Skip to main content

Home/ Sensorica Knowledge/ Group items tagged sized

Rss Feed Group items tagged

Kurt Laitner

Guidelines on Measuring Subjective Well-being.pdf - 0 views

  • such as interest,engagement and meaning,
  • subjective well-being is taken to be:2Good mental states, including all of the various evaluations, positive and negative, that peoplemake of their lives, and the affective reactions of people to their experiences
  • “subjective well-being is an umbrella term for the different valuationspeople make regarding their lives, the events happening to them, their bodies and minds,and the circumstances in which they live”.
  • ...16 more annotations...
  • In measuring overall human well-being then, subjective well-being should be placedalongside measures of non-subjective outcomes, such as income, health, knowledge andskills, safety, environmental quality and social connections
  • Inparticular, a distinction is commonly made between life evaluations, which involve acognitive evaluation of the respondent’s life as a whole (or aspects of it), and measures ofaffect, which capture the feelings experienced by the respondent at a particular point in time(Diener, 1984; Kahneman et al., 1999
  • eudaimonic aspect ofsubjective well-being, reflecting people’s sense of purpose and engagement
  • The framework used here covers all three concepts of well-being:●Life evaluation.●Affect.●Eudaimonia (psychological “flourishing”)
  • the result of a judgement by the individual rather than thedescription of an emotional state.
  • Elements of subjective well-beingLife evaluation
  • making an evaluation of this sort as involving the individual constructing a “standard” thatthey perceive as appropriate for themselves, and then comparing the circumstances oftheir life to that standard
  • Life evaluations are based on how people remember their experiences (Kahneman et al.,1999) and can differ significantly from how they actually experienced things at the time
  • It is for this reason that life evaluations are sometimes characterised as measures of“decision utility” in contrast to “experienced utility”
  • One of the mostwell documented measures of life evaluation – thePersonal Wellbeing Index– consists of eightquestions, covering satisfactions with eight different aspects of life, which are summedusing equal weights to calculate an overall index (International Wellbeing Group, 2006)
  • (job satisfaction, financial satisfaction, house satisfaction, healthsatisfaction, leisure satisfaction and environmental satisfaction),
  • AffectAffect is the term psychologists use to describe a person’s feelings. Measures of affectcan be thought of as measures of particular feelings or emotional states, and they aretypically measured with reference to a particular point in time.
  • Such measures capturehow people experience life rather than how they remember it (Kahneman and Krueger,2006
  • While an overall evaluation of life can be captured in a single measure, affect has atleast two distinct hedonic dimensions: positive affect and negative affect (Kahneman et al.,1999; Diener et al., 1999
  • positive affect is thought to be largely uni-dimensional
  • negative affect may be more multi-dimensional.
Francois Bergeron

DMT Pressure Myography - 0 views

    • Francois Bergeron
       
      potential application for the Mosquito ?
  • The Pressure myograph systems are used to measure the physiological function and properties of small arteries, veins and other vessels.
  • Pathology Hypertension Atherosclerosis Diabetes Ischemia, heart disease and heart failure Tumors and angiogenesis Heart and lung diseases
Yasir Siddiqui

Open Innovation in Cities - 0 views

  • The collaborative economy, driven by a convergence of numerous factors including the global economic recession, growing environmental consciousness and the growing ubiquity of information communication technologies (ICTs) is booming, with more than $2 billion in investment raised from venture capitalists 5  and $3.5 billion generated for users in P2P models in 2013. 6  
Francois Bergeron

iWorx :: Organ/Tissue Bath Systems - 0 views

  • iWorx offers 4-channel (M4) or single-channel (M1) Myograph systems from Radnoti Glass Technology. These systems are designed for researchers performing contractile force studies on small ring samples with sizes ranging from 60 mm to over 1 mm in diameter. Examples include mouse aortic rings and small intestinal ring samples as well as micro-vessel preparations like mesenteric arteries.The Myograph systems include myograph chambers with transducers and amplifiers, a base with sliding wrist rest, temperature controllers, stands, tubing kits and all other essential items to conduct an experiment.iWorx offers a myograph normalization module (LS-20NM) which calculates the optimal pretension settings for each sample prior to conducting an experiment.
Kurt Laitner

