Skip to main content

Home/ Sensorica Knowledge/ Group items tagged small

Rss Feed Group items tagged

Kurt Laitner

Email Management & Contact Manager Software - Relenta CRM - Small Business CRM Software - 0 views

  •  
    This is not free.
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Kurt Laitner

Stigmergy | GeorgieBC's Blog - 0 views

  • As no one owns the system, there is no need for a competing group to be started to change ownership to a different group
    • Kurt Laitner
       
      but one needs a mechanism to ensure accidental duplication doesn't happen
  • there is no need for communication outside of task completion
    • Kurt Laitner
       
      disagree
  • endless discussion
  • ...12 more annotations...
  • personality conflicts
  • begin to steer direction
  • more interested and dedicated personalities emerge
    • Kurt Laitner
       
      as opposed to the 'strong' personalities earlier panned?
  • work most valued by the rest of the user group
    • Kurt Laitner
       
      determined how?
  • As more members are added, more will experience frustration at limited usefulness or autonomy
    • Kurt Laitner
       
      how to avoid this duplication of skills?
  • stigmergy encourages splintering
    • Kurt Laitner
       
      I would need to see a convincing argument for this, ant colonies are pretty large
  • as communication is easier and there is more autonomy in smaller groups, splintering is the more likely outcome of growth.
    • Kurt Laitner
       
      not convinced that splintering should be the outcome, fractal growth would be preferable, also communication is not limited to small groups, nor is it necessarily 'better' in them
  • Transparency allows information to travel freely between the various nodes
  • Information sharing is driven by the information, not personal relationships
  • it is inefficient to have the same task performed twice
    • Kurt Laitner
       
      that depends on the type of task, and the way it is being done, if it is repetative with a well understood solution, then yes, otherwise less so
  • It is neither reasonable nor desirable for individual thought and action to be subjugated to group consensus in matters which do not affect the group
  • it is frankly impossible to accomplish complex tasks if every decision must be presented for approval
Tiberius Brastaviceanu

