Skip to main content

Home/ Sensorica Knowledge/ Group items tagged maker

Rss Feed Group items tagged

Yasir Siddiqui

DUP_689_movement_in_the_making_FINAL2.pdf - 1 views

  •  
    A paper on the maker and p2p movement analyzed from an economics and business perspective
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Tiberius Brastaviceanu

INSO-5-2015 - 0 views

  • Scope:  The scope is that of creating a Community, involving social innovators, researchers, citizens, policy makers, which will bring together on the one hand research actions and results and on the other implementation actions, new initiatives, and policy developments.
  • help promote social innovation initiatives
  • increase relevance of policies and actions
  • ...13 more annotations...
  • development of a common understanding
  • evidence and methodologies that contribute to social innovation up-scaling
  • This does not concern only European but also international developments.
  • Such a social innovation community could be seen also as a “network of networks”.
  • Activities should include:
  • rganisation of brokerage events to enhance the networking
  • information and awareness activities t
  • design strategies/activities for ensuring the best possible use of the research results
  • the organisation of events aimed at identifying priorities for collaboration
  • supporting grassroots experiments, replication, incubation and policy uptake of research results
  • setting up of a network of 'Local Facilitators' for a better dissemination and uptake at all levels.
  • EUR 3 million
  • enable convergence towards a common understanding of social innovation as a tool and outcome.
  •  
    "Topic: Social innovation Community INSO-5-2015"
Tiberius Brastaviceanu

Humanitarian Makers - 0 views

  •  
    Website doesn't seem to be active since 2021.
Tiberius Brastaviceanu

Why Great Innovations Fail: It's All in the Ecosystem - 0 views

  • “It is no longer enough to manage your innovation. Now you must manage your innovation ecosystem,”
  • example
  • Michelin developed a revolutionary new kind of tire with sensors and an internal hard wheel that could run almost perfectly for 125 miles after a puncture.
  • ...13 more annotations...
  • Yet by 2007 the product was such a failure that Michelin had to abandon it.
  • The company hadn’t confronted the entire ecosystem the tire would rely on
  • conversion costs
  • expensive new equipment
  • legal challenges
  • Mastery of the ecosystem is the great strength that made Apple the supreme success story of our time,
  • The iPod
  • a beginning ecosystem that Jobs enlarged by introducing the iTunes Music Store.
  • the ecosystem further by opening up the Mac-only device to PC users.
  • In a world where mobile phone makers sold their devices to operators to sell to consumers, Jobs had such a powerful ecosystem that he could get operators to compete to partner with him: “And here was Apple, offering not just exclusive access to the most talked-about phone in history, but also exclusive access to Apple consumers—the most desirable customer segment imaginable
  • How do you take the measure of the ecosystem that your innovation will need to be part of and rely on? How do you not miss the blind spots that can lurk almost anywhere?
  • three main steps to take.
  • There are terrible pitfalls in the usual progression from prototype to pilot to rollout. It relies perilously on getting everything right from the very start. Often a far wiser and safer approach can be what Adner calls a “minimum viable footprint (MVF) rollout followed by a staged expansion.” In other words, start with a complete ecosystem, but a limited one.
Tiberius Brastaviceanu

