Skip to main content

Home/ Sensorica Knowledge/ Group items tagged solutions

Rss Feed Group items tagged

Francois Bergeron

Displacement | Microstrain - 0 views

  • MicroStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrain’s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175°C in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality.
  • croStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrain’s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175°C in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality. MicroStrain’s displacement sensing products including transducers, signal conditioners, and motherboards. These systems provide highly precise measurement solutions. MicroStrain’s contact displacement transducers deliver highly precise linear measurements with an extremely small, miniature design.  Both gauging and non-gauging displacement transducers are available. Our non-contact displacement transducers are designed to measure the displacement and proximity of a metal target without physical contact. MicroStrain offers wireless, analog, and digital output DVRT signal conditioners. Signal conditioners are required for use with MicroStrain DVRT displacement sensors.   .familyNav1, .familyNav2, .familyNav3, .familyNav4 { background: none repeat scroll 0 0 #CCCCCC; color: #FFFFFF; display: block; font-size: 14px; margin: 1px 0; padding: 6px 0 3px 6px; text-decoration: none; } .familyNav1:hover, .familyNav2:hover, .familyNav3:hover, .familyNav4:hover { opacity:1.0; filter:alpha(opacity=100); } .familyNav1:hover, .familyNav1.live { background:#0468AD; } .familyNav2:hover, .familyNav2.live{ background:#32641E; } .familyNav3:hover, .familyNav3.live{ background:#B55A11; } .familyNav4:hover, .familyNav4.live{ background:#76285D; } .familySub { margin: -1px 0 0; opacity:0.7; filter:alpha(opacity=80); font-size:12px; } .familySub img { width: 22px; } WIRELESS SENSOR NETWORKS
Tiberius Brastaviceanu