The Baffler - 0 views

  • This tendency to view questions of freedom primarily through the lens of economic competition, to focus on the producer and the entrepreneur at the expense of everyone else, shaped O’Reilly’s thinking about technology.
  • the O’Reilly brand essence is ultimately a story about the hacker as hero, the kid who is playing with technology because he loves it, but one day falls into a situation where he or she is called on to go forth and change the world,
  • His true hero is the hacker-cum-entrepreneur, someone who overcomes the insurmountable obstacles erected by giant corporations and lazy bureaucrats in order to fulfill the American Dream 2.0: start a company, disrupt an industry, coin a buzzword.
  • ...139 more annotations...
  • gospel of individualism, small government, and market fundamentalism
  • innovation is the new selfishness
  • mastery of public relations
  • making it seem as if the language of economics was, in fact, the only reasonable way to talk about the subject
  • memes are for losers; the real money is in epistemes.
  • “Open source software” was also the first major rebranding exercise overseen by Team O’Reill
  • It’s easy to forget this today, but there was no such idea as open source software before 1998; the concept’s seeming contemporary coherence is the result of clever manipulation and marketing.
  • ideological cleavage between two groups
  • Richard Stallman
  • Free Software Foundation, preoccupied with ensuring that users had rights with respect to their computer programs. Those rights weren’t many—users should be able to run the program for any purpose, to study how it works, to redistribute copies of it, and to release their improved version (if there was one) to the public
  • “free software.”
  • association with “freedom” rather than “free beer”
  • copyleft
  • profound critique of the role that patent law had come to play in stifling innovation and creativity.
  • Plenty of developers contributed to “free software” projects for reasons that had nothing to do with politics. Some, like Linus Torvalds, the Finnish creator of the much-celebrated Linux operating system, did so for fun; some because they wanted to build more convenient software; some because they wanted to learn new and much-demanded skills.
  • Stallman’s rights-talk, however, risked alienating the corporate types
  • he was trying to launch a radical social movement, not a complacent business association
  • By early 1998 several business-minded members of the free software community were ready to split from Stallman, so they masterminded a coup, formed their own advocacy outlet—the Open Source Initiative—and brought in O’Reilly to help them rebrand.
  • “open source”
  • The label “open source” may have been new, but the ideas behind it had been in the air for some time.
  • In those early days, the messaging around open source occasionally bordered on propaganda
  • This budding movement prided itself on not wanting to talk about the ends it was pursuing; except for improving efficiency and decreasing costs, those were left very much undefined.
  • extremely decentralized manner, using Internet platforms, with little central coordination.
  • In contrast to free software, then, open source had no obvious moral component.
  • “open source is not particularly a moral or a legal issue. It’s an engineering issue. I advocate open source, because . . . it leads to better engineering results and better economic results
  • While free software was meant to force developers to lose sleep over ethical dilemmas, open source software was meant to end their insomnia.
  • Stallman the social reformer could wait for decades until his ethical argument for free software prevailed in the public debate
  • O’Reilly the savvy businessman had a much shorter timeline: a quick embrace of open source software by the business community guaranteed steady demand for O’Reilly books and events
  • The coup succeeded. Stallman’s project was marginalized. But O’Reilly and his acolytes didn’t win with better arguments; they won with better PR.
  • A decade after producing a singular vision of the Internet to justify his ideas about the supremacy of the open source paradigm, O’Reilly is close to pulling a similar trick on how we talk about government reform.
  • much of Stallman’s efforts centered on software licenses
  • O’Reilly’s bet wa
  • the “cloud”
  • licenses would cease to matter
  • Since no code changed hands
  • So what did matter about open source? Not “freedom”
  • O’Reilly cared for only one type of freedom: the freedom of developers to distribute software on whatever terms they fancied.
  • the freedom of the producer
  • who must be left to innovate, undisturbed by laws and ethics.
  • The most important freedom,
  • is that which protects “my choice as a creator to give, or not to give, the fruits of my work to you, as a ‘user’ of that work, and for you, as a user, to accept or reject the terms I place on that gift.”
  • O’Reilly opposed this agenda: “I completely support the right of Richard [Stallman] or any individual author to make his or her work available under the terms of the GPL; I balk when they say that others who do not do so are doing something wrong.”
  • The right thing to do, according to O’Reilly, was to leave developers alone.
  • According to this Randian interpretation of open source, the goal of regulation and public advocacy should be to ensure that absolutely nothing—no laws or petty moral considerations—stood in the way of the open source revolution
  • Any move to subject the fruits of developers’ labor to public regulation
  • must be opposed, since it would taint the reputation of open source as technologically and economically superior to proprietary software
  • the advent of the Internet made Stallman’s obsession with licenses obsolete
  • Many developers did stop thinking about licenses, and, having stopped thinking about licenses, they also stopped thinking about broader moral issues that would have remained central to the debates had “open source” not displaced “free software” as the paradigm du jour.
  • Profiting from the term’s ambiguity, O’Reilly and his collaborators likened the “openness” of open source software to the “openness” of the academic enterprise, markets, and free speech.
  • “open to intellectual exchange”
  • “open to competition”
  • “For me, ‘open source’ in the broader sense means any system in which open access to code lowers the barriers to entry into the market”).
  • “Open” allowed O’Reilly to build the largest possible tent for the movement.
  • The language of economics was less alienating than Stallman’s language of ethics; “openness” was the kind of multipurpose term that allowed one to look political while advancing an agenda that had very little to do with politics
  • highlight the competitive advantages of openness.
  • the availability of source code for universal examination soon became the one and only benchmark of openness
  • What the code did was of little importance—the market knows best!—as long as anyone could check it for bugs.
  • The new paradigm was presented as something that went beyond ideology and could attract corporate executives without losing its appeal to the hacker crowd.
  • What Raymond and O’Reilly failed to grasp, or decided to overlook, is that their effort to present open source as non-ideological was underpinned by a powerful ideology of its own—an ideology that worshiped innovation and efficiency at the expense of everything else.
  • What they had in common was disdain for Stallman’s moralizing—barely enough to justify their revolutionary agenda, especially among the hacker crowds who were traditionally suspicious of anyone eager to suck up to the big corporations that aspired to dominate the open source scene.
  • linking this new movement to both the history of the Internet and its future
  • As long as everyone believed that “open source” implied “the Internet” and that “the Internet” implied “open source,” it would be very hard to resist the new paradigm
  • Telling a coherent story about open source required finding some inner logic to the history of the Internet
  • “If you believe me that open source is about Internet-enabled collaboration, rather than just about a particular style of software license,”
  • everything on the Internet was connected to everything else—via open source.
  • The way O’Reilly saw it, many of the key developments of Internet culture were already driven by what he called “open source behavior,” even if such behavior was not codified in licenses.
  • No moralizing (let alone legislation) was needed; the Internet already lived and breathed open source
  • apps might be displacing the browser
  • the openness once taken for granted is no more
  • Openness as a happenstance of market conditions is a very different beast from openness as a guaranteed product of laws.
  • One of the key consequences of linking the Internet to the world of open source was to establish the primacy of the Internet as the new, reinvented desktop
  • This is where the now-forgotten language of “freedom” made a comeback, since it was important to ensure that O’Reilly’s heroic Randian hacker-entrepreneurs were allowed to roam freely.
  • Soon this “freedom to innovate” morphed into “Internet freedom,” so that what we are trying to preserve is the innovative potential of the platform, regardless of the effects on individual users.
  • Lumping everything under the label of “Internet freedom” did have some advantages for those genuinely interested in promoting rights such as freedom of expression
  • Forced to choose between preserving the freedom of the Internet or that of its users, we were supposed to choose the former—because “the Internet” stood for progress and enlightenment.
  • infoware
  • Yahoo
  • their value proposition lay in the information they delivered, not in the software function they executed.
  • The “infoware” buzzword didn’t catch on, so O’Reilly turned to the work of Douglas Engelbart
  • to argue that the Internet could help humanity augment its “collective intelligence” and that, once again, open source software was crucial to this endeavor.
  • Now it was all about Amazon learning from its customers and Google learning from the sites in its index.
  • The idea of the Internet as both a repository and incubator of “collective intelligence”
  • in 2004, O’Reilly and his business partner Dale Dougherty hit on the idea of “Web 2.0.” What did “2.0” mean, exactly?
  • he primary goal was to show that the 2001 market crash did not mean the end of the web and that it was time to put the crash behind us and start learning from those who survived.
  • Tactically, “Web 2.0” could also be much bigger than “open source”; it was the kind of sexy umbrella term that could allow O’Reilly to branch out from boring and highly technical subjects to pulse-quickening futurology
  • O’Reilly couldn’t improve on a concept as sexy as “collective intelligence,” so he kept it as the defining feature of this new phenomenon.
  • What set Web 2.0 apart from Web 1.0, O’Reilly claimed, was the simple fact that those firms that didn’t embrace it went bust
  • find a way to harness collective intelligence and make it part of their business model.
  • By 2007, O’Reilly readily admitted that “Web 2.0 was a pretty crappy name for what’s happening.”
  • O’Reilly eventually stuck a 2.0 label on anything that suited his business plan, running events with titles like “Gov 2.0” and “Where 2.0.” Today, as everyone buys into the 2.0 paradigm, O’Reilly is quietly dropping it
  • assumption that, thanks to the coming of Web 2.0, we are living through unique historical circumstances
  • Take O’Reilly’s musings on “Enterprise 2.0.” What is it, exactly? Well, it’s the same old enterprise—for all we know, it might be making widgets—but now it has learned something from Google and Amazon and found a way to harness “collective intelligence.”
  • tendency to redescribe reality in terms of Internet culture, regardless of how spurious and tenuous the connection might be, is a fine example of what I call “Internet-centrism.”
  • “Open source” gave us the “the Internet,” “the Internet” gave us “Web 2.0,” “Web 2.0” gave us “Enterprise 2.0”: in this version of history, Tim O’Reilly is more important than the European Union
  • For Postman, each human activity—religion, law, marriage, commerce—represents a distinct “semantic environment” with its own tone, purpose, and structure. Stupid talk is relatively harmless; it presents no threat to its semantic environment and doesn’t cross into other ones.
  • Since it mostly consists of falsehoods and opinions
  • it can be easily corrected with facts
  • to say that Tehran is the capital of Iraq is stupid talk
  • Crazy talk, in contrast, challenges a semantic environment, as it “establishes different purposes and assumptions from those we normally accept.” To argue, as some Nazis did, that the German soldiers ended up far more traumatized than their victims is crazy talk.
  • For Postman, one of the main tasks of language is to codify and preserve distinctions among different semantic environments.
  • As he put it, “When language becomes undifferentiated, human situations disintegrate: Science becomes indistinguishable from religion, which becomes indistinguishable from commerce, which becomes indistinguishable from law, and so on.
  • pollution
  • Some words—like “law”—are particularly susceptible to crazy talk, as they mean so many different things: from scientific “laws” to moral “laws” to “laws” of the market to administrative “laws,” the same word captures many different social relations. “Open,” “networks,” and “information” function much like “law” in our own Internet discourse today.
  • For Korzybski, the world has a relational structure that is always in flux; like Heraclitus, who argued that everything flows, Korzybski believed that an object A at time x1 is not the same object as object A at time x2
  • Our language could never properly account for the highly fluid and relational structure of our reality—or as he put it in his most famous aphorism, “the map is not the territory.”
  • Korzybski argued that we relate to our environments through the process of “abstracting,” whereby our neurological limitations always produce an incomplete and very selective summary of the world around us.
  • nothing harmful in this per se—Korzybski simply wanted to make people aware of the highly selective nature of abstracting and give us the tools to detect it in our everyday conversations.
  • Korzybski developed a number of mental tools meant to reveal all the abstracting around us
  • He also encouraged his followers to start using “etc.” at the end of their statements as a way of making them aware of their inherent inability to say everything about a given subject and to promote what he called the “consciousness of abstraction.”
  • There was way too much craziness and bad science in Korzybski’s theories
  • but his basic question
  • “What are the characteristics of language which lead people into making false evaluations of the world around them?”
  • Tim O’Reilly is, perhaps, the most high-profile follower of Korzybski’s theories today.
  • O’Reilly openly acknowledges his debt to Korzybski, listing Science and Sanity among his favorite books
  • It would be a mistake to think that O’Reilly’s linguistic interventions—from “open source” to “Web 2.0”—are random or spontaneous.
  • There is a philosophy to them: a philosophy of knowledge and language inspired by Korzybski. However, O’Reilly deploys Korzybski in much the same way that the advertising industry deploys the latest findings in neuroscience: the goal is not to increase awareness, but to manipulate.
  • O’Reilly, of course, sees his role differently, claiming that all he wants is to make us aware of what earlier commentators may have overlooked. “A metaphor is just that: a way of framing the issues such that people can see something they might otherwise miss,
  • But Korzybski’s point, if fully absorbed, is that a metaphor is primarily a way of framing issues such that we don’t see something we might otherwise see.
  • In public, O’Reilly modestly presents himself as someone who just happens to excel at detecting the “faint signals” of emerging trends. He does so by monitoring a group of überinnovators that he dubs the “alpha geeks.” “The ‘alpha geeks’ show us where technology wants to go. Smart companies follow and support their ingenuity rather than trying to suppress it,
  • His own function is that of an intermediary—someone who ensures that the alpha geeks are heard by the right executives: “The alpha geeks are often a few years ahead of their time. . . . What we do at O’Reilly is watch these folks, learn from them, and try to spread the word by writing down (
  • The name of his company’s blog—O’Reilly Radar—is meant to position him as an independent intellectual who is simply ahead of his peers in grasping the obvious.
  • “the skill of writing is to create a context in which other people can think”
  • As Web 2.0 becomes central to everything, O’Reilly—the world’s biggest exporter of crazy talk—is on a mission to provide the appropriate “context” to every field.
  • In a fascinating essay published in 2000, O’Reilly sheds some light on his modus operandi.
  • The thinker who emerges there is very much at odds with the spirit of objectivity that O’Reilly seeks to cultivate in public
  • meme-engineering lets us organize and shape ideas so that they can be transmitted more effectively, and have the desired effect once they are transmitted
  • O’Reilly meme-engineers a nice euphemism—“meme-engineering”—to describe what has previously been known as “propaganda.”
  • how one can meme-engineer a new meaning for “peer-to-peer” technologies—traditionally associated with piracy—and make them appear friendly and not at all threatening to the entertainment industry.
  • O’Reilly and his acolytes “changed the canonical list of projects that we wanted to hold up as exemplars of the movement,” while also articulating what broader goals the projects on the new list served. He then proceeds to rehash the already familiar narrative: O’Reilly put the Internet at the center of everything, linking some “free software” projects like Apache or Perl to successful Internet start-ups and services. As a result, the movement’s goal was no longer to produce a completely free, independent, and fully functional operating system but to worship at the altar of the Internet gods.
  • Could it be that O’Reilly is right in claiming that “open source” has a history that predates 1998?
  • Seen through the prism of meme-engineering, O’Reilly’s activities look far more sinister.
  • His “correspondents” at O’Reilly Radar don’t work beats; they work memes and epistemes, constantly reframing important public issues in accordance with the templates prophesied by O’Reilly.
  • Or take O’Reilly’s meme-engineering efforts around cyberwarfare.
  • Now, who stands to benefit from “cyberwarfare” being defined more broadly? Could it be those who, like O’Reilly, can’t currently grab a share of the giant pie that is cybersecurity funding?
  • Frank Luntz lists ten rules of effective communication: simplicity, brevity, credibility, consistency, novelty, sound, aspiration, visualization, questioning, and context.
  • Thus, O’Reilly’s meme-engineering efforts usually result in “meme maps,” where the meme to be defined—whether it’s “open source” or “Web 2.0”—is put at the center, while other blob-like terms are drawn as connected to it.
  • The exact nature of these connections is rarely explained in full, but this is all for the better, as the reader might eventually interpret connections with their own agendas in mind. This is why the name of the meme must be as inclusive as possible: you never know who your eventual allies might be. “A big part of meme engineering is giving a name that creates a big tent that a lot of people want to be under, a train that takes a lot of people where they want to go,”
  • News April 4 mail date March 29, 2013 Baffler party March 6, 2013 Žižek on seduction February 13, 2013 More Recent Press I’ve Seen the Worst Memes of My Generation Destroyed by Madness io9, April 02, 2013 The Baffler’s New Colors Imprint, March 21, 2013
  • There is considerable continuity across O’Reilly’s memes—over time, they tend to morph into one another.
Tiberius Brastaviceanu