Asia Times Online :: Nondominium - the Caspian solution - 0 views

  • A Caspian partnership The proposal is that the littoral states should form a Caspian Foundation legal entity, and commit to that entity all existing rights in respect of the use, and the fruits of use (usufruct), of the Caspian Sea, and everything on it, in it, or under it. The Caspian Foundation would act as custodian or steward and the nations would have agreed governance rights of veto. This negative or passive veto right of stewardship is very different from conventional property rights of absolute ownership and temporary use under condominium. Moreover, it does not have the active power of control held under common law by a trustee on behalf of beneficiaries, and the legal complexities and management conflicts which go with it. The Caspian Foundation would be a subscriber to a Caspian Partnership framework agreement between the nations, investors of money or money's worth, and a consortium of service providers. This Caspian Partnership would not be yet another international organization, with everything that goes with that. It would not own anything, employ anyone or contract with anyone: it would simply be an associative framework agreement within which Caspian nations self-organize to the common purpose of the sustainable development of the Caspian Sea.
  • Nondominium - the Caspian solution By Chris Cook Twenty-first century problems cannot be solved with 20th century solutions. Nowhere is that saying so true as in territorial disputes where oil and gas are involved. The riches of the Caspian Sea have been the subject of dispute for years, and relatively simple - but still intractable - binary issues between Iran and Russia are now multiplied by the conflicting claims of what are now five littoral Caspian nations: Azerbaijan, Iran; Kazakhstan; Russia and Turkmenistan. Their claims relate not just to rights on the Caspian Sea surface, but to rights in the sea, and above all to the rights to the treasures that lie under it. There are two 20th century legal approaches: international law //ad information var tf_adModel = "FEV"; var tf_adType = "InBannerVideo"; var tf_commonLocation = "http://cdnx.tribalfusion.com/media/common/expand/"; //leave this variable as it is var tf_cookieFlash = "http://cdnx.tribalfusion.com/media/common/TFSObj_v2s"; var tf_isExpansionHandle = true; var tf_floatAdScriptPath = "http://cdnx.tribalfusion.com/media/common/floating/TF_FloatAdLibrary.js"; var tf_zoomFlash = "http://cdnx.tribalfusion.com/media/common/floating/TFScale_v1"; var tf_banner = { "flag" : "inBanner", "width" : 300, "height" : 250, "widthExpanded" : 600, "heightExpanded" : 450, "widthFloating" : 950, "heightFloating" : 570, "iWin" : [ ], "flashFile" : "http://cdnx.tribalfusion.com/media/4523336/Glow_Banner_Square_Template_V201", extraFlashVars:"tf_showPanelonLoad=true&tf_phase2=false", "video_expand" : "http://cdnx.tribalfusion.com/media/4523336/video.flv", "imageFile" : "http://cdnx.tribalfusion.com/media/4523336/300.jpg", "video" : "http://cdnx.tribalfusion.com/media/4523336/video.flv", "clickTag" : "http://bs.serving-sys.com/BurstingPipe/adServer.bs?cn=tf&c=20&mc=click&pli=8816678&PluID=0&ord=619093658", "clickTag1" : "http://bs.serving-sys.com/BurstingPipe/adServer.bs?cn=tf&c=20&mc=click&pli=8816678&PluID=0&ord=619093658", "clickTag2" : "http://bs.serving-sys.com/BurstingPipe/adServer.bs?cn=tf&c=20&mc=click&pli=8816678&PluID=0&ord=619093658", "socialNetworks" : [ ], "video_expand_start" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=0pcLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_midpoint" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=50pcLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_firstQuartile" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=25pcLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_thirdQuartile" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=75pcLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_complete" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=100pcLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_mute" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=MuteLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_unmute" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=UnmuteLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_pause" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=PauseLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_rewind" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=RewindLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_resume" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=ResumeLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_replay" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=ReplayLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_fullscreen" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=FSLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "video_expand_close" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=VCloseLive&ord=619093658&custom1=Video_Expand&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;vo:@video_order@;ph:@phase@", "clickTag_tracking" : "http://a.tribalfusion.com/insights/impression?client=554133&campaign=AdvilEN.AB.CAN.EB.FFG.300_V15(4765995)&mediaSource=fireflyvideo&creative=300x250&event=ClickLive&ord=619093658&custom1=Save 3 Now(Click Tag)&custom2=buyID:8493362;mediaID:4765995;ord:619093658;td:@TIMEDIFFERENCE@;adspaceId:26181;ph:@phase@", "clickTag1_tracking" : "http:
  • A Caspian partnership The proposal is that the littoral states should form a Caspian Foundation legal entity, and commit to that entity all existing rights in respect of the use, and the fruits of use (usufruct), of the Caspian Sea, and everything on it, in it, or under it. The Caspian Foundation would act as custodian or steward and the nations would have agreed governance rights of veto. This negative or passive veto right of stewardship is very different from conventional property rights of absolute ownership and temporary use under condominium. Moreover, it does not have the active power of control held under common law by a trustee on behalf of beneficiaries, and the legal complexities and management conflicts which go with it. The Caspian Foundation would be a subscriber to a Caspian Partnership framework agreement between the nations, investors of money or money's worth, and a consortium of service providers. This Caspian Partnership would not be yet another international organization, with everything that goes with that. It would not own anything, employ anyone or contract with anyone: it would simply be an associative framework agreement within which Caspian nations self-organize to the common purpose of the sustainable development of the Caspian Sea.
  • ...1 more annotation...
  • A Caspian partnership The proposal is that the littoral states should form a Caspian Foundation legal entity, and commit to that entity all existing rights in respect of the use, and the fruits of use (usufruct), of the Caspian Sea, and everything on it, in it, or under it. The Caspian Foundation would act as custodian or steward and the nations would have agreed governance rights of veto. This negative or passive veto right of stewardship is very different from conventional property rights of absolute ownership and temporary use under condominium. Moreover, it does not have the active power of control held under common law by a trustee on behalf of beneficiaries, and the legal complexities and management conflicts which go with it. The Caspian Foundation would be a subscriber to a Caspian Partnership framework agreement between the nations, investors of money or money's worth, and a consortium of service providers. This Caspian Partnership would not be yet another international organization, with everything that goes with that. It would not own anything, employ anyone or contract with anyone: it would simply be an associative framework agreement within which Caspian nations self-organize to the common purpose of the sustainable development of the Caspian Sea.
Tiberius Brastaviceanu

Co-Creating as Disruption to the Dominant Cultural Framework » Wirearchy - 0 views