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Eme... - 1 views

  • how technological innovation is restructuring productivity and the social and economic impact resulting from these changes
  • concern about the technological displacement of jobs, stagnant middle class income, and wealth disparities in an emerging "winner-take-all" economy
  • personal data ecosystems that could potentially unlock a revolutionary wave of individual economic empowerment
  • ...70 more annotations...
  • the bell curve described the wealth and income distribution of American society
  • As the technology boom of the 1990s increased productivity, many assumed that the rising water level of the economy was raising all those middle class boats. But a different phenomenon has also occurred. The wealthy have gained substantially over the past two decades while the middle class has remained stagnant in real income, and the poor are simply poorer.
  • America is turning into a power-curve society: one where there are a relative few at the top and a gradually declining curve with a long tail of relatively poorer people.
  • For the first time since the end of World War II, the middle class is apparently doing worse, not better, than previous generations.
  • an alarming trend
  • What is the role of technology in these developments?
  • a sweeping look at the relationship between innovation and productivity
  • New Economy of Personal Information
  • Power-Curve Society
  • the future of jobs
  • the report covers the social, policy and leadership implications of the “Power-Curve Society,”
  • World Wide Web
  • as businesses struggle to come to terms with this revolution, a new set of structural innovations is washing over businesses, organizations and government, forcing near-constant adaptation and change. It is no exaggeration to say that the explosion of innovative technologies and their dense interconnections is inventing a new kind of economy.
  • the new technologies are clearly driving economic growth and higher productivity, the distribution of these benefits is skewed in worrisome ways.
  • the networked economy seems to be producing a “power-curve” distribution, sometimes known as a “winner-take-all” economy
  • Economic and social insecurity is widespread.
  • major component of this new economy, Big Data, and the coming personal data revolution fomenting beneath it that seeks to put individuals, and not companies or governments, at the forefront. Companies in the power-curve economy rely heavily on big databases of personal information to improve their marketing, product design, and corporate strategies. The unanswered question is whether the multiplying reservoirs of personal data will be used to benefit individuals as consumers and citizens, or whether large Internet companies will control and monetize Big Data for their private gain.
  • Why are winner-take-all dynamics so powerful?
  • appear to be eroding the economic security of the middle class
  • A special concern is whether information and communications technologies are actually eliminating more jobs than they are creating—and in what countries and occupations.
  • How is the power-curve economy opening up opportunities or shutting them down?
  • Is it polarizing income and wealth distributions? How is it changing the nature of work and traditional organizations and altering family and personal life?
  • many observers fear a wave of social and political disruption if a society’s basic commitments to fairness, individual opportunity and democratic values cannot be honored
  • what role government should play in balancing these sometimes-conflicting priorities. How might educational policies, research and development, and immigration policies need to be altered?
  • The Innovation Economy
  • Conventional economics says that progress comes from new infusions of capital, whether financial, physical or human. But those are not necessarily the things that drive innovation
  • What drives innovation are new tools and then the use of those new tools in new ways.”
  • at least 50 percent of the acceleration of productivity over these years has been due to ICT
  • economists have developed a number of proxy metrics for innovation, such as research and development expenditures.
  • Atkinson believes that economists both underestimate and overestimate the scale and scope of innovation.
  • Calculating the magnitude of innovation is also difficult because many innovations now require less capital than they did previously.
  • Others scholars
  • see innovation as going in cycles, not steady trajectories.
  • A conventional approach is to see innovation as a linear, exponential phenomenon
  • leads to gross errors
  • Atkinson
  • believes that technological innovation follows the path of an “S-curve,” with a gradual increase accelerating to a rapid, steep increase, before it levels out at a higher level. One implication of this pattern, he said, is that “you maximize the ability to improve technology as it becomes more diffused.” This helps explain why it can take several decades to unlock the full productive potential of an innovation.
  • innovation keeps getting harder. It was pretty easy to invent stuff in your garage back in 1895. But the technical and scientific challenges today are huge.”
  • costs of innovation have plummeted, making it far easier and cheaper for more people to launch their own startup businesses and pursue their unconventional ideas
  • innovation costs are plummeting
  • Atkinson conceded such cost-efficiencies, but wonders if “the real question is that problems are getting more complicated more quickly than the solutions that might enable them.
  • we may need to parse the different stages of innovation: “The cost of innovation generally hasn’t dropped,” he argued. “What has become less expensive is the replication and diffusion of innovation.”
  • what is meant by “innovation,”
  • “invention plus implementation.”
  • A lot of barriers to innovation can be found in the lack of financing, organizational support systems, regulation and public policies.
  • 90 percent of innovation costs involve organizational capital,”
  • there is a serious mismatch between the pace of innovation unleashed by Moore’s Law and our institutional and social capacity to adapt.
  • This raises the question of whether old institutions can adapt—or whether innovation will therefore arise through other channels entirely. “Existing institutions are often run by followers of conventional wisdom,”
  • The best way to identify new sources of innovation, as Arizona State University President Michael Crow has advised, is to “go to the edge and ignore the center.”
  • Paradoxically, one of the most potent barriers to innovation is the accelerating pace of innovation itself.
  • Institutions and social practice cannot keep up with the constant waves of new technologies
  • “We are moving into an era of constant instability,”
  • “and the half-life of a skill today is about five years.”
  • Part of the problem, he continued, is that our economy is based on “push-based models” in which we try to build systems for scalable efficiencies, which in turn demands predictability.
  • The real challenge is how to achieve radical institutional innovations that prepare us to live in periods of constant two- or three-year cycles of change. We have to be able to pick up new ideas all the time.”
  • pace of innovation is a major story in our economy today.
  • The App Economy consists of a core company that creates and maintains a platform (such as Blackberry, Facebook or the iPhone), which in turn spawns an ecosystem of big and small companies that produce apps and/or mobile devices for that platform
  • tied this success back to the open, innovative infrastructure and competition in the U.S. for mobile devices
  • standard
  • The App Economy illustrates the rapid, fluid speed of innovation in a networked environment
  • crowdsourcing model
  • winning submissions are
  • globally distributed in an absolute sense
  • problem-solving is a global, Long Tail phenomenon
  • As a technical matter, then, many of the legacy barriers to innovation are falling.
  • small businesses are becoming more comfortable using such systems to improve their marketing and lower their costs; and, vast new pools of personal data are becoming extremely useful in sharpening business strategies and marketing.
  • Another great boost to innovation in some business sectors is the ability to forge ahead without advance permission or regulation,
  • “In bio-fabs, for example, it’s not the cost of innovation that is high, it’s the cost of regulation,”
  • This notion of “permissionless innovation” is crucial,
  • “In Europe and China, the law holds that unless something is explicitly permitted, it is prohibited. But in the U.S., where common law rather than Continental law prevails, it’s the opposite
Tiberius Brastaviceanu

Density Design | Fineo - 1 views

  •  
    DensityDesign develops research projects in the domain of visual representation, stemming from a design perspective. Our research interests include theoretical and epistemological reflections on visualizations and analyses of their cognitive underpinnings, in addition to the development of large frameworks for data visualization and ad-hoc solutions for speculative narration. We adopt an open approach to visualization, working from visual storytelling to visual analytics. Design is, thus, treated more like a proper language than a tool. We use this language in practice to define a new-visual-epistemology.
Tiberius Brastaviceanu