Designing the Void | Management Innovation eXchange - 0 views

    • Tiberius Brastaviceanu
       
      This is about self-organization, putting in place bounderies and internal mechanisms to make the the system self-organize into something desirable.  You can see this from a game theory perspective - how to set a game which will drive a specific human behavior. 
    • Tiberius Brastaviceanu
       
      This is about self-organization, putting in place bounderies and internal mechanisms to make the the system self-organize into something desirable.  You can see this from a game theory perspective - how to set a game which will drive a specific human behavior. 
    • Tiberius Brastaviceanu
       
      Very similar to SENSORICA, an environment of entrepreneurs. The argument against this is that not everyone is a risk taker or has initiative. The answer to it is that not every role in the organization requires that. 
    • Tiberius Brastaviceanu
       
      Very similar to SENSORICA, an environment of entrepreneurs. The argument against this is that not everyone is a risk taker or has initiative. The answer to it is that not every role in the organization requires that. 
  • The system is not made up of artifacts but rather an elegantly designed void. He says “I prefer to use the analogy of rescuing an endangered species from extinction, rather than engaging in an invasive breeding program the focus should be on the habitat that supports the species. Careful crafting of the habitat by identifying the influential factors; removing those that are detrimental, together with reinforcing those that are encouraging, the species will naturally re-establish itself. Crafting the habitat is what I mean by designing the void.”
  • ...75 more annotations...
  • It is essential that autonomy is combined with responsibility.
  • staff typically manage the whole work process from making sales, manufacture, accounts, to dispatch
  • they are also responsible for managing their own capitalization; a form of virtual ownership develops. Everything they need for their work, from office furniture to high-end machinery will appear on their individual balance sheet; or it will need to be bought in from somewhere else in the company on a pay-as-you go or lease basis. All aspects of the capital deployed in their activities must be accounted for and are therefore treated with the respect one accords one’s own property.
    • Tiberius Brastaviceanu
       
      So they have a value accounting system, like SENSORICA, where they log "uses" and "consumes". 
    • Tiberius Brastaviceanu
       
      ...
    • Tiberius Brastaviceanu
       
      So they have a value accounting system, like SENSORICA, where they log "uses" and "consumes".  
  • The result is not simply a disparate set of individuals doing their own thing under the same roof. Together they benefit from an economy of scale as well as their combined resources to tackle large projects; they are an interconnected whole. They have in common a brand, which they jointly represent, and also a business management system (the Say-Do-Prove system) - consisting not only of system-wide boundaries but also proprietary business management software which helps each take care of the back-end accounting and administrative processing. The effect is a balance between freedom and constraint, individualism and social process.
  • embodiment of meaning
  • But culture is a much more personal phenomenon
  • Culture is like climate- it does not exist in and of itself- it cannot exist in a vacuum, it must exist within a medium.
  • underlying culture
  • Incompatibility between the presenting culture and the underlying one provide a great source of tension
  • The truth of course is that when tension builds to a critical level it takes just a small perturbation to burst the bubble and the hidden culture reveals itself powered by the considerable pent-up energy.
    • Tiberius Brastaviceanu
       
      SENSORICA had this problem of different cultures, and it caused the 2 crisis in 2014. 
    • Tiberius Brastaviceanu
       
      SENSORICA had this problem of different cultures, and it caused the 2 crisis in 2014. 
  • Consider again the idea that for the health of an endangered species; the conditions in their habitat must be just right. In business, the work environment can be considered analogous to this idea of habitat.
  • A healthy environment is one that provides a blank canvas; it should be invisible in that it allows culture to be expressed without taint
  • The over-arching, high-level obligations are applied to the organization via contractual and legal terms.
  • But it is these obligations that the traditional corporate model separates out into functions and then parcels off to distinct groups. The effect is that a clear sight of these ‘higher’ obligations by the people at the front-end is obstructed. The overall sense of responsibility is not transmitted but gets lost in the distortions, discontinuities and contradictions inherent in the corporate systems of hierarchy and functionalization.
  • employees are individually rewarded for their contribution to each product. They are not “compensated” for the hours spent at work. If an employee wants to calculate their hourly rate, then they are free to do so however, they are only rewarded for the outcome not the duration of their endeavors.
  • Another simplification is the application of virtual accounts (Profit and Loss (P&L) account and Balance Sheet) on each person within the business.
  • The company systems simply provide a mechanism for cheaply measuring the success of each individual’s choices. For quality the measure is customer returns, for delivery it is an on-time-and-in-full metric and profit is expressed in terms of both pounds sterling and ROI (return on investment).
    • Tiberius Brastaviceanu
       
