand, Mullenweg is a big believer in face-to-face collaboration and brainstorming, and flies his teams all over the globe to do so.
  • He also set up an informal workspace in San Francisco called the Lounge
  • Additionally, a 2010 Kauffman-Rand study worried that employer-based health insurance, by discouraging risk-taking, will be an ongoing drag on entrepreneurship
  • the problem of payroll taxes for freelancers
  • up to 44% of independent workers encounter difficulty getting paid fully for their work
Kurt Laitner

UK Indymedia - WOS4: The Creative Anti-Commons and the Poverty of Networks - 0 views

  • Something with no reproduction costs can have no exchange-value in a context of free exchange.
  • Further, unless it can be converted into exchange-value, how can the peer producers be able to acquire the material needs for their own subsistence?
  • For Social Production to have any effect on general material wealth it has to operate within the context of a total system of goods and services, where the physical means of production and the virtual means of production are both available in the commons for peer production.
  • ...26 more annotations...
  • "All texts published in Situationist International may be freely reproduced, translated and edited, even without crediting the original source."
  • The website of the creative commons makes the following statement about it's purpose: "Creative Commons defines the spectrum of possibilities between full copyright -- all rights reserved -- and the public domain -- no rights reserved. Our licenses help you keep your copyright while inviting certain uses of your work -- a 'some rights reserved' copyright."
  • The website of the creative commons makes the following statement about it's purpose: "Creative Commons defines the spectrum of possibilities between full copyright -- all rights reserved -- and the public domain -- no rights reserved. Our licenses help you keep your copyright while inviting certain uses of your work -- a 'some rights reserved' copyright."
  • Or more specifically, who is a position to convert the use-value available in the "commons" into the exchange-value needed to acquire essential subsistence or accumulate wealth?
  • All texts published in Situationist International may be freely reproduced, translated and edited, even without crediting the original source
  • The point of the above is clear, the Creative Commons, is to help "you" (the "Producer") to keep control of "your" work. The right of the "consumer" is not mentioned, neither is the division of "producer" and "consumer" disputed.
  • Creative "Commons" is thus really an Anti-Commons, serving to legitimise, rather than deny, Producer-control and serving to enforce, rather than do away with, the distinction between producer and consumer
  • specifically providing a framework then, for "producers" to deny "consumers" the right to either create use-value or material exchange-value of the "common" stock of value in the Creative "Commons" in their own cultural production
  • Thus, the very problem presented by Lawrence Lessig, the problem of Producer-control, is not in anyway solved by the presented solution, the Creative Commons, so long as the producer has the exclusive right to chose the level of freedom to grant the consumer, a right which Lessig has always maintained support for
  • The Free Software foundation, publishers of the GPL, take a very different approach in their definition of "free," insisting on the "four freedoms:" The Freedom to use, the freedom to study, the freedom to share, and the freedom to modify.
  • The website of the creative commons makes the following statement about it's purpose: "Creative Commons defines the spectrum of possibilities between full copyright -- all rights reserved -- and the public domain -- no rights reserved. Our licenses help you keep your copyright while inviting certain uses of your work -- a 'some rights reserved' copyright
  • In all these cases what is evident is that the freedom being insisted upon is the freedom of the consumer to use and produce, not the "freedom" of the producer to control.
  • Moreover, proponents of free cultural must be firm in denying the right of Producer-control and denying the enforcement of distinction between producer and consumer
  • where a class-less community of workers ("peers") produce collaboratively within a property-less ("commons-based") society
  • Clearly, even Marx would agree that the ideal of Communism was commons-based peer production
  • the property in the commons is entirely non-rivalrous property
  • The use-value of this information commons is fantastic
  • However, if commons-based peer-production is limited exclusively to a commons made of digital property with virtual no reproduction costs then how can the use-value produced be translated into exchange-value?
  • Further, unless it can be converted into exchange-value, how can the peer producers be able to acquire the material needs for their own subsistence
  • The root of the problem of poverty does not lay in a lack of culture or information
  • but of direct exploitation of the producing class by the property owning classes
  • The source of poverty is not reproduction costs, but rather extracted economic rents, forcing the producers to accept less than the full product of their labour as their wage by denying them independent access to the means of production
  • So long as commons-based peer-production is applied narrowly to only an information commons, while the capitalist mode of production still dominates the production of material wealth, owners of material property, namely land and capital, will continue to capture the marginal wealth created as a result of the productivity of the information commons.
  • Whatever exchange value is derived from the information commons will always be captured by owners of real property, which lays outside the commons.
  • For Social Production to have any effect on general material wealth it has to operate within the context of a total system of goods and services, where the physical means of production and the virtual means of production are both available in the commons for peer production
  • For free cultural to create a valuable common stock it must destroy the privilege of the producer to control the common stock, and for this common stock to increase the real material wealth of peer producers, the commons must include real property, not just information
  •  
    Strong grasp of the issues, not entirely in agreement on the thesis that the solution is the removal of producer control as this does not support the initiation of an economy, only its ongoing function once established, and the economy is continuously intiating itself, so it is not a one time problem. I do support the notion that producers are in fact none other than consumers of prior art but also that effort is required to remix as much as the magical creation out of nothing. In order to incent this behavior then (or even merely to allow it) the basic scarce needs of the individual must be taken care of. This may be done by ensuring beneficial ownership, but even that suffers from the initiation problem, which the requires us to have a pool of wealth to kickstart the thing by supporting every last person on earth with a basic income - that wealth is in fact available...
Tiberius Brastaviceanu