Collaboration Is Misunderstood and Overused - Andrew Campbell - Harvard Business Review - 0 views

  • managers in different functions or different business units seem surprisingly reluctant to work together
  • Jealousies, misunderstandings and enmity seem more common than collaboration
  • Why does collaboration fail? There are lots of reasons. Collaboration can be time-consuming. It creates risks for the participants. Competing objectives can be hard to resolve
  • ...27 more annotations...
  • people confuse collaboration with teamwork.
    • Tiberius Brastaviceanu
       
      "Competing objectives can be hard to resolve", well, this is what happens when you try to create a culture of collaboration within an overarching competitive environment.
  • Teams are created when managers need to work closely together to achieve a joint outcome.
  • actions are interdependent
  • committed to a single result
  • joint decisions
  • cautious about taking unilateral action
  • someone with the authority to resolve disputes
  • Team members may dislike
  • each other
  • But with a good leader they can still perform.
  • Collaborators face a different challenge
  • they often also have competing goals
  • the shared goal is usually only a small part of their responsibilities
  • collaborators cannot rely on a leader to resolve differences
  • collaborators cannot walk away from each other, when they disagree.
  • a collaborative relationship
  • is a form of customer-supplier relationship in which the participants have all the difficulties of contracting with each other without the power to walk away if the other party is being unreasonable or insensitive.
  • my advice is to avoid relying on a collaborative relationship except in the rare cases when a company objective is important enough to warrant some collaborative action but not so important as to warrant a dedicated team.
  • collaboration requires emotional engagement
  • respect
  • first-among-equals
  • creatively bargain
  • other over costs and benefits.
  • don't think of it as a permanent solution
  • collaborative relationship
  • transition to an easier form of interaction
Tiberius Brastaviceanu

Proposal - Food SFS-08-2014 - 1 views

  • development of more resource-efficient and sustainable food production and processing
  • competitive and innovative
    • Tiberius Brastaviceanu
       
      We are proposing collaborative ways, here the accent is put on competitive ways 
    • Tiberius Brastaviceanu
       
      We are proposing collaborative methods. Here, the accent is put on COMPETITIVE ways for a "sustainable circular economy"
  • ...29 more annotations...
  • reduction in water and energy use
  • gas emissions and waste generation
  • improving the efficiency
  • ensuring or improving shelf life, food safety and quality
  • competitive eco-innovative processes should be developed
  • sustainable circular economy
  • Intellectual Property (IP)
  • In phase 1, a feasibility study
  • technological/practical as well as economic viability of an innovation idea/concept with considerable novelty to the industry sector
  • to establish a solid high-potential innovation project
  • increase profitability of the enterprise through innovation
  • increase the return in investment in innovation activities
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • apply to phase 1 with a view to applying to phase 2 at a later date, or directly to phase 2.
  • EUR 50,000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      Phase 1 has a classical language. We would need to mask our true identity and beliefs writing this grant proposal. I don't think it's for us... But this is only my opinion. 
  • In phase 2, innovation projects will be supported that address the specific challenge of Sustainable Food Security
  • demonstrate high potential in terms of company competitiveness and growth underpinned by a strategic business plan
    • Tiberius Brastaviceanu
       
      This is more about individual companies and their competitive advantage. Not about networks and not about collaboration and sharing. 
    • Tiberius Brastaviceanu
       
      Moreover, they put emphasis on IP protection and ownership, when we must talk about commons, knowledge commons applied to agriculture, sharing platforms, etc. 
  • Proposals shall be based on an elaborated business plan either developed through phase 1 or another means.
  • Particular attention must be paid to IP protection and ownership
  • Successful beneficiaries will be offered coaching and mentoring support during phase 1 and phase 2.
  • Enhancing profitability
  • competitive solutions
  • global business opportunities
  • sustainable
  • turnover
  • IP management
  • return on investment and profit
Tiberius Brastaviceanu