  • more open people processes
  • Participative processes like Open Space, World Cafes, Unconferences, Peer Circles
  • Barcamps, Wordcamps, Govcamps, Foo Camps, Unconferences, high-end celebrity-and-marketing-and venture-capital ‘experience’ markets, new cultural and artistic festivals with technology-and-culture-making themes
  • ...45 more annotations...
  • maker faires
  • community-and-consensus building, organizing for activism and fundraising
  • The impetus behind this explosion is both technological and sociological
  • Technological
  • information technology and the creation and evolution of the Internet and the Web
  • appearance, development and evolution of social tools, web services, massive storage, and the ongoing development of computer-and-smart-devices development
  • Sociological
  • People are searching for ways to find others with similar interests and motivations so that they can engage in activities that help them learn, find work, grow capabilities and skills, and tackle vexing social and economic problems
  • get informed and take action
  • Developing familiarity and practice with open and collaborative processes
  • play and work together
  • rules about self-management, operate democratically, and produce results grounded in ownership and the responsibilities that have been agreed upon by the ‘community’
  • The relationships and flows of information can be transferred to online spaces and often benefit from wider connectivity.
  • Today, our culture-making activities are well engaged in the early stages of cultural mutation
  • What’s coming along next ?  “Smart” devices and Internet everywhere in our lives ?  Deep(er) changes to the way things are conceived, carried out, managed and used ?  New mental models ?  Or, will we discover real societal limits to what can be done given the current framework of laws, institutions and established practices with which people are familiar and comfortable ?
  • Shorter cycle-based development and release
  • Agile development
  • It is clear evidence that the developmental and learning dynamics generated by continuous or regular feedback loops are becoming the norm in areas of activity in which change and short cycles of product development are constants.
  • The Internet of Things (IoT)
  • clothes, homes, cars, buildings, roads, and a wide range of other objects that have a place in peoples’ daily life activities
  • experiencing major growth, equally in terms of hardware, software and with respect to the way the capabilities are configured and used
  • The IoT concept is being combined with the new-ish concepts of Open Data and Big Data
  • ethical, political and social impact policy decisions
  • that key opportunities associated with widespread uptake of the IoT are derived from the impact upon peoples’ activities and lives
  • ‘we’ are on our way towards more integrated eco-systems of issues, people and technologies
  • participation and inclusion enabled by interconnectedness are quickly becoming the ‘new rules’
  • What the Future May Hold
  • the ‘scenario planning’ approach
  • world’s politics, economics, anthropology, technology, psychology, sociology and philosophy
  • A scenario planning exercise carried out by the Rockefeller Foundation
  • Clearly these early (and now not-so-weak) signals and patterns tell us that the core assumptions and principles that have underpinned organized human activities for most of the past century
  • are being changed by the combinations and permutations of new, powerful, inexpensive and widely accessible information-processing technologies
  • The short description of each scenario reinforces the perception that we are both individually and collectively in transition from a linear, specialized, efficiency-driven paradigm towards a paradigm based on continuous feedback loops and principles of participation, both large and small in scope.
  • cultural ‘mutation’
  • Wirearchy
  • a dynamic two-way flow of power and authority based on knowledge, trust, credibility and a focus on results, enabled by interconnected people and technology.
  • the role of social media and smart mobile devices in the uprisings in Egypt, Libya and elsewhere in the Middle East
  • The roots of organizational development (OD) are in humanistic psychology and sociology action and ethnographic and cybernetic/ socio-technical systems theory.  It’s a domain that emerged essentially as a counter-balance to the mechanistic and machine-metaphor-based core assumptions about the organized activities in our society.
  • Organizational development principles are built upon some basic assumptions about human motivations, engagement and activities.
  • Participative Work Design – The Six Criteria
  • in recent years created models that help clarify how to evaluate and respond to the continuous turbulence and ambiguity generated by participating in interconnected flows of information.
  • contexts characterized by either Simple, Complicated or Chaotic dynamics (from complexity theory fundamentals). Increasingly, Complexity is emerging as a key definer of the issues, problems and opportunities faced by our societies.
  • peer-to-peer movement(s) unfolding around the world
  • Co-creating in a wide range of forms, processes and purpose may become an effective and important antidote to the spreading enclosure of human creative activity.
  • But .. the dominant models of governance, commercial ownership and the use and re-use of that which is co-created by people are going to have to undergo much more deep change in order to disrupt the existing paradigm of proprietary commercial creation and the model of socio-economic power that this paradigm enables and carries today.
Francois Bergeron

Displacement | Microstrain - 0 views

  • MicroStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrain’s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175°C in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality.
  • croStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrain’s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175°C in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality. MicroStrain’s displacement sensing products including transducers, signal conditioners, and motherboards. These systems provide highly precise measurement solutions. MicroStrain’s contact displacement transducers deliver highly precise linear measurements with an extremely small, miniature design.  Both gauging and non-gauging displacement transducers are available. Our non-contact displacement transducers are designed to measure the displacement and proximity of a metal target without physical contact. MicroStrain offers wireless, analog, and digital output DVRT signal conditioners. Signal conditioners are required for use with MicroStrain DVRT displacement sensors.   .familyNav1, .familyNav2, .familyNav3, .familyNav4 { background: none repeat scroll 0 0 #CCCCCC; color: #FFFFFF; display: block; font-size: 14px; margin: 1px 0; padding: 6px 0 3px 6px; text-decoration: none; } .familyNav1:hover, .familyNav2:hover, .familyNav3:hover, .familyNav4:hover { opacity:1.0; filter:alpha(opacity=100); } .familyNav1:hover, .familyNav1.live { background:#0468AD; } .familyNav2:hover, .familyNav2.live{ background:#32641E; } .familyNav3:hover, .familyNav3.live{ background:#B55A11; } .familyNav4:hover, .familyNav4.live{ background:#76285D; } .familySub { margin: -1px 0 0; opacity:0.7; filter:alpha(opacity=80); font-size:12px; } .familySub img { width: 22px; } WIRELESS SENSOR NETWORKS
Tiberius Brastaviceanu