Proposal - Food SFS-08-2014 - 1 views

  • development of more resource-efficient and sustainable food production and processing
  • competitive and innovative
    • Tiberius Brastaviceanu
       
      We are proposing collaborative ways, here the accent is put on competitive ways 
    • Tiberius Brastaviceanu
       
      We are proposing collaborative methods. Here, the accent is put on COMPETITIVE ways for a "sustainable circular economy"
  • ...29 more annotations...
  • reduction in water and energy use
  • gas emissions and waste generation
  • improving the efficiency
  • ensuring or improving shelf life, food safety and quality
  • competitive eco-innovative processes should be developed
  • sustainable circular economy
  • Intellectual Property (IP)
  • In phase 1, a feasibility study
  • technological/practical as well as economic viability of an innovation idea/concept with considerable novelty to the industry sector
  • to establish a solid high-potential innovation project
  • increase profitability of the enterprise through innovation
  • increase the return in investment in innovation activities
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • apply to phase 1 with a view to applying to phase 2 at a later date, or directly to phase 2.
  • EUR 50,000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      Phase 1 has a classical language. We would need to mask our true identity and beliefs writing this grant proposal. I don't think it's for us... But this is only my opinion. 
  • In phase 2, innovation projects will be supported that address the specific challenge of Sustainable Food Security
  • demonstrate high potential in terms of company competitiveness and growth underpinned by a strategic business plan
    • Tiberius Brastaviceanu
       
      This is more about individual companies and their competitive advantage. Not about networks and not about collaboration and sharing. 
    • Tiberius Brastaviceanu
       
      Moreover, they put emphasis on IP protection and ownership, when we must talk about commons, knowledge commons applied to agriculture, sharing platforms, etc. 
  • Proposals shall be based on an elaborated business plan either developed through phase 1 or another means.
  • Particular attention must be paid to IP protection and ownership
  • Successful beneficiaries will be offered coaching and mentoring support during phase 1 and phase 2.
  • Enhancing profitability
  • competitive solutions
  • global business opportunities
  • sustainable
  • turnover
  • IP management
  • return on investment and profit
Tiberius Brastaviceanu

ICT-37-2014 - 0 views

  • provide support to a large set of early stage high risk innovative SMEs in the ICT sector
  • Focus will be on SME proposing innovative ICT concept, product and service applying new sets of rules, values and models which ultimately disrupt existing markets.
  • disruptive ideas
  • ...27 more annotations...
  • prototyping
  • validation and demonstration
  • deployment
  • Proposed projects should have a potential for disruptive innovation and fast market up-take in ICT.
  • interesting for entrepreneurs and young innovative companies
  • bearing a strong EU dimension.
  • Participants can apply to Phase 1 with a view to applying to Phase 2 at a later date, or directly to Phase 2.
  • In phase 1, a feasibility study
  • services and technologies or new market applications of existing technologies
  • Intellectual Property (IP) management
  • increase profitability
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • EUR 50.000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      I don't understand why they call it Open (ODI) when they also talk about Intellectual Property. 
  • company competitiveness
  • prototyping
  • demonstration
  • readiness and maturity for market introduction
  • may also include some research
  • For technological innovation a Technology Readiness Levels of 6 or above
  • Proposals shall be based on an elaborated business plan
  • Proposals shall contain a specification for the outcome of the project, including a first commercialisation plan, and criteria for success.
    • Tiberius Brastaviceanu
       
      We are not a SME and have no classical commercialization plan. We can form an Exchange Firm for example, and offer services for OVNi for example, helping local food networks, providing them infrastructure. But in that case, the business plan for the Exchange Firm should contain a revenue model. Who is going to pay for the deployment of the OVNi in order to make the Exchange Firm commercially viable in the eyes of the Commission?  
  • coaching and mentoring support during phase 1 and phase 2
  • growth plan and maximising it through internationalisation
  • Enhancing profitability and growth performance of SMEs by combining and transferring new and existing knowledge into innovative, disruptive and competitive solutions
  • Open Disruptive Innovation Scheme
  •  
    "Specific Challenge: The challenge is to provide support to a large set of early stage high risk innovative SMEs in the ICT sector. Focus will be on SME proposing innovative ICT concept, product and service applying new sets of rules, values and models which ultimately disrupt existing markets."
1 - 20 of 28 Next ›
Showing 20 items per page