ICT-37-2014 - 0 views

  • provide support to a large set of early stage high risk innovative SMEs in the ICT sector
  • Focus will be on SME proposing innovative ICT concept, product and service applying new sets of rules, values and models which ultimately disrupt existing markets.
  • disruptive ideas
  • ...27 more annotations...
  • prototyping
  • validation and demonstration
  • deployment
  • Proposed projects should have a potential for disruptive innovation and fast market up-take in ICT.
  • interesting for entrepreneurs and young innovative companies
  • bearing a strong EU dimension.
  • Participants can apply to Phase 1 with a view to applying to Phase 2 at a later date, or directly to Phase 2.
  • In phase 1, a feasibility study
  • services and technologies or new market applications of existing technologies
  • Intellectual Property (IP) management
  • increase profitability
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • EUR 50.000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      I don't understand why they call it Open (ODI) when they also talk about Intellectual Property. 
  • company competitiveness
  • prototyping
  • demonstration
  • readiness and maturity for market introduction
  • may also include some research
  • For technological innovation a Technology Readiness Levels of 6 or above
  • Proposals shall be based on an elaborated business plan
  • Proposals shall contain a specification for the outcome of the project, including a first commercialisation plan, and criteria for success.
    • Tiberius Brastaviceanu
       
      We are not a SME and have no classical commercialization plan. We can form an Exchange Firm for example, and offer services for OVNi for example, helping local food networks, providing them infrastructure. But in that case, the business plan for the Exchange Firm should contain a revenue model. Who is going to pay for the deployment of the OVNi in order to make the Exchange Firm commercially viable in the eyes of the Commission?  
  • coaching and mentoring support during phase 1 and phase 2
  • growth plan and maximising it through internationalisation
  • Enhancing profitability and growth performance of SMEs by combining and transferring new and existing knowledge into innovative, disruptive and competitive solutions
  • Open Disruptive Innovation Scheme
  •  
    "Specific Challenge: The challenge is to provide support to a large set of early stage high risk innovative SMEs in the ICT sector. Focus will be on SME proposing innovative ICT concept, product and service applying new sets of rules, values and models which ultimately disrupt existing markets."
Tiberius Brastaviceanu

Innovative schemes for open innovation and science 2.0 INSO-4-2015 - 0 views

  • Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015
  • open innovation and science 2.0
  • assist universities to become open innovation centres for their region in cooperation with companies, realising the ERA priorities, and to enable public administrations to drive innovation in and through the public sector.
  • ...16 more annotations...
  • help universities, companies and public authorities to enhance their capacity to engage in science 2.0 and open innovation.
  • effective linkages for innovation between universities and companies and other employment sectors, and provide freely accessible innovation training platforms, including digital platforms. 
  • consortia
  • adopt innovative ways to create new knowledge, new jobs and promote economic growth
  • a). Inter-sectoral mobility
  • b) Academia- Business knowledge co-creation
  • c) Innovation leadership programme for public administrations and researchers
  • a policy of double nominations
  • a policy to further and recognise inter-sectoral mobility
  • This challenge can be addressed through different sets of actions:
    • Tiberius Brastaviceanu
       
      the sub-sections are not addressed at once.
  • develop or (further) implement open innovative schemes to strengthen linkages between academia, industry and community
  • Research institutions together with companies are expected to build sustainable structures which help to absorb needs of users and thereby become co-creators of new solutions.  SMEs should be encouraged to participate.
  • Gender aspects need to be taken into account.
    • Tiberius Brastaviceanu
       
      This is something that really fits SENSORICA. We've been working on this for 2 years now. 
  • developing curricula and providing freely through online platforms, possibly combined with other delivery mechanisms, innovation training for public administrations and researchers.
  •  
    "Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015"
sebastianklemm

EAT - The science-based global platform for food system transformation - 1 views

  •  
    Our vision is a fair and sustainable global food system for healthy people and planet - leaving no one behind. Our mission is to transform our global food system through sound science, impatient disruption and novel partnerships. Everything we do is guided by a set of principles that define our character and working culture. These values are the shared convictions that we bring to our professional and personal conduct. We: > Scale bold systems change based on solid science > Accelerate impact through collaboration > Deliver disruptive solutions, where others can't > Embody diversity, honesty and integrity > Champion fairness and equity, leaving no one behind
sebastianklemm

Social Impact Network - 0 views

  •  
    The "Social Impact Network" approach will be a combination of a crowd based impact investment infrastructure, onboarded international aid organisation as stakeholders and local project coordinators for the implementation of impact projects in local communities in need. The platform will start with Photovoltaic projects in Lebanon, with UNDP Lebanon Country Office as first main stakeholder that reviews the PV projects & identifies project coordinators. This approach can also work to help implement the "Greens for Good" solution.
Tiberius Brastaviceanu