Innovation Canada: A Call to Action - Review of Federal Support to Research and Develop... - 1 views

  • Canada has a solid foundation on which to build success as a leader in the knowledge economy of tomorrow
  • innovation in Canada lags behind other highly developed countries
  • innovation is the ultimate source of the long-term competitiveness of businesses and the quality of life of Canadians
  • ...28 more annotations...
  • We heard that the government should be more focussed on helping innovative firms to grow and, particularly, on serving the needs of small and medium-sized enterprises (SMEs)
  • greater cooperation with provincial programs
  • innovation support is too narrowly focussed on R&D – more support is needed for other activities along the continuum from ideas to commercially useful innovation
  • more productive and internationally competitive economy
  • whole-of-government program delivery vehicle – the Industrial Research and Innovation Council (IRIC)
  • SR&ED program should be simplified
  • includes non-labour costs, such as materials and capital equipment, the calculation of which can be highly complex
  • the base for the tax credit should be labour-related costs, and the tax credit rate should be adjusted upward
  • fund direct support measures for SMEs
  • promoting the growth of firms
  • facilitating access by such firms to an increased supply of risk capital at both the start-up and later stages of their growth.
  • building public–private research collaborations
  • National Research Council (NRC) should become independent collaborative research organizations
  • become affiliates of universities
  • create opportunity and demand for leading-edge goods
  • encouragement of innovation in the Canadian economy should become a stated objective of procurement policies and programs.
  • the government needs to establish business innovation as a whole-of-government priority
  • put innovation at the centre of the government's economic strategy
  • Innovation Advisory Committee (IAC) – a body with a whole-of-government focus that would oversee the realization of our proposed action plan, as well as serve as a permanent mechanism to promote the refinement and improvement of the government's business innovation programs going forward.
  • focus resources where market forces are unlikely to operate effectively or efficiently and, in that context, address the full range of business innovation activities, including research, development, commercialization and collaboration with other key actors in the innovation ecosystem
  • the closer the activity being supported is to market, and therefore the more likely it is that the recipient firm will capture most of the benefit for itself.
  • specific sectors
  • of strategic importance
  • concentrated in particular regions
  • succeed in the arena of global competition
    • Tiberius Brastaviceanu
       
      They don't go beyond the firm
    • Tiberius Brastaviceanu
       
      they are still stuck in the competitive paradigm
    • Tiberius Brastaviceanu
       
      Still stack with the old paradigm of the "knowledge economy"  http://en.wikipedia.org/wiki/Knowledge_economy  My opinion is that we're moving into a know-how economy. 
Tiberius Brastaviceanu

Innovative schemes for open innovation and science 2.0 INSO-4-2015 - 0 views

  • Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015
  • open innovation and science 2.0
  • assist universities to become open innovation centres for their region in cooperation with companies, realising the ERA priorities, and to enable public administrations to drive innovation in and through the public sector.
  • ...16 more annotations...
  • help universities, companies and public authorities to enhance their capacity to engage in science 2.0 and open innovation.
  • effective linkages for innovation between universities and companies and other employment sectors, and provide freely accessible innovation training platforms, including digital platforms. 
  • consortia
  • adopt innovative ways to create new knowledge, new jobs and promote economic growth
  • a). Inter-sectoral mobility
  • b) Academia- Business knowledge co-creation
  • c) Innovation leadership programme for public administrations and researchers
  • a policy of double nominations
  • a policy to further and recognise inter-sectoral mobility
  • This challenge can be addressed through different sets of actions:
    • Tiberius Brastaviceanu
       
      the sub-sections are not addressed at once.
  • develop or (further) implement open innovative schemes to strengthen linkages between academia, industry and community
  • Research institutions together with companies are expected to build sustainable structures which help to absorb needs of users and thereby become co-creators of new solutions.  SMEs should be encouraged to participate.
  • Gender aspects need to be taken into account.
    • Tiberius Brastaviceanu
       
      This is something that really fits SENSORICA. We've been working on this for 2 years now. 
  • developing curricula and providing freely through online platforms, possibly combined with other delivery mechanisms, innovation training for public administrations and researchers.
  •  
    "Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015"
Tiberius Brastaviceanu

Postage-Stamp-Sized Micropumps for Both Gas and Liquid Sensor Systems | Sensors - 3 views

  •  
    "550 mbar/ 8 psi (100 Hz)"
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Tiberius Brastaviceanu

Open Source 3-D Printed Nutating Mixer - Appropedia, the sustainability wiki - 0 views

  •  
    "As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood samples) without foam formation. The custom components for the nutating mixer are designed using open source FreeCAD software to enable customization. All of the non-readily available components can be fabricated with a low-cost RepRap 3-D printer using an open source software tool chain from common thermoplastics. All of the designs are open sourced and can be configured to add more functionality to the equipment in the future. It is relatively easy to assemble and is accessible to both the science education of younger students as well as state-of-the-art research laboratories. Overall, the open source nutating mixer can be fabricated with US$37 in parts, which is 1/10th of the cost of proprietary nutating mixers with similar capabilities. The open source nature of the device allow it to be easily repaired or upgraded with digital files, as well as to accommodate custom sample sizes and mixing velocities with minimal additional costs."
Francois Bergeron

A model for device development | Researchers at the Stanford University Program in Biod... - 2 views