      They have a value accounting system. 
    • Tiberius Brastaviceanu
       
      They have a value accounting system. 
  • The innumerable direct links back to an external reality -like the fragile ties that bound giant Gulliver, seem much more effective at aligning the presenting culture and the underlying embodied culture, and in doing so work to remove the existing tension.
  • With a culture that responds directly to reality, the rules in the environment can be “bounding” rather than “binding”- limiting rather than instructive; this way individual behavior need not be directed at all. The goal is to free the individual to express himself fully through his work, bounded only by the limits of the law. With clever feedback (self-referencing feedback loops) integrated into the design, the individuals can themselves grow to collectively take charge of the system boundaries, culture and even the environment itself, always minded of the inherent risks they are balancing, leaving the law of the land as the sole artificial boundary.
  • the conventional company, which, instead of rewarding enterprise, trains compliance by suppressing individual initiative under layer upon layer of translation tools.
  • apply accountability to the individual not command-and-control.
  • without the divisive and overbearing management cabal the natural reaction of humans is to combine their efforts
  • a new member of staff at Matt Black Systems
  • recruited by another staff member (sponsor) and they will help you learn the basics of the business management system- they will help you get to know the ropes.
  • jobs are passed to new staff members, a royalty payment can be established on the work passed over.
  • Along with that job you will be given a cash float (risk capital), P&L Account, a Balance Sheet and computer software to help plan and record your activities. Your operation is monitored by your sponsor to see if you increase the margin or volume, and so establish a sustainable operation. Training and mentoring is provided to support the steep learning curve - but without removing the responsibility of producing a return on the sponsor’s risk capital.
  • You will, in the meantime be looking to establish some of your own work for which you will not have to pay a commission or royalty to your sponsor and this will provide you with more profitable operations such that eventually you might pass back to the sponsor the original operation, as it has become your lowest margin activity. It will then find its way to a new employee (along with the associated Balance Sheet risk capital) where the process is repeated by the sponsor.[4]
  • Remuneration for staff is calibrated in a way that reflects the balance of different forces around ‘pay’
  • there is an obligation upon the company to pay a minimum wage even if the profitability of the operation does not support this
  • there are therefore two aspects of the basic pay structure: one is “absolute” and reflects the entrepreneurial skill level of the employee according to a sophisticated grading scale
  • A further 20% of the original profit will be paid into his risk capital account, which will be his responsibility to deploy in any way he sees fit as part of his Balance Sheet. Of the three remaining 20% slices of the original profit, one is paid out as corporation tax, another as a dividend to the shareholders and the last retained as collective risk capital on the company’s balance sheet- a war chest so to speak.
  • Julian Wilson and Andrew Holm sell products / services to their staff (such as office space and software) they have an identical customer/supplier relationship with the other employees.
  • Naturally there are some people that can’t generate a profit. The sponsor’s risk capital will eventually be consumed through pay. After a process of rescue and recovery- where their shortcomings are identified and they are given the opportunity to put them right, they either improve or leave, albeit with a sizeable increase in their skills.
  • there is a gradual process of accustomisation; the void of the new employee is surrounded by others dealing with their particular activities, offering both role models and operations they may wish to relinquish. One step at a time the new employee acquires the skills to become completely self-managing, to increase their margins, to make investments, to find new business, to become a creator of their own success. Ultimately, they learn to be an entrepreneur.
  • responsible autonomy as an alternative vision to traditional hierarchy
  • Matt Black Systems it is not simply commitment that they targeted in their employees, rather they aim for the specific human qualities they sum up as magic- those of curiosity, imagination, creativity, cooperation, self-discipline and realization (bringing ideas to reality).
  • a new form of association of individuals working together under the umbrella of a company structure: a kind of collective autonomy
  • The business is called Matt Black Systems, based in Poole in dorset
  • Turning an organisation on its head- removing all management, establishing a P&L account and Balance Sheet on everyone in the organisation and having customers payment go first into the respective persons P&L account has revolutionised this company. 
  • This innovative company’s approach views business success as wholly reliant upon human agency, and its wellspring at the individual level.
  • problem (of unnecessarily high overheads placed on production) that arguably is behind the decline in western manufacturing
  • over-managed business
  • Autonomy Enables Productivity
  • organizational design brings to light the unconscious socio-philosophical paradigm of the society in which it exists, organizational development points to how change occurs.
  • a mechanistic approach to organization
  • scientific management employs rationalism and determinism in pursuit of efficiency, but leaves no place for self-determination for most people within the system.
  • Command and Control
  • today, a really “modern” view of an organization is more likely to be depicted in terms that are akin to an organism.
  • When it comes to getting work done, the simple question is: are people the problem or the solution?
  • the Taylorist approach may be more real in theory than in practice: its instrumentalist view of the workforce is cursed by unintended consequences. When workers have no space for their own creative expression, when they are treated like automata not unique individuals, when they become demotivated and surly, when they treat their work as a necessary evil; this is no recipe for a functional organization.
  • The natural, human reaction to this is unionization, defiance and even outright rebellion; to counter this, management grows larger and more rigid in pursuit of compliance, organizations become top heavy with staff who do not contribute directly to the process of value creation but wield power over those who do.
  • voluntary slavery of ‘wagery’
  • Even when disgruntled employees strike free and start their own businesses they seem unable to resist the hegemony of the conventional command-and-control approach
  • Making the transition involves adherence to a whole new sociology of work with all the challenging social and psychological implications that brings.
  • first principal that people in the business have the ability to provide the solution
  • In the “theory of constraints” the goal is to align front-line staff into a neat, compact line for maximum efficiency. Surely the most considered approach is to have front-line staff self-align in pursuit of their individual goals?
  • The removal of hierarchy and specialization is key to a massive improvement in both profitability and productivity. In summary: there are no managers in the company, or foremen, or sales staff, or finance departments; the company is not functionally compartmentalized and there is no hierarchy of command. In fact every member of staff operates as a virtual micro-business with their own Profit & Loss account and Balance Sheet, they manage their own work and see processes through from end to end
  • Formal interaction between colleagues takes place via “customer and supplier” relationships.
  • autonomy enables productivity
  • if one creates a space in which staff pursue their own goals and are not paid by the hour, they will focus on their activities not the clock; if they are not told what to do, they will need to develop their own initiative; if they are free to develop their own processes, they will discover through their own creative faculties how to work more productively- in pursuit of their goals
  • The human qualities which are of greatest potential value to the business are: curiosity, imagination, creativity, cooperation, self-discipline and realization (bringing ideas to reality)
  • These qualities are the very ones most likely to be withheld by an individual when the environment is ‘wrong’.
  • Any elements in the business environment that undermine the autonomy and purpose of the individual will see the above qualities withheld
  • High on the list of undermining elements come power-hierarchy and over-specialization
  • the responsibility of the individual is formalized, specified and restricted. An improved system is not one where responsibility is distributed perfectly but rather one where there is simply no opportunity for responsibility to be lost (via the divisions between the chunks). Systems must be reorganized so responsibility -the most essential of qualities -is protected and wholly preserved.
  • Matt Black Systems believe this can only be done by containing the whole responsibility within an individual, holding them both responsible and giving them ‘response-ability’
  • The experience of Matt Black Systems demonstrates that radical change is possible
  • productivity is up 300%, the profit margin is up 10%[3], customer perception has shifted from poor to outstanding, product returns are at less than 1%, “on time and in full” delivery is greater than 96%, pay has increased 100%.
  • staff develop broader and deeper skills and feel greater job security; they get direct feedback from their customers which all go to fuel self-confidence and self-esteem.
  • the staff manage themselves
  • “only variety can absorb variety”.
  • What is particular about their story is that behind it is a very consciously crafted design that surrounds the individualism of each person with hard boundaries of the customer, the law and the business. It is these boundaries rather than the instructive persona of ‘the boss’ that gives rise to the discipline in which individuals can develop. Autonomy is not the same as freedom, at least not in the loose sense of ‘do as you please’. An autonomous person is a person who has become self-governing, who has developed a capacity for self-regulation, quite a different notion from the absence of boundaries. Indeed, it is with establishing the right boundaries that the business philosophy is most concerned. The company provides the crucible in which the individual can develop self-expression but the container itself is bounded. Wilson calls this “designing the void”. This crucible is carefully constructed from an all-encompassing, interconnecting set of boundaries that provide an ultimate limit to behaviours (where they would fall foul of the law or take risks with catastrophic potential). It is an illusion to think, as a director of a company, that you are not engaged in a process of social conditioning; the basis of the culture is both your responsibility and the result of your influence. The trick is to know what needs to be defined and what needs to be left open. The traditional authoritarian, controlling characters that often dominate business are the antithesis of this in their drive to fill this void with process, persona and instruction. Alternatively, creating an environment that fosters enterprise, individuals discover how to be enterprising.
Tiberius Brastaviceanu

Key (lock) - Wikipedia, the free encyclopedia - 0 views

  • Key systems
  • Individually keyed system (KD)[edit] With an individually keyed system, each cylinder can be opened by its unique key
  • Keyed alike (KA)[edit] This system allows for a number of cylinders to be operated by the same key. It is ideally suited to residential and commercial applications such as front and back doors.
  • ...10 more annotations...
  • Common entrance suite / Maison keying (CES)[edit] This system is widely used in apartments, office blocks and hotels. Each apartment (for example) has its own individual key which will not open the doors to any other apartments, but will open common entrance doors and communal service areas. It is often combined with a master-keyed system in which the key is kept by the landlord.
  • Master keyed (MK)
  • A master key operates a set of several locks. Usually, there is nothing special about the key itself, but rather the locks into which it will fit.
  • A practical attack exists to create a working master key for an entire system given only access to a single master-keyed lock, its associated change key, a supply of appropriate key blanks, and the ability to cut new keys. This is described in Cryptology and Physical Security: Rights Amplification in Master-Keyed Mechanical Locks.[36] However, for systems with many levels of master keys, it may be necessary to collect information from locks in different "subsystems" in order to deduce the master key. Locksmiths may also determine cuts for a replacement master key, when given several different key examples from a given system.
  • Control key
  • A control key is a special key used in removable core locking systems. The control key enables a user, who has very little skill, to remove from the core, with a specific combination, and replace it with a core that has a different combination.
  • Do not duplicate key
  • A "do not duplicate" key (or DND key, for short) is one that has been stamped "do not duplicate", "duplication prohibited
  • Restricted key
  • A restricted keyblank has a keyway for which a manufacturer has set up a restricted level of sales and distribution. Restricted keys are often protected by patent, which prohibits other manufacturers from making unauthorized productions of the key blank. In many cases, customers must provide proof of ID before a locksmith will cut additional keys using restricted blanks. Some companies, such as Medeco High Security Locks, have keyways that are restricted to having keys cut in the factory only. This is done to ensure the highest amount of security. These days, many restricted keys have special in-laid features, such as magnets, different types of metal, or even small computer chips to prevent duplication.
Kurt Laitner