Design Like No One Is Patenting - How SparkFun Stays Ahead of the Pack - 0 views

  • Electronics supplier SparkFun designs dozens of products a year and they haven’t patented a single one. It’s worked out pretty well so far.
  • makes its living by shipping kits and components like bread boards, servo motors and Arduino parts to a mixture of students, hobbyists, and professionals making prototypes
  • the company has made its name is in a stable of its own custom parts and kits, the designs for which it gives away for free.
  • ...40 more annotations...
  • “We find that people will copy your design no matter what you do,” she says. “You might as well just play the game and go ahead and innovate. It’s fun, it keeps us on our toes.”
  • “The open source model just forces us to innovate,” says Boudreaux.
  • the open hardware model means that SparkFun’s existence depends not on any particular product, but on an ongoing relationship with customers that’s not too dissimilar to the loyalty commanded by a fashion house.
  • wolf of obsolescence is always at electronics’ door
  • don’t spend much time worrying about the copyists, they just keep releasing new looks
  • it’s about staying relevant and filling the needs of the community
  • SparkFun’s rapid turnover model is one that echoes the fashion industry.
  • keep their service exemplary
  • listening to their customers
  • developed a community of loyal users and fans
  • weekly new product posts
  • You can learn a lot about what a company cares about by looking at what they give away and what they protect.
  • SparkFun’s actual value is in the community of fans and loyal customers that keep coming back, and the expertise under its roof in servicing their needs.
  • Their catalog has about 2,500 items at any given time
  • SparkFun orders parts from 500 suppliers
  • 15 new products every week
  • hey retire products at a similar rate, due to either low sales, or obsolescence
  • Of the 2,500 items, about 400 are things designed internally.
  • To handle the pace of change, SparkFun needs to keep its inventory lean.
  • “We try to do small runs and order in small quantities. Especially something that’s going to be obsolete quickly.”
  • To help manage the demand, they use an in-house software system
  • along with inventory and CMS management, tries to predict demand for different components and ensure they get ordered with sufficient lead time to account for how long it takes to get there.
  • the innovation (revisions and new releases) here at SparkFun is organic and not planned,” says Boudreaux, “But we do a few things to make sure we are keeping up.”
  • monitors all costumer feedback from emails to the comment section that is present on every page of the company’s site. They also ensure that team members have time to tinker in the office, write tutorials, and visit hackerspaces and maker events. “For us, designing (and revising) widgets is the job.”
  • anyone in the company can suggest ideas and contribute designs.
  • ideas run through an internal process of design, review, prototyping, testing and release.
  • “They eat these products up, even if the products are not ready for the mainstream & educator community due to minimal documentation or stability.”
  • symbiotic relationship with these early adopters, where feedback helps SparkFun revised and improve products for use by the rest of the community
  • I don’t think they help much
  • The risk of this rate of change is that SparkFun can end up outpacing some of their customers.
  • “There’s balance in everything,” says Boudreaux, “Innovation does not necessarily need speed in order to create valuable change. Sometimes innovation works at a slower pace, but that does not mean it is any less valuable to those that benefit from it, and we are constantly balancing the needs of two very different customers.”
  • unprotected and unencumbered by patents
  • racing to get the latest, coolest things in the hands of its customers.
  • patents
  • “We have to be willing to kill ideas that don’t work, take a lot of tough criticism, and move fast. If we stay agile, we stay relevant.”
  • cost $30,000 to $50,000
  • USPTO is so backed up you’ll have to wait three to five years to even hear back on their decision.
  • how much does technology change in five years?
  • company’s blog where they’ve been documenting production and business practices for years.
  • they even want to open source Sparkle. “It’s a wild ride,” she says, “but a fun one for sure.”
  •  
    shared by Jonathan, annotated by Tibi
Kurt Laitner