  • clinical need.
  • estimated market size and clinical impact associated with each.
  • prior art related
  • ...4 more annotations...
  • barriers to further development exist from an intellectual property perspective
  • Inventors must also determine if they are in a position to efficiently seize the market opportunity.
  • regulatory considerations, reimbursement strategies, intellectual property, and business development objectives. This leads to Phase I of the development model.
  • R&D in Phase II is responsible for generating early concepts. Brainstorming sessions are often held during this stage of development with members of R&D, marketing, and physician consultants. Computational analyses, such as stress and flow studies, are conducted to further understand the behavior of a proposed device. The team often develops a 3D CAD model of a proposed device
  •  
    medical device development steps
Tiberius Brastaviceanu

Home - Review of Federal Support to Research and Development - 1 views

  • 5 billion worth of R&D funding provided by the federal government every year
  • helping our innovative SMEs grow into larger, world-competitive companies in Canada
  • government support for business R&D in Canada is among the most generous in the world, yet we're near the bottom of the pack when it comes to seeing business R&D investment
  • ...7 more annotations...
  • What we found was a funding system that is unnecessarily complicated and confusing to navigate
  • significant gaps that hinder the ability of our businesses to grow
  • The encouragement of home-grown innovation a part of government procurement is commonsense
  • the NRC can play a unique role, linking its large-scale, long-term research activity with the academic and business communities
  • challenges in getting start-up funding and late stage risk capital financing
  • the gap is filled by foreign investors, which means that too many commercial benefits and intellectual property end up leaving the country
  • government-wide clarity when it comes to innovation
Tiberius Brastaviceanu

Google Apps Script - introduction - 0 views

  • Google Apps Script provides you with the ability to build a user interface for displaying or capturing information.
  • Viewing the Available User Interface Elements
  • Your scripts can display the user interface in two ways:
  • ...48 more annotations...
  • from a Spreadsheet
  • from a Site
  • As a stand-alone servlet
  • Deciding Whether to Run a Script from a Spreadsheet or as a Service
  • The built-in code autocomplete functionality in the editor requires you to type the trailing period that follows app.
  • Plan the script. What tasks should the script accomplish?
  • Write down the specific information you want to display to or collect from your users.
  • Draw the user interface
  • Determine what the script and interface should do in response to any user input.
  • Determine the conditions for exiting the script.
  • you need a UiApp application object to contain the user interface elements. After you create the UiApp application object, you can add buttons, dialog boxes, panels, and other elements to the UiApp application object.
  • The general syntax for these operations is as follows:
  • To create a UiApp application object, use the syntax var your_application_object_name = UiApp.createApplication();
  • To create a user interface element and associate it with your UiApp application object, use the syntax var your_ui_element_name= your_application_object_name.createElement_Name();.
  • To add one user interface element to another
  • use the syntax your_ui_element_name1.add(your_ui_element_name2);
  • a button with the text Press Me on it:
  • creates a vertical panel.
  • other kinds of panels
  • pop-up panels, stack panels, focus panels, form panels, and so on.
  • code for displaying your button on the panel:
  • add the panel to the application:
  • nstruct Google Apps Script to display the interface elements:
  • You can create the user interface elements in any order.
  • the display order
  • Creating the elements and adding them to your application are separate steps requiring separate instructions.
  • a short script that does nothing but display a panel with a button on it.
  • You can chain together setter methods
  • sets its title
  • set the size of the object:
  • how to use Grid objects and the setWidget method to create a more complex layout and also how to create text boxes and label them.
  • To make a user interface useful, you need the ability to update a Spreadsheet with information a user enters from the interface.
  • a short script that responds to an action in the interface by updating the Spreadsheet.
  • looping structure in the script to keep the panel displayed and active
  • Server-side means that the actions are performed by a server
  • same script, with functions added that enable the form to be used multiple times before a user chooses to exit.
  • script collects some information from text fields on a panel and writes that information into the Spreadsheet.
  • You can make a script's user interface available to users from inside a Spreadsheet or Site or by running it separately as a service.
  • how to make the user interface as a service.
  • A script that provides a stand-alone user interface must invoke the doGet(e) function or the doPost(e) function for an HTML form submit.
  • A script that provides the user interface from the Spreadsheet invokes doc.show(app).
  • The doGet(e) function takes the argument e, passing in the arguments for the user interface, including the user name of the person invoking the script.
  • After you write the script, you publish it as a service. During the publishing process, you define who has access to the script.
  • In a Google Apps domain, you can publish the script so that only you have access or so that everyone in the domain has access.
  • In a Google consumer account, you can publish the script so that only you have access or so that everyone in the world has access.
  • Updating a Spreadsheet from the User Interface, the user interface is displayed from the Spreadsheet where the script is stored. The following code defines how the user interface is displayed:
  • Here's the skeleton code for displaying a user interface as a stand-alone service:
  • some aspects of the two ways to display a user interface.
Tiberius Brastaviceanu