Owning Together Is the New Sharing by Nathan Schneider - YES! Magazine - 0 views

  • VC-backed sharing economy companies like Airbnb and Uber have caused trouble for legacy industries, but gone is the illusion that they are doing it with actual sharing
  • Their main contribution to society has been facilitating new kinds of transactions
  • The notion that sharing would do away with the need for owning has been one of the mantras of sharing economy promoters. We could share cars, houses, and labor, trusting in the platforms to provide. But it’s becoming clear that ownership matters as much as ever.
  • ...30 more annotations...
  • Whoever owns the platforms that help us share decides who accumulates wealth from them, and how
  • Léonard and his collaborators are part of a widespread effort to make new kinds of ownership the new norm. There are cooperatives, networks of freelancers, cryptocurrencies, and countless hacks in between. Plans are being made for a driver-owned Lyft, a cooperative version of eBay, and Amazon Mechanical Turk workers are scheming to build a crowdsourcing platform they can run themselves. Each idea has its prospects and shortcomings, but together they aspire toward an economy, and an Internet, that is more fully ours.
  • Jeremy Rifkin, a futurist to CEOs and governments, contends that the Internet-of-things and 3-D printers are ushering in a “ zero marginal cost society“ in which the “collaborative commons” will be more competitive than extractive corporations
  • once the VC-backed sharing companies clear away regulatory hurdles, local co-ops will be poised to swoop in and spread the wealth
  • People are recognizing that doing business differently will require changing who gets to own what.
  • “We’re moving into a new economic age,” says Marjorie Kelly, who spent two decades at the helm of Business Ethics magazine and now advises social entrepreneurs. “It needs to be sustainable. It needs to be inclusive. And the foundation of what defines an economic age is its form of ownership.”
  • It’s a worker-owned cooperative that produces open-source software to help people practice consensus—though they prefer the term “collaboration”—about decisions that affect their lives.
  • From the start Loomio was part of Enspiral, an “open value network“ of freelancers and social enterprises devoted to mutual support and the common good.
  • a companion tool, CoBudget, to help them allocate resources together
  • The team members recently had to come to terms with the fact that, for the time being, only some of them could be paid for full-time work They called the process “participatory downsizing.”
  • And they can take many forms. Loomio and other tech companies, for instance, are aspiring toward the model of a multi-stakeholder cooperative—one in which not just workers or consumers are voting members, but several such groups at once.
  • Loconomics is a San Francisco-based startup designed, like TaskRabbit, to manage short-term freelance jobs
  • “People who have been without for a long time,” she says, “often operate with a mindset that they can’t share what they have, because they don’t know when that resource will come along again.”
  • As Loconomics prepares to begin operations this winter, it’s running out of the pocket of the founder, Josh Danielson
  • The ambition of a cooperative Facebook or Uber—competitive, widespread, and owned by its community—still seems out of reach for enterprises not willing to sell large parts of themselves to investors. Organizations like 
  • His fellow OuiShare founder Benjamin Tincq is concerned that too much fixation on a particular model will make it hard for well-meaning ventures to be successful. “I like the idea that we don’t need to have a specific legal status,” he says. “It’s more about hacking an existing legal status and making these hacks work.”
  • Fenton’s new undertaking, Sovolve, proposes to “create innovative solutions to accelerate social change,” much as CouchSurfing did, but it’s doing the innovating cautiously. All work is done by worker-owners located around the world. Sovolve uses an internal platform—soon to become a product in its own right—through which contributors decide how much they want to be paid in cash and how much in equity. They can see how much others are earning. Their virtual workplace is gamified, with everyone working to nudge their first product, WonderApp, into virality
  • Loomio’s members use a similar system, which they call Loomio Points. But Sovolve is no cooperative; contributors are not in charge.
  • Open-source software and share-alike licenses have revived the ancient idea of the commons for an Internet age. But the “ commons-based peer production“ that Sensorica seeks to practice doesn’t arise overnight. Just as today’s business culture rests on generations of accumulated law, habit, and training, learning to manage a commons successfully takes time
  • It makes possible decentralized autonomous organizations, or DAOs, which exist entirely on a shared network
  • The most ambitious successor to Bitcoin, Ethereum, has raised more than $15 million in crowdfunding on the promise of creating such a network.
  • all with technology that makes collective ownership a lot easier than a conventional legal structure
  • A project called Eris is developing a collective decision-making tool designed to govern DAOs on Ethereum, though the platform may still be months from release.
  • For now, the burden of reinventing every wheel at once makes it hard for companies like Sensorica and Loomio to compete
  • For instance, Cutting Edge Capital specializes in helping companies raise money through a long-standing mechanism called the direct public investment, or DPO, which allows for small, non-accredited investors.
  • Venture funding may be in competition with Dietz’s cryptoequity vision, but it provides a fearsome head start
  • Co-ops help ensure that the people who contribute to and depend on an enterprise keep control and keep profits, so they’re a possible remedy for worsening economic inequality
  • Sooner or later, transforming a system of gross inequality and concentrated wealth will require more than isolated experiments at the fringes—it will require capturing that wealth and redirecting its flows
  • A less consensual strategy was employed to fund the Catalan Integral Cooperative in Spain; over the course of a few years, one activist borrowed around $600,000 from Spanish banks without paying any of it back.
  • In Jackson, Mississippi, Chokwe Lumumba was elected mayor in 2013 on a platform of fostering worker-owned cooperatives, although much of the momentum was lost when Lumumba died just a few months later.
Tiberius Brastaviceanu

Co-Creating as Disruption to the Dominant Cultural Framework » Wirearchy - 0 views

  • more open people processes
  • Participative processes like Open Space, World Cafes, Unconferences, Peer Circles
  • Barcamps, Wordcamps, Govcamps, Foo Camps, Unconferences, high-end celebrity-and-marketing-and venture-capital ‘experience’ markets, new cultural and artistic festivals with technology-and-culture-making themes
  • ...45 more annotations...
  • maker faires
  • community-and-consensus building, organizing for activism and fundraising
  • The impetus behind this explosion is both technological and sociological
  • Technological
  • information technology and the creation and evolution of the Internet and the Web
  • appearance, development and evolution of social tools, web services, massive storage, and the ongoing development of computer-and-smart-devices development
  • Sociological
  • People are searching for ways to find others with similar interests and motivations so that they can engage in activities that help them learn, find work, grow capabilities and skills, and tackle vexing social and economic problems
  • get informed and take action
  • Developing familiarity and practice with open and collaborative processes
  • play and work together
  • rules about self-management, operate democratically, and produce results grounded in ownership and the responsibilities that have been agreed upon by the ‘community’
  • The relationships and flows of information can be transferred to online spaces and often benefit from wider connectivity.
  • Today, our culture-making activities are well engaged in the early stages of cultural mutation
  • What’s coming along next ?  “Smart” devices and Internet everywhere in our lives ?  Deep(er) changes to the way things are conceived, carried out, managed and used ?  New mental models ?  Or, will we discover real societal limits to what can be done given the current framework of laws, institutions and established practices with which people are familiar and comfortable ?
  • Shorter cycle-based development and release
  • Agile development
  • It is clear evidence that the developmental and learning dynamics generated by continuous or regular feedback loops are becoming the norm in areas of activity in which change and short cycles of product development are constants.
  • The Internet of Things (IoT)
  • clothes, homes, cars, buildings, roads, and a wide range of other objects that have a place in peoples’ daily life activities
  • experiencing major growth, equally in terms of hardware, software and with respect to the way the capabilities are configured and used
  • The IoT concept is being combined with the new-ish concepts of Open Data and Big Data
  • ethical, political and social impact policy decisions
  • that key opportunities associated with widespread uptake of the IoT are derived from the impact upon peoples’ activities and lives
  • ‘we’ are on our way towards more integrated eco-systems of issues, people and technologies
  • participation and inclusion enabled by interconnectedness are quickly becoming the ‘new rules’
  • What the Future May Hold
  • the ‘scenario planning’ approach
  • world’s politics, economics, anthropology, technology, psychology, sociology and philosophy
  • A scenario planning exercise carried out by the Rockefeller Foundation
  • Clearly these early (and now not-so-weak) signals and patterns tell us that the core assumptions and principles that have underpinned organized human activities for most of the past century
  • are being changed by the combinations and permutations of new, powerful, inexpensive and widely accessible information-processing technologies
  • The short description of each scenario reinforces the perception that we are both individually and collectively in transition from a linear, specialized, efficiency-driven paradigm towards a paradigm based on continuous feedback loops and principles of participation, both large and small in scope.
  • cultural ‘mutation’
  • Wirearchy
  • a dynamic two-way flow of power and authority based on knowledge, trust, credibility and a focus on results, enabled by interconnected people and technology.
  • the role of social media and smart mobile devices in the uprisings in Egypt, Libya and elsewhere in the Middle East
  • The roots of organizational development (OD) are in humanistic psychology and sociology action and ethnographic and cybernetic/ socio-technical systems theory.  It’s a domain that emerged essentially as a counter-balance to the mechanistic and machine-metaphor-based core assumptions about the organized activities in our society.
  • Organizational development principles are built upon some basic assumptions about human motivations, engagement and activities.
  • Participative Work Design – The Six Criteria
  • in recent years created models that help clarify how to evaluate and respond to the continuous turbulence and ambiguity generated by participating in interconnected flows of information.
  • contexts characterized by either Simple, Complicated or Chaotic dynamics (from complexity theory fundamentals). Increasingly, Complexity is emerging as a key definer of the issues, problems and opportunities faced by our societies.
  • peer-to-peer movement(s) unfolding around the world
  • Co-creating in a wide range of forms, processes and purpose may become an effective and important antidote to the spreading enclosure of human creative activity.
  • But .. the dominant models of governance, commercial ownership and the use and re-use of that which is co-created by people are going to have to undergo much more deep change in order to disrupt the existing paradigm of proprietary commercial creation and the model of socio-economic power that this paradigm enables and carries today.
Tiberius Brastaviceanu