The New Normal in Funding University Science | Issues in Science and Technology - 1 views

  • Government funding for academic research will remain limited, and competition for grants will remain high. Broad adjustments will be needed
  • he sequester simply makes acute a chronic condition that has been getting worse for years.
  • the federal budget sequester
  • ...72 more annotations...
  • systemic problems that arise from the R&D funding system and incentive structure that the federal government put in place after World War II
  • Researchers across the country encounter increasingly fierce competition for money.
  • unding rates in many National Institutes of Health (NIH) and National Science Foundation (NSF) programs are now at historical lows, declining from more than 30% before 2001 to 20% or even less in 2011
  • even the most prominent scientists will find it difficult to maintain funding for their laboratories, and young scientists seeking their first grant may become so overwhelmed that individuals of great promise will be driven from the field
  • anxiety and frustration
  • The growth of the scientific enterprise on university campuses during the past 60 years is not sustainable and has now reached a tipping point at which old models no longer work
  • Origins of the crisis
  • ederal funding agencies must work with universities to ensure that new models of funding do not stymie the progress of science in the United States
  • The demand for research money greatly exceeds the supply
  • the demand for research funding has gone up
  • The deeper sources of the problem lie in the incentive structure of the modern research university, the aspirations of scientists trained by those universities, and the aspirations of less research-intensive universities and colleges across the nation
  • competitive grants system
  • if a university wants to attract a significant amount of sponsored research money, it needs doctoral programs in the relevant fields and faculty members who are dedicated to both winning grants and training students
  • The production of science and engineering doctorates has grown apace
  • Even though not all doctorate recipients become university faculty, the size of the science and engineering faculty at U.S. universities has grown substantially
  • proposal pressure goes up
  • These strategies make sense for any individual university, but will fail collectively unless federal funding for R&D grows robustly enough to keep up with demand.
  • At the very time that universities were enjoying rapidly growing budgets, and creating modes of operation that assumed such largess was the new normal, Price warned that it would all soon come to a halt
  • the human and financial resources invested in science had been increasing much faster than the populations and economies of those regions
  • growth in the scientific enterprise would have to slow down at some point, growing no more than the population or the economy.
  • Dead-end solutions
  • studies sounded an alarm about the potential decline in U.S. global leadership in science and technology and the grave implications of that decline for economic growth and national security
  • Although we are not opposed to increasing federal funding for research, we are not optimistic that it will happen at anywhere near the rate the Academies seek, nor do we think it will have a large impact on funding rates
  • universities should not expect any radical increases in domestic R&D budgets, and most likely not in defense R&D budgets either, unless the discretionary budgets themselves grow rapidly. Those budgets are under pressure from political groups that want to shrink government spending and from the growth of spending in mandatory programs
  • The basic point is that the growth of the economy will drive increases in federal R&D spending, and any attempt to provide rapid or sustained increases beyond that growth will require taking money from other programs.
  • The demand for research money cannot grow faster than the economy forever and the growth curve for research money flattened out long ago.
  • Path out of crisis
  • The goal cannot be to convince the government to invest a higher proportion of its discretionary spending in research
  • Getting more is not in the cards, and some observers think the scientific community will be lucky to keep what it has
  • The potential to take advantage of the infrastructure and talent on university campuses may be a win-win situation for businesses and institutions of higher education.
  • Why should universities and colleges continue to support scientific research, knowing that the financial benefits are diminishing?
  • esearch culture
  • attract good students and faculty as well as raise their prestige
  • mission to expand the boundaries of human knowledge
  • faculty members are committed to their scholarship and will press on with their research programs even when external dollars are scarce
  • training
  • take place in
  • research laboratories
  • it is critical to have active research laboratories, not only in elite public and private research institutions, but in non-flagship public universities, a diverse set of private universities, and four-year colleges
  • How then do increasingly beleaguered institutions of higher education support the research efforts of the faculty, given the reality that federal grants are going to be few and far between for the majority of faculty members? What are the practical steps institutions can take?
  • change the current model of providing large startup packages when a faculty member is hired and then leaving it up to the faculty member to obtain funding for the remainder of his or her career
  • universities invest less in new faculty members and spread their internal research dollars across faculty members at all stages of their careers, from early to late.
    • Tiberius Brastaviceanu
       