Is Shame Necessary? | Conversation | Edge - 0 views

  • What is shame's purpose? Is shame still necessary?
  • Shame is what is supposed to occur after an individual fails to cooperate with the group.
  • Whereas guilt is evoked by an individual's standards, shame is the result of group standards. Therefore, shame, unlike guilt, is felt only in the context of other people.
  • ...53 more annotations...
  • Many animals use visual observations to decide whether to work with others.
  • humans are more cooperative when they sense they're being watched.
  • The feeling of being watched enhances cooperation, and so does the ability to watch others. To try to know what others are doing is a fundamental part of being human
  • Shame serves as a warning to adhere to group standards or be prepared for peer punishment. Many individualistic societies, however, have migrated away from peer punishment toward a third-party penal system
  • Shame has become less relevant in societies where taking the law into one's own hands is viewed as a breach of civility.
  • Many problems, like most concerning the environment, are group problems. Perhaps to solve these problems we need a group emotion. Maybe we need shame.
  • Guilt prevails in many social dilemmas
  • It is perhaps unsurprising that a set of tools has emerged to assuage this guilt
  • Guilt abounds in many situations where conservation is an issue.
  • The problem is that environmental guilt, though it may well lead to conspicuous ecoproducts, does not seem to elicit conspicuous results.
  • The positive effect of idealistic consumers does exist, but it is masked by the rising demand and numbers of other consumers.
  • Guilt is a valuable emotion, but it is felt by individuals and therefore motivates only individuals. Another drawback is that guilt is triggered by an existing value within an individual. If the value does not exist, there is no guilt and hence no action
  • Getting rid of shaming seems like a pretty good thing, especially in regulating individual behavior that does no harm to others. In eschewing public shaming, society has begun to rely more heavily on individual feelings of guilt to enhance cooperation.
  • five thousand years ago, there arose another tool: writing
  • Judges in various states issue shaming punishments,
  • shaming by the state conflicts with the law's obligation to protect citizens from insults to their dignity.
  • What if government is not involved in the shaming?
  • Is this a fair use of shaming? Is it effective?
  • Shaming might work to change behavior in these cases, but in a world of urgent, large-scale problems, changing individual behavior is insignificant
  • vertical agitation
  • Guilt cannot work at the institutional level, since it is evoked by individual scruples, which vary widely
  • But shame is not evoked by scruples alone; since it's a public sentiment, it also affects reputation, which is important to an institution.
  • corporate brand reputation outranked financial performance as the most important measure of success
  • shame and reputation interact
  • in our early evolution we could gauge cooperation only firsthand
  • Shaming, as noted, is unwelcome in regulating personal conduct that doesn't harm others. But what about shaming conduct that does harm others?
  • why we learned to speak.1
  • Language
  • The need to accommodate the increasing number of social connections and monitor one another could be
  • allowed for gossip, a vector of social information.
  • in cooperation games that allowed players to gossip about one another's performance, positive gossip resulted in higher cooperation.
  • Of even greater interest, gossip affected the players' perceptions of others even when they had access to firsthand information.
  • Human society today is so big that its dimensions have outgrown our brains.
  • What tool could help us gossip in a group this size?
  • We can use computers to simulate some of the intimacy of tribal life, but we need humans to evoke the shame that leads to cooperation. The emergence of new tools— language, writing, the Internet—cannot completely replace the eyes. Face-to-face interactions, such as those outside Trader Joe's stores, are still the most impressive form of dissent.
  • what is stopping shame from catalyzing social change? I see three main drawbacks:
  • Today's world is rife with ephemeral, or "one-off," interactions.
  • Research shows, however, that if people know they will interact again, cooperation improves
  • Shame works better if the potential for future interaction is high
  • In a world of one-off interactions, we can try to compensate for anonymity with an image score,
  • which sends a signal to the group about an individual's or institution's degree of cooperation.
  • Today's world allows for amorphous identities
  • It's hard to keep track of who cooperates and who doesn't, especially if it's institutions you're monitoring
  • Shaming's biggest drawback is its insufficiency.
  • Some people have no shame
  • shame does not always encourage cooperation from players who are least cooperative
  • a certain fraction of a given population will always behave shamelessly
  • if the payoff is high enough
  • There was even speculation that publishing individual bankers' bonuses would lead to banker jealousy, not shame
  • shame is not enough to catalyze major social change
  • This is why punishment remains imperative.
  • Even if shaming were enough to bring the behavior of most people into line, governments need a system of punishment to protect the group from the least cooperative players.
  • Today we are faced with the additional challenge of balancing human interests and the interests of nonhuman life.
  •  
    The role of non-rational mechanisms in convergence - social emotions like shame and guilt 
Tiberius Brastaviceanu

The New Normal in Funding University Science | Issues in Science and Technology - 1 views