If not Global Captalism - then What? - 0 views

  • I posit an optimistic view of the potential for Society from the emergence of a new and “Open” form of Capitalism.
  • Open Capital
  • the concept of “Open” Capital is “so simple…. it repels the mind".
  • ...162 more annotations...
  • Open Capital is defined as “a proportional share in an enterprise for an indeterminate time”
  • ‘Enterprise’ is defined as ‘any entity within which two or more individuals create, accumulate or exchange Value”.
  • Value is to Economics as Energy and Matter are to Physics.
  • The Metaphysics Of Value
  • division between “subject” and “object”.
  • primary reality is “Quality”
  • formless and indefinable
  • not a “thing”
  • a non-intellectual awareness or “pre-intellectual reality”
  • but an event at which the subject becomes aware of the object and before he distinguishes it
  • Quality is the basis of both subject and object
  • distinguish between “Static” and “Dynamic” Quality
  • treating Value as a form of “Quality” as envisioned by Pirsig.
  • Riegel
  • defined “Value” as “ the Relativity of Desire” again implying indeterminacy.
  • Pirsig’s approach Capital may be viewed as “Static” Value and Money as “Dynamic” Value. “Transactions” are the “events” at which individuals (Subjects) interact with each other or with Capital (both as Objects) to create forms of Value and at which “Value judgments” are made based upon a “Value Unit”.
  • The result of these Value Events /Transactions is to create subject/object pairings in the form of data ie Who “owns” or has rights of use in What,
  • at what Price
  • accounting data
  • Neo-Classical” Economics confuses indeterminate Value with a market– determined Price –
  • Data may be static
  • This Data identifies the subject with objects such as tangible ‘Material Value’
  • Data may itself constitute ‘Intellectual Value’
  • It, too, may then be defined in a subject/object pairing through the concept of “intellectual property”.
  • Other forms of Value are however not definable by data:
  • “sentimental” Value
  • Emotional Value’
  • 'Spiritual Value’
  • We may therefore look at the “transaction” or “value event” in a new light.
  • The creation and circulation of Value essentially comprises the concept we know of as “Money”.
  • Money / Dynamic Value
  • “The purpose of money is to facilitate barter by splitting the transaction into two parts, the acceptor of money reserving the power to requisition value from any trader at any time
  • money
  • value unit dissociated from any object
  • monetary unit
  • the basis relative to which other values may be expressed
  • The monetary process is a dynamic one involving the creation and recording of obligations as between individuals and the later fulfilment of these obligations
  • The monetary “Value Event”/ Transaction involves the creation of “Credit”
  • obligation to provide something of equivalent Value at a future point in time.
  • These obligations may be recorded on transferable documents
  • database of “Credit”/obligations is not Money, but temporary “Capital”
  • “Working Capital”
  • Static Value – which only becomes “Money”/ Dynamic Value when exchanged in the transitory Monetary process.
  • what we think of as Money is in fact not tangible “cash” but rather
  • the flow of data between databases of obligations maintained by Credit Institutions
  • or dynamic
  • Banks literally “loan” Money into existence
  • In exchange for an obligation by an Individual to provide to the Bank something of Value
  • Bank’s obligation is merely to provide another obligation at some future time
  • These Bank-issued obligations are therefore
  • claim upon a claim upon Value
  • The true source of Credit is the Individual, not the intermediary Bank
  • this Money they create from nothing despite the fact that it is literally Value-less
  • Thus there is no true sharing of Risk and Reward involved in Lending
  • issue in relation to Credit/Debt and this relates to the nature of Lending itself.
  • the practice of Lending involves an incomplete exchange in terms of risk and reward: a Lender, as opposed to an Investor, has no interest in the outcome of the Loan, and requires the repayment of Principal no matter the ability of the Borrower to repay.
  • Ethical problem
    • Tiberius Brastaviceanu
       
      "The Lender has no interest in the outcome of the loan", i.e doesn't care what happens in the end. The Lender ins not interested in the economical outcome of the Lender-Loner relation. So in fact there is no real risk sharing. the only risk for the Lender is when the Loner doesn't pay back, which is not really a risk... In fact it is a risk for the small bank, who has to buy money from the central bank, but not for the central bank. 
  • Money is not
  • an “Object” circulating but rather a dynamic process of Value creation and exchange by reference to a “Value Unit”.
  • Capital/ Static Value
  • Capital represents the static accumulation of Value
  • Some forms of Capital are “productive”
  • An ethical question
  • in relation to Productive Capital relates to the extent of “property rights” which may be held over it thereby allowing individuals to assert “absolute” permanent and exclusive ownership - in particular in relation to Land
  • our current financial system is based not upon Value but rather a claim upon Value
  • Financial Capital consists of two types:
  • “Debt”
  • “Equity”
  • Interest
  • obligations of finite/temporary duration but with no participation in the assets or revenues
  • absolute and permanent ownership/participation (without obligation) in assets and revenues
  • discontinuity between Debt and Equity
  • at the heart of our current problems as a Society
  • The Enterprise
  • ‘Charitable’ Enterprise
  • ‘Social’ Enterprise
  • Value
  • exchanged in agreed proportions;
  • Value is exchanged for the Spiritual and Emotional Value
  • ‘Commercial’ Enterprise
  • ‘closed’
  • Value are exchanged between a limited number of individuals
  • Early enterprises were partnerships and unincorporated associations
  • need for institutions which outlived the lives of the Members led to the development of the Corporate body with a legal existence independent of its Members
  • The key development in the history of Capitalism was the creation of the ‘Joint Stock’ Corporate with liability limited by shares of a ‘Nominal’ or ‘Par’ value
  • over the next 150 years the Limited Liability Corporate evolved into the Public Limited Liability Corporate
  • Such “Closed” Shares of “fixed” value constitute an absolute and permanent claim over the assets and revenues of the Enterprise to the exclusion of all other “stakeholders” such as Suppliers, Customers, Staff, and Debt Financiers.
  • The latter are essentially ‘costs’ external to the
  • owners of the Enterprise
  • maximise ‘Shareholder Value’
  • There is a discontinuity/ fault-line within the ‘Closed’ Corporate
  • It has the characteristics of what biologists call a ‘semi-permeable membrane’ in the way that it allows Economic Value to be extracted from other stakeholders but not to pass the other way.
    • Tiberius Brastaviceanu
       