      Sharing of resources, see SENSORICA's NRP
  • national conversation about changes in startup packages and by careful consultations with prospective faculty hires about long-term support of their research efforts
  • Many prospective hires may find smaller startup packages palatable, if they can be convinced that the smaller packages are coupled with an institutional commitment to ongoing research support and more reasonable expectations about winning grants.
  • Smaller startup packages mean that in many situations, new faculty members will not be able to establish a functioning stand-alone laboratory. Thus, space and equipment will need to be shared to a greater extent than has been true in the past.
  • construction of open laboratory spaces and the strategic development of well-equipped research centers capable of efficiently servicing the needs of an array of researchers
  • phaseout of the individual laboratory
  • enhanced opportunities for communication and networking among faculty members and their students
  • Collaborative proposals and the assembly of research teams that focus on more complex problems can arise relatively naturally as interactions among researchers are facilitated by proximity and the absence of walls between laboratories.
  • An increased emphasis on team research
  • investments in the research enterprise
  • can be directed at projects that have good buy-in from the faculty
  • learn how to work both as part of a team and independently
  • Involvement in multiple projects should be encouraged
  • The more likely trajectory of a junior faculty member will evolve from contributing team member to increasing leadership responsibilities to team leader
  • nternal evaluations of contributions and potential will become more important in tenure and promotion decisions.
    • Tiberius Brastaviceanu
       
      Need value accounting system
  • relationships with foundations, donors, state agencies, and private business will become increasingly important in the funding game
  • The opportunities to form partnerships with business are especially intriguing
    • Tiberius Brastaviceanu
       
      The problem is to change the model and go open source, because IP stifles other processes that might benefit Universities!!!
  • Further complicating university collaborations with business is that past examples of such partnerships have not always been easy or free of controversy.
  • some faculty members worried about firms dictating the research priorities of the university, pulling graduate students into proprietary research (which could limit what they could publish), and generally tugging the relevant faculty in multiple directions.
  • developed rules and guidelines to control them
  • University faculty and businesspeople often do not understand each other’s cultures, needs, and constraints, and such gaps can lead to more mundane problems in university/industry relations, not least of which are organizational demands and institutional cultures
    • Tiberius Brastaviceanu
       
      Needs for mechanisms to govern, coordinate, structure an ecosystem -See SENSORICA's Open Alliance model
  • n addition to funding for research, universities can receive indirect benefits from such relationships. High-profile partnerships with businesses will underline the important role that universities can play in the economic development of a region.
  • Universities have to see firms as more than just deep pockets, and firms need to see universities as more than sources of cheap skilled labor.
  • foundations or other philanthropy
  • We do not believe that research proposed and supervised by individual principal investigators will disappear anytime soon. It is a research model that has proven to be remarkably successful and enduring
  • However, we believe that the most vibrant scientific communities on university and college campuses, and the ones most likely to thrive in the new reality of funding for the sciences, will be those that encourage the formation of research teams and are nimble with regard to funding sources, even as they leave room for traditional avenues of funding and research.
sebastianklemm

Raise Green - 0 views

  •  
    Raise Green's investor marketplace is a platform for local impact investing. We offer access to accredited and non-accredited, corporate or individual investors who want fractional ownership in clean energy and climate solution projects, and are looking to invest for local impact. Our investor marketplace is licensed with the SEC and FINRA to sell private securities. Raise Green is a licensed Funding Portal with the Securities and Exchange Commission (SEC) and Financial Industry Regulatory Authority (FINRA) under Section 4(a)(6) of the United States Securities Act, SEC File No.: 7-191.
sebastianklemm

Fresh Ventures Studio - 0 views

  •  
    "Fresh Ventures is a venture building program and startup studio based in The Netherlands. We co-found companies with experienced professionals and entrepreneurs to address systemic challenges in the food system." (Direct feedback upon inquiry: "At Fresh we're focusing on pre-idea and pre-team, so the maturity of this solution is already too progressed for us, but it's exciting to see the development.")
sebastianklemm

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH - 2 views

  •  
    GIZ working to achieve sustainable development every day: As a service provider in the field of international cooperation for sustainable development and international education work, we are dedicated to shaping a future worth living around the world. Together with our commissioning parties and partners, we generate and implement ideas for political, social and economic change. GIZ works flexibly to deliver effective and efficient solutions that offer people better prospects and sustainably improve their living conditions. For GIZ, the 2030 Agenda is the overarching framework that guides its work, which it implements in close cooperation with its partners and commissioning parties.
‹ Previous 21 - 40 of 50 Next ›
Showing 20 items per page