  • Government funding for academic research will remain limited, and competition for grants will remain high. Broad adjustments will be needed
  • he sequester simply makes acute a chronic condition that has been getting worse for years.
  • the federal budget sequester
  • ...72 more annotations...
  • systemic problems that arise from the R&D funding system and incentive structure that the federal government put in place after World War II
  • Researchers across the country encounter increasingly fierce competition for money.
  • unding rates in many National Institutes of Health (NIH) and National Science Foundation (NSF) programs are now at historical lows, declining from more than 30% before 2001 to 20% or even less in 2011
  • even the most prominent scientists will find it difficult to maintain funding for their laboratories, and young scientists seeking their first grant may become so overwhelmed that individuals of great promise will be driven from the field
  • anxiety and frustration
  • The growth of the scientific enterprise on university campuses during the past 60 years is not sustainable and has now reached a tipping point at which old models no longer work
  • Origins of the crisis
  • ederal funding agencies must work with universities to ensure that new models of funding do not stymie the progress of science in the United States
  • The demand for research money greatly exceeds the supply
  • the demand for research funding has gone up
  • The deeper sources of the problem lie in the incentive structure of the modern research university, the aspirations of scientists trained by those universities, and the aspirations of less research-intensive universities and colleges across the nation
  • competitive grants system
  • if a university wants to attract a significant amount of sponsored research money, it needs doctoral programs in the relevant fields and faculty members who are dedicated to both winning grants and training students
  • The production of science and engineering doctorates has grown apace
  • Even though not all doctorate recipients become university faculty, the size of the science and engineering faculty at U.S. universities has grown substantially
  • proposal pressure goes up
  • These strategies make sense for any individual university, but will fail collectively unless federal funding for R&D grows robustly enough to keep up with demand.
  • At the very time that universities were enjoying rapidly growing budgets, and creating modes of operation that assumed such largess was the new normal, Price warned that it would all soon come to a halt
  • the human and financial resources invested in science had been increasing much faster than the populations and economies of those regions
  • growth in the scientific enterprise would have to slow down at some point, growing no more than the population or the economy.
  • Dead-end solutions
  • studies sounded an alarm about the potential decline in U.S. global leadership in science and technology and the grave implications of that decline for economic growth and national security
  • Although we are not opposed to increasing federal funding for research, we are not optimistic that it will happen at anywhere near the rate the Academies seek, nor do we think it will have a large impact on funding rates
  • universities should not expect any radical increases in domestic R&D budgets, and most likely not in defense R&D budgets either, unless the discretionary budgets themselves grow rapidly. Those budgets are under pressure from political groups that want to shrink government spending and from the growth of spending in mandatory programs
  • The basic point is that the growth of the economy will drive increases in federal R&D spending, and any attempt to provide rapid or sustained increases beyond that growth will require taking money from other programs.
  • The demand for research money cannot grow faster than the economy forever and the growth curve for research money flattened out long ago.
  • Path out of crisis
  • The goal cannot be to convince the government to invest a higher proportion of its discretionary spending in research
  • Getting more is not in the cards, and some observers think the scientific community will be lucky to keep what it has
  • The potential to take advantage of the infrastructure and talent on university campuses may be a win-win situation for businesses and institutions of higher education.
  • Why should universities and colleges continue to support scientific research, knowing that the financial benefits are diminishing?
  • esearch culture
  • attract good students and faculty as well as raise their prestige
  • mission to expand the boundaries of human knowledge
  • faculty members are committed to their scholarship and will press on with their research programs even when external dollars are scarce
  • training
  • take place in
  • research laboratories
  • it is critical to have active research laboratories, not only in elite public and private research institutions, but in non-flagship public universities, a diverse set of private universities, and four-year colleges
  • How then do increasingly beleaguered institutions of higher education support the research efforts of the faculty, given the reality that federal grants are going to be few and far between for the majority of faculty members? What are the practical steps institutions can take?
  • change the current model of providing large startup packages when a faculty member is hired and then leaving it up to the faculty member to obtain funding for the remainder of his or her career
  • universities invest less in new faculty members and spread their internal research dollars across faculty members at all stages of their careers, from early to late.
    • Tiberius Brastaviceanu
       
      Sharing of resources, see SENSORICA's NRP
  • national conversation about changes in startup packages and by careful consultations with prospective faculty hires about long-term support of their research efforts
  • Many prospective hires may find smaller startup packages palatable, if they can be convinced that the smaller packages are coupled with an institutional commitment to ongoing research support and more reasonable expectations about winning grants.
  • Smaller startup packages mean that in many situations, new faculty members will not be able to establish a functioning stand-alone laboratory. Thus, space and equipment will need to be shared to a greater extent than has been true in the past.
  • construction of open laboratory spaces and the strategic development of well-equipped research centers capable of efficiently servicing the needs of an array of researchers
  • phaseout of the individual laboratory
  • enhanced opportunities for communication and networking among faculty members and their students
  • Collaborative proposals and the assembly of research teams that focus on more complex problems can arise relatively naturally as interactions among researchers are facilitated by proximity and the absence of walls between laboratories.
  • An increased emphasis on team research
  • investments in the research enterprise
  • can be directed at projects that have good buy-in from the faculty
  • learn how to work both as part of a team and independently
  • Involvement in multiple projects should be encouraged
  • The more likely trajectory of a junior faculty member will evolve from contributing team member to increasing leadership responsibilities to team leader
  • nternal evaluations of contributions and potential will become more important in tenure and promotion decisions.
    • Tiberius Brastaviceanu
       
      Need value accounting system
  • relationships with foundations, donors, state agencies, and private business will become increasingly important in the funding game
  • The opportunities to form partnerships with business are especially intriguing
    • Tiberius Brastaviceanu
       
      The problem is to change the model and go open source, because IP stifles other processes that might benefit Universities!!!
  • Further complicating university collaborations with business is that past examples of such partnerships have not always been easy or free of controversy.
  • some faculty members worried about firms dictating the research priorities of the university, pulling graduate students into proprietary research (which could limit what they could publish), and generally tugging the relevant faculty in multiple directions.
  • developed rules and guidelines to control them
  • University faculty and businesspeople often do not understand each other’s cultures, needs, and constraints, and such gaps can lead to more mundane problems in university/industry relations, not least of which are organizational demands and institutional cultures
    • Tiberius Brastaviceanu
       
      Needs for mechanisms to govern, coordinate, structure an ecosystem -See SENSORICA's Open Alliance model
  • n addition to funding for research, universities can receive indirect benefits from such relationships. High-profile partnerships with businesses will underline the important role that universities can play in the economic development of a region.
  • Universities have to see firms as more than just deep pockets, and firms need to see universities as more than sources of cheap skilled labor.
  • foundations or other philanthropy
  • We do not believe that research proposed and supervised by individual principal investigators will disappear anytime soon. It is a research model that has proven to be remarkably successful and enduring
  • However, we believe that the most vibrant scientific communities on university and college campuses, and the ones most likely to thrive in the new reality of funding for the sciences, will be those that encourage the formation of research teams and are nimble with regard to funding sources, even as they leave room for traditional avenues of funding and research.
Kurt Laitner