      It is a way to extract value from productive systems. It is a system of exploitation. 
  • Capital most certainly is and always has been - through the discontinuity (see diagram) between:‘Fixed’ Capital in the form of shares ie Equity; and ‘Working’ Capital in the form of debt finance, credit from suppliers, pre-payments by customers and obligations to staff and management.
  • irreconcilable conflict between Equity and Debt
  • xchange of Economic Value in a Closed Corporate is made difficult and true sharing of Risk and Reward is simply not possible
  • No Enterprise Model has been capable of resolving this dilemma. Until now.
  • Corporate Partnerships with unlimited liability
  • mandatory for partnerships with more than 20 partners to be incorporated
  • in the USA
  • it is the normal structure for professional partnerships
  • Limited Liability Partnerships
  • In the late 1990's
  • litigation
  • The UK LLP is supremely simple and remarkably flexible.
  • All that is needed is a simple ‘Member Agreement’ – a legal protocol which sets out the Aims, Objectives. Principles of Governance, Revenue Sharing, Dispute Resolution, Transparency and any other matters that Members agree should be included. Amazingly enough, this Agreement need not even be in writing, since in the absence of a written agreement Partnership Law is applied by way of default.
  • The ease of use and total flexibility enables the UK LLP to be utilised in a way never intended – as an ‘Open’ Corporate partnership.
  • ‘Open’ Corporate Partnership
  • concepts which characterise the ‘Open’ Corporate Partnership
  • it is now possible for any stakeholder to become a Member of a UK LLP simply through signing a suitably drafted Member Agreement
  • ‘Open’
  • supplier
  • employee
  • may instead become true Partners in the Enterprise with their interests aligned with other stakeholders.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be a UK LLP?
  • no profit or loss in an Open Corporate Partnership, merely Value creation and exchange between members in conformance with the Member Agreement.
  • Proportional shares
  • in an Enterprise constitute an infinitely divisible, flexible and scaleable form of Capital capable of distributing or accumulating Value organically as the Enterprise itself grows in Value or chooses to distribute it.
  • Emergence of “Open” Capital
  • example of how ‘Temporary Equity’ may operate in practice
  • The Open Capital Partnership (“OCP”)
  • Within the OCP Capital and Revenue are continuous: to the extent that an Investee pays Rental in advance of the due date he becomes an Investor.
  • Open Capital – a new Asset Class
  • create a new asset class of proportional “shares”/partnership interests
  • in Capital holding OCP’s
  • Property Investment Partnerships (“PIP’s”)
  • Open Corporate Partnerships as a Co-operative Enterprise model
  • A Co-operative is not an enterprise structure: it is a set of Principles that may be applied to different types of enterprise structure.
  • Within a Partnership there is no “Profit” and no “Loss”.
  • Partnerships
  • mutual pursuit of the creation and exchange of Value
  • Partners do not compete with each othe
  • the crippling factors in practical terms have been, inter alia: the liability to which Member partners are exposed from the actions of their co-partners on their behalf; limited ability to raise capital.
  • they favour the interests of other stakeholders, are relatively restricted in accessing investment; are arguably deficient in incentivising innovation.
  • The ‘new’ LLP was expressly created to solve the former problem by limiting the liability of Member partners to those assets which they choose to place within its protective ‘semi-permeable membrane’
  • However, the ability to configure the LLP as an “Open” Corporate permits a new and superior form of Enterprise.
  • it is possible to re-organise any existing enterprise as either a partnership or as a partnership of partnerships.
  • the revenues
  • would be divided among Members in accordance with the LLP Agreement. This means that all Members share a common interest in collaborating/co-operating to maximise the Value generated by the LLP collectively as opposed to competing with other stakeholders to maximise their individual share at the other stakeholders’ expense.
  • facilitate the creation of LLP’s as “Co-operatives of Co-operatives”.
  • he ‘Commercial’ Enterprise LLP – where the object is for a closed group of individuals to maximise the value generated in their partnership. There are already over 7,000 of these.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be one of these?
  • the Profit generated in a competitive economy based upon shareholder value and unsustainable growth results from a transfer of risks outwards, and the transfer of reward inwards, leading to a one way transfer of Economic Value.
  • This,
  • will very often impoverish one or more constituency of stakeholders
  • A partnership, however, involves an exchange of value through the sharing of risk and reward.
  • Whether its assets are protected within a corporate entity with limited liability or not, it will always operate co-operatively – for mutual profit.
  • Open Capital, Economics and Politics
  • continuity between Capital as Static Value and Money as Dynamic Value which has never before been possible due to the dichotomy between the absolute/infinite and the absolute/finite durations of the competing claims over assets – “Equity” and “Debt”
  • Open Capital Partnership gives rise to a new form of Financial Capital of indeterminate duration. It enables the Capitalisation of assets and the monetisation of revenue streams in an entirely new way.
  • It is possible to envisage a Society within which individuals are members of a portfolio of Enterprises constituted as partnerships, whether limited in liability or otherwise.
  • Some will be charitable
  • Others will be ‘social’
  • ‘Commercial’ enterprises of all kinds aimed at co-operatively working together to maximise value for the Members.
  • the process has already begun
  • Capitalism
  • superior
  • to all other models, such as Socialism.
  • It can only be replaced by another ‘emergent’ phenomenon, which is adopted ‘virally’ because any Enterprise which does not utilise it will be at a disadvantage to an Enterprise which does.
  • The ‘Open’ Corporate Partnership is: capable of linking any individuals anywhere in respect of collective ownership of assets anywhere; extremely cheap and simple to operate; and because one LLP may be a Member of another it is organically flexible and ‘scaleable’. The phenomenon of “Open Capital” – which is already visible in the form of significant commercial transactions - enables an extremely simple and continuous relationship between those who wish to participate indefinitely in an Enterprise and those who wish to participate for a defined period of time.
  • Moreover, the infinitely divisible proportionate “shares” which constitute ‘Open’ Capital allow stakeholder interests to grow flexibly and organically with the growth in Value of the Enterprise. In legal terms, the LLP agreement is essentially consensual and ‘pre-distributive’: it is demonstrably superior to prescriptive complex contractual relationships negotiated adversarially and subject to subsequent re-distributive legal action. Above all, the ‘Open’ Corporate Partnership is a Co-operative phenomenon which is capable, the author believes, of unleashing the “Co-operative Advantage” based upon the absence of a requirement to pay returns to “rentier” Capitalists.
Tiberius Brastaviceanu

Dark Intellectual Property. Why We Need a Kickstarter for Patents - 0 views

  • “dark IP,” the intellectual property (IP) that remains on the shelf: undiscovered, unexplored, untapped
  • our ability to catch so much in the net by dragging the surface (to use Mike Bergman’s analogy) actually still misses the invisible wealth of what lies beneath.
  • But dark IP is different than the other hidden-depths knowledge since it’s also unfair. Because taxpayers paid for much of the research — whether basic understanding with long-term benefits or more applied research with shorter-term benefits — that now lies collecting dust on university shelves.
  • ...31 more annotations...
  • the people of the United States spent an average of nearly $40 billion every year supporting institutional research
  • 65 percent of invention disclosure bundles remain, on average, unlicensed and unused … each year.
  • ”…the street finds its own uses for things.”
  • most of the IP (much of which we paid for) isn’t actually on the street, where entrepreneurial folks can do something with it.
  • the overworked and understaffed tech transfer offices
  • their models
  • There’s not necessarily room for exploration and discovery
  • byzantine bureaucracy of large organizations
  • But let’s face it, there’s also the hoarding and the overprotecting
  • So much IP is generated that it’s far too much for any one entity to ever make sense of
  • very few people are aware of — let alone able to access — an invention outside the social circle of its inventors, the scientific community involved, or even the “crowd” that’s sometimes harnessed in open innovation
  • we need new ways of democratizing it
  • Not democratizing the IP itself — institutions should still own and generate profits from the intellectual property they’ve created — but democratizing the ways in which we allow this IP to be discovered and licensed.
  • idea contests
  • marketplaces
  • competitions to find uses for on-the-shelf IP
  • missing out on the transformative potential of what technology can do here
  • promoting new ways of interacting around intellectual property
  • Marblar, where I’m an advisor
    • Tiberius Brastaviceanu
       
      The guy is not entirely for open innovation but proposes an intermediary model to democratize the use of IP
  • This turns off the average entrepreneur, who doesn’t have the patience and bandwidth to engage in all the unnecessary overhead of searching, browsing, and licensing IP.
  • Many small startups don’t even bother with IP
  • Another missing piece is ways of allowing the crowd to interact with each other and decide which technologies should be licensed
  • bidding wars
    • Tiberius Brastaviceanu
       
      competitive dynamic for acquiring IP and using it effectively. This doesn't solve the problem, because some companies will still buy it for defensive purposes or block others from using it, unlike with truly open innovation. 
  • Most of the examples I listed above haven’t changed much over the past decade or broken into the mainstream.
  • why not a Kickstarter for IP?
  • Such a website would bring together not just funds and transactions, but communities — with their attendant feedback mechanisms — that are interested in creating something novel around unused patents.
  • such a model would help get the ideas of a few into the minds of many.
  • open up the currently closed shelf to virtual browsing
  • inventions are not only ‘filed’ or ‘granted’ but ‘browsed’ or ‘licensed’.
Tiberius Brastaviceanu

Places to Intervene in a System by Donella H. Meadows - developer.*, Developer Dot Star - 0 views

  • Folks who do systems analysis have a great belief in "leverage points."
  • where a small shift in one thing can produce big changes in everything.
  • backward intuition
  • ...15 more annotations...
  • "Places to Intervene in a System," followed by nine items: 9.  Numbers (subsidies, taxes, standards). 8.  Material stocks and flows. 7.  Regulating negative feedback loops. 6.  Driving positive feedback loops. 5.  Information flows. 4.  The rules of the system (incentives, punishment, constraints). 3.  The power of self-organization. 2.  The goals of the system. 1.  The mindset or paradigm out of which the goals, rules, feedback structure arise.
  • an invitation to think more broadly about system change.
  • Numbers ("parameters" in systems jargon) determine how much of a discrepancy turns which faucet how fast.
  • some of which are physically locked in, but most of which are popular intervention points.
  • Probably ninety-five percent of our attention goes to numbers, but there's not a lot of power in them.
  • Not that parameters aren't important—they can be, especially in the short term and to the individual who's standing directly in the flow. But they rarely change behavior. If the system is chronically stagnant, parameter changes rarely kick-start it. If it's wildly variable, they don't usually stabilize it. If it's growing out of control, they don't brake it.
  • Spending more on police doesn't make crime go away.
  • Numbers become leverage points when they go into ranges that kick off one of the items higher on this list.
  • Probably the most common kind of critical number is the length of delay in a feedback loop.
  • A delay in a feedback process is critical relative to rates of change (growth, fluctuation, decay) in the system state that the feedback loop is trying to control.
  • Delays that are too short cause overreaction, oscillations amplified by the jumpiness of the response. Delays that are too long cause damped, sustained, or exploding oscillations, depending on how much too long. At the extreme they cause chaos. Delays in a system with a threshold, a danger point, a range past which irreversible damage can occur, cause overshoot and collapse.
  • delays are not often easily changeable
  • It's usually easier to slow down the change rate (positive feedback loops, higher on this list), so feedback delays won't cause so much trouble
  • Most systems have evolved or are designed to stay out of sensitive parameter ranges. Mostly, the numbers are not worth the sweat put into them.
  • The plumbing structure, the stocks and flows and their physical arrangement, can have an enormous effect on how a system operates.
Kurt Laitner

The Link Economy and Creditright - Geeks Bearing Gifts - Medium - 3 views

  • Online, content with no links has no value because it has no audience
  • News Commons used Repost as the basis of a content- and audience-sharing network among dozens of sites big and small in the state’s new ecosystem
  • Huffington Post and Twitter can get thousands of writers — including me — to make content for free because it brings us audience and attention.
  • ...25 more annotations...
  • Consider an alternative to syndication. I’ll call it reverse syndication. Instead of selling my content to you, what say I give it to you for free? Better yet, I pay you to publish it on your site. The condition: I get to put my ad on the content. I will pay you a share of what I earn from that ad based on how much audience you bring me.
  • That model values the creation of the audience
  • If content could travel with its business model attached, we could set it free to travel across the web, gathering recommendations and audience and value as it goes
  • She searched Google for “embeddable article” and up came Repost.us, already created by entrepreneur and technologist John Pettitt. Repost very cleverly allowed embeddable articles to travel with the creator’s own brand, advertising, analytics, and links.
  • First, he found that the overlap in audience between a creator’s and an embedder’s sites generally ran between 2 and 5 percent. That is to say, the embedders brought a mostly new audience to the creator’s content.
  • Instead, Pettitt found that click-through ran amazingly high: 5 to 7 percent — and these were highly qualified clicks of people who knew what they were going to get on the other side of a link
  • I call this creditright. We need a means to attach credit to content for those who contribute value to it so that each constituent has the opportunity to negotiate and extract value along the chain, so that each can gain permission to take part in the chain, and so that behaviors that benefit others in the chain can be rewarded and encouraged
    • Kurt Laitner
       
      so *net basically, or OVN contributory value accounting
  • Each creator’s ads traveled with its content — though that wasn’t necessarily optimal, because an ad for a North Jersey hairdresser wouldn’t perform terribly well with South Jersey readers brought in through embedding.
  • key factor in its failure: Repost could find many sites willing and eager to make their content embeddable. It didn’t find enough sites to embed the content.
  • But the embedders got nothing aside from the free use of content — content that was just a link away anyway
  • Our ultimate problem in media is that we do not have sufficient technical and legal frameworks for alternate business models.
  • That formula was the key insight behind Google: that links to content are a signal of its value; thus, the more links to a page from sites that themselves have more links, the more useful, relevant, or valuable that content is likely to be
  • Silicon Valley’s: Those people are your fans who are bringing value to you by sending you audiences and by contributing their creativity, and you’d be wise to build your businesses around making it easier, not harder, for them to get and share your content when and how they want it.
  • And so, we came to agree that we need new technological and legal frameworks flexible enough to enable multiple models to support creativity.
  • Hollywood’s side: People who download our content without buying it or who remix it without our permission — and the platforms that facilitate these behaviors — are stealing from us and must be stopped and punished.
  • Imagine you are a songwriter. You hear a street poet and her words inspire you to write a song about her, quoting her in the piece. You go to a crowdfunding platform — Kickstarter, Indiegogo, or Patreon — to raise money for you to go into the studio and perform and distribute your song. Another songwriter comes along and remixes it, making a new version and also sampling from others’ songs. Both end up on YouTube and Soundcloud, on iTunes and Google Play. Audience members discover and share the songs. A particularly popular artist shares the remixed version on Twitter and Facebook and it explodes. A label has one of its stars record it. The star appears on TV performing it. A movie studio includes that song in a soundtrack. There are many constituents in that process: the subject, the songwriter, the patrons, the fans, the remixer, the distributor, the label, the star, the show, the studio, and the platforms. Each contributed value.
  • Each may want to recognize value — but not all will want cash. There are other currencies in play: The poet may want credit and fame; the songwriter may want to sell concert tickets; the patrons may want social capital for discovering and supporting a new artist; the remixer may want permission to remix; the platforms may want a cut of sales or of subscription revenue; the show may want audience and advertising; the studio will want a return on its investment and risk.
  • I’ve suggested they would be wiser to seek another currency from Google: data about the users, helping build better services for readers and advertisers and thus better businesses
  • We will need a way to attach metadata to content, recording and revealing its source and the contributions of others in the chain of continuing creation and distribution.
  • We need a marketplace to measure and value their contributions and a means to negotiate rewards and permissions
  • We need payment structures to handle multiple currencies: data as well as money
  • And we need a legal framework to allow the flexible exploration of new models, some of which we cannot yet imagine.
  • It took many more years for society to develop principles of free speech to balance the economic and political interests of those who would attempt to control a new tool of speech.
  • We must reimagine the business of media and news from the first penny, asking where value is created, who contributes to it, where it resides, and how to extract it
  • Thus, we need new measures of value
Kurt Laitner

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
Tiberius Brastaviceanu

peer into the future - Insect wing flap sensor - 0 views

  • You might want to add some background, define the vision, mission, main objectives, strategy, priorities (you need to update), ...
  • This device can then be used
    • Tiberius Brastaviceanu
       
      This is really interesting ...
  • buzzing sounds of larger insects, but not of very small insects, since the variation in air pressure that their wings create falls below the sensitivity threshold of these types of sensors. One option for tiny insects, such as Drosophila, is to use an optical tachometer, which uses light to detect the flapping of wings.
  • ...1 more annotation...
  • hen insects fly around they buzz. One can use a convention
« First ‹ Previous 41 - 55 of 55
Showing 20 items per page