What do we need corporations for and how does Valve's management structure fit into tod... - 0 views

  • Valve’s management model; one in which there are no bosses, no delegation, no commands, no attempt by anyone to tell someone what to do
  • Every social order, including that of ants and bees, must allocate its scarce resources between different productive activities and processes, as well as establish patterns of distribution among individuals and groups of output collectively produced.
  • the allocation of resources, as well as the distribution of the produce, is based on a decentralised mechanism functioning by means of price signals:
  • ...18 more annotations...
  • Interestingly, however, there is one last bastion of economic activity that proved remarkably resistant to the triumph of the market: firms, companies and, later, corporations. Think about it: market-societies, or capitalism, are synonymous with firms, companies, corporations. And yet, quite paradoxically, firms can be thought of as market-free zones. Within their realm, firms (like societies) allocate scarce resources (between different productive activities and processes). Nevertheless they do so by means of some non-price, more often than not hierarchical, mechanism!
  • they are the last remaining vestiges of pre-capitalist organisation within… capitalism
  • The miracle of the market, according to Hayek, was that it managed to signal to each what activity is best for herself and for society as a whole without first aggregating all the disparate and local pieces of knowledge that lived in the minds and subconscious of each consumer, each designer, each producer. How does this signalling happen? Hayek’s answer (borrowed from Smith) was devastatingly simple: through the movement of prices
  • The idea of spontaneous order comes from the Scottish Enlightenment, and in particular David Hume who, famously, argued against Thomas Hobbes’ assumption that, without some Leviathan ruling over us (keeping us “all in awe”), we would end up in a hideous State of Nature in which life would be “nasty, brutish and short”
  • Hume’s counter-argument was that, in the absence of a system of centralised command, conventions emerge that minimise conflict and organise social activities (including production) in a manner that is most conducive to the Good Life
  • Hayek’s argument was predicated upon the premise that knowledge is always ‘local’ and all attempts to aggregate it are bound to fail. The world, in his eyes, is too complex for its essence to be distilled in some central node; e.g. the state.
  • The idea here is that, through this ever-evolving process, people’s capacities, talents and ideas are given the best chance possible to develop and produce synergies that promote the Common Good. It is as if an invisible hand guides Valve’s individual members to decisions that both unleash each person’s potential and serve the company’s collective interest (which does not necessarily coincide with profit maximisation).
  • Valve differs in that it insists that its employees allocate 100% of their time on projects of their choosing
  • In contrast, Smith and Hayek concentrate their analysis on a single passion: the passion for profit-making
  • Hume also believed in a variety of signals, as opposed to Hayek’s exclusive reliance on price signalling
  • One which, instead of price signals, is based on the signals Valve employees emit to one another by selecting how to allocate their labour time, a decision that is bound up with where to wheel their tables to (i.e. whom to work with and on what)
  • He pointed out simply and convincingly that the cost of subcontracting a good or service, through some market, may be much larger than the cost of producing that good or service internally. He attributed this difference to transactions costs and explained that they were due to the costs of bargaining (with contractors), of enforcing incomplete contracts (whose incompleteness is due to the fact that some activities and qualities cannot be fully described in a written contract), of imperfect monitoring and asymmetrically distributed information, of keeping trade secrets… secret, etc. In short, contractual obligations can never be perfectly stipulated or enforced, especially when information is scarce and unequally distributed, and this gives rise to transaction costs which can become debilitating unless joint production takes place within the hierarchically structured firm. Optimal corporation size corresponds, in Coase’s scheme of things, to a ‘point’ where the net marginal cost of contracting out a service or good (including transaction costs) tends to zero 
  • As Coase et al explained in the previous section, the whole point about a corporation is that its internal organisation cannot turn on price signals (for if it could, it would not exist as a corporation but would, instead, contract out all the goods and services internally produced)
  • Each employee chooses (a) her partners (or team with which she wants to work) and (b) how much time she wants to devote to various competing projects. In making this decision, each Valve employee takes into account not only the attractiveness of projects and teams competing for their time but, also, the decisions of others.
  • Hume thought that humans are prone to all sorts of incommensurable passions (e.g. the passion for a video game, the passion for chocolate, the passion for social justice) the pursuit of which leads to many different types of conventions that, eventually, make up our jointly produced spontaneous order
  • Valve is, at least in one way, more radical than a traditional co-operative firm. Co-ops are companies whose ownership is shared equally among its members. Nonetheless, co-ops are usually hierarchical organisations. Democratic perhaps, but hierarchical nonetheless. Managers may be selected through some democratic or consultative process involving members but, once selected, they delegate and command their ‘underlings’ in a manner not at all dissimilar to a standard corporation. At Valve, by contrast, each person manages herself while teams operate on the basis of voluntarism, with collective activities regulated and coordinated spontaneously via the operations of the time allocation-based spontaneous order mechanism described above.
  • In contrast, co-ops and Valve feature peer-based systems for determining the distribution of a firm’s surplus among employees.
  • There is one important aspect of Valve that I did not focus on: the link between its horizontal management structure and its ‘vertical’ ownership structure. Valve is a private company owned mostly by few individuals. In that sense, it is an enlightened oligarchy: an oligarchy in that it is owned by a few and enlightened in that those few are not using their property rights to boss people around. The question arises: what happens to the alternative spontaneous order within Valve if some or all of the owners decide to sell up?
1 - 20 of 23 Next ›
Showing 20 items per page