Towards a Material Commons | Guerrilla Translation! - 0 views

  • the modes of communication we use are very tightly coupled with the modes of production that finance them
  • I’m focused on the policy formation around this transition to a new, open knowledge and commons-based economy, and that’s the research work I’m doing here
  • The problem is I can only make a living by still working for capital.
  • ...88 more annotations...
  • We now have a technology which allows us to globally scale small group dynamics, and to create huge productive communities, self-organized around the collaborative production of knowledge, code, and design. But the key issue is that we are not able to live from that, right
  • A lot of co-ops have been neo-liberalizing, as it were, have become competitive enterprises competing against other companies but also against other co-ops, and they don’t share their knowledge
  • We cannot create our own livelihood within that sphere
  • instead of having a totally open commons, which allows multinationals to use our commons and reinforce the system of capital, the idea is to keep the accumulation within the sphere of the commons.
  • The result would be a type of open cooperative-ism, a kind of synthesis or convergence between peer production and cooperative modes of production
  • then the material work, the work of working for clients and making a livelihood, would be done through co-ops
  • But it hasn’t had much of a direct connection to this emerging commons movement, which shares so many of the values and  principles of the traditional cooperative movement.
  • There’s also a lot of peer-to-peer work going on, but it’s not very well versed around issues like cooperative organization, formal or legal forms of ownership, which are based on reciprocity and cooperation, and how to interpret the commons vision with a structure, an organizational structure and a legal structure that actually gives it economic power, market influence, and a means of connecting it to organizational forms that have durability over the long-term.
  • The young people, the developers in open source or free software, the people who are in co-working centers, hacker spaces, maker spaces. When they are thinking of making a living, they think startups
  • They have a kind of generic reaction, “oh, let’s do a startup”, and then they look for venture funds. But this is a very dangerous path to take
  • Typically, the venture capital will ask for a controlling stake, they have the right to close down your start up whenever they feel like it, when they feel that they’re not going to make enough money
  • Don’t forget that with venture capital, only 1 out of 10 companies will actually make it, and they may be very rich, but it’s a winner-take-all system
  • we don’t have what Marx used to call social reproduction
  • I would like John to talk about the solidarity co-ops, and how that integrates the notion of the commons or the common good in the very structure of the co-op
  • They don’t have a commons of design or code, they privatize and patent, just like private competitive enterprise, their knowledge
  • Cooperatives, which are basically a democratic and collective form of enterprise where members have control rights and democratically direct the operations of the co-op, have been the primary stakeholders in any given co-op – whether it’s a consumer co-op, or a credit union, or a worker co-op.
  • Primarily, the co-op is in the service of its immediate members
  • What was really fascinating about the social co-ops was that, although they had members, their mission was not only to serve the members but also to provide service to the broader community
  • In the city of Bologna, for example, over 87% of the social services provided in that city are provided through contract with social co-ops
  • democratically run
  • much more participatory, and a much more engaged model
  • The difference, however, is that the structure of social co-ops is still very much around control rights, in other words, members have rights of control and decision-making within how that organization operates
  • And it is an incorporated legal structure that has formal recognition by the legislation of government of the state, and it has the power, through this incorporated power, to negotiate with and contract with government for the provision of these public services
  • In Québec they’re called Solidarity co-ops
  • So, the social economy, meaning organizations that have a mutual aim in their purpose, based on the principles of reciprocity, collective benefit, social benefit, is emerging as an important player for the design and delivery of public services
  • This, too, is in reaction to the failure of the public market for provision of services like affordable housing or health care or education services
  • This is a crisis in the role of the state as a provider of public services. So the question has emerged: what happens when the state fails to provide or fulfill its mandate as a provider or steward of public goods and services, and what’s the role of civil society and the social economy in response?
  • we have commonses of knowledge, code and design. They’re more easily created, because as a knowledge worker, if you have access to the network and some means, however meager, of subsistence, through effort and connection you can actually create knowledge. However, this is not the case if you move to direct physical production, like the open hardware movement
  • I originally encountered Michel after seeing some talks by Benkler and Lessig at the Wizard of OS 4, in 2006, and I wrote an essay criticizing that from a materialist perspective, it was called “The creative anti-commons and the poverty of networks”, playing on the terms that both those people used.
  • In hardware, we don’t see that, because you need to buy material, machines, plastic, metal.
  • Some people have called the open hardware community a “candy” economy, because if you’re not part of these open hardware startups, you’re basically not getting anything for your efforts
  • democratic foundations like the Apache foundation
  • They conceive of peer production, especially Benkler, as being something inherently immaterial, a form of production that can only exist in the production of immaterial wealth
  • From my materialist point of view, that’s not a mode of production, because a mode of production must, in the first place, reproduce its productive inputs, its capital, its labor, and whatever natural wealth it consumes
  • From a materialist point of view, it becomes  obvious that the entire exchange value produced in these immaterial forms would be captured by the same old owners of materialist wealth
  • different definition of peer production
  • independent producers collectively sharing a commons of productive assets
  • I wanted to create something like a protocol for the formation and allocation of physical goods, the same way we have TCP/IP and so forth, as a way to allocate immaterial goods
  • share and distribute and collectively create immaterial wealth, and become independent producers based on this collective commons.
  • One was the Georgist idea of using rent, economic rent, as a fundamental mutualizing source of wealth
  • Mutualizing unearned income
  • So, the unearned income, the portion of income derived from ownership of productive assets is evenly distributed
  • This protocol would seek to normalize that, but in a way that doesn’t require administration
  • typical statist communist reaction to the cooperative movement is saying that cooperatives can exclude and exploit one another
  • But then, as we’ve seen in history, there’s something that develops called an administrative class,  which governs over the collective of cooperatives or the socialist state, and can become just as counterproductive and often exploitive as capitalist class
  • So, how do we create cooperation among cooperatives, and distribution of wealth among cooperatives, without creating this administrative class?
  • This is why I borrowed from the work of Henry George and Silvio Gesell in created this idea of rent sharing.
  • This is not done administratively, this is simply done as a protocol
  • The idea is that if a cooperative wants an asset, like, an example is if one of the communes would like to have a tractor, then essentially the central commune is like a bond market. They float a bond, they say I want a tractor, I am willing to pay $200 a month for this tractor in rent, and other members of the cooperative can say, hey, yeah, that’s a good idea,we think that’s a really good allocation of these productive assets, so we are going to buy these bonds. The bond sale clears, the person gets the tractor, the money from the rent of the tractor goes back to clear the bonds, and  after that, whatever further money is collected through the rent on this tractor – and I don’t only mean tractors, same would be applied to buildings, to land, to any other productive assets – all this rent that’s collected is then distributed equally among all of the workers.
  • The idea is that people earn income not only by producing things, but by owning the means of production, owning productive assets, and our society is unequal because the distribution of productive assets is unequal
  • This means that if you use your exact per capita share of property, no more no less than what you pay in rent and what you received in social dividend, will be equal
  • But if you’re not working at that time, because you’re old, or otherwise unemployed, then obviously the the productive assets that you will be using will be much less than the mean and the median, so what you’ll receive as dividend will be much more than what you pay in rent, essentially providing a basic income
  • venture communism doesn’t seek to control the product of the cooperatives
  • It doesn’t seek to limit, control, or even tell them how they should distribute it, or under what means; what they produce is entirely theirs, it’s only the collective management of the commons of productive assets
  • On paper this would seem to work, but the problem is that this assumes that we have capital to allocate in this way, and that is not the case for most of the world workers
  • how do we get to that stage?
  • other two being counter politics and insurrectionary finance
  • do we express our activism through the state, or do we try to achieve our goals by creating the alternative society outside
  • pre-figurative politics, versus statist politics
  • My materialist background tells me that when you sell your labor on the market, you have nothing more than your subsistence costs at the end of it, so where is this wealth meant to come from
  • I believe that the only reason that we have any extra wealth beyond subsistence is because of organized social political struggle; because we have organized in labor movements, in the co-op movement, and in other social forms
  • To create the space for prefiguring presupposes engagement with the state, and struggle within parliaments, and struggle within the public social forum
  • Instead, we should think that no, we must engage in the state in order to protect our ability to have alternative societies
  • We can only get rid of the state in these areas once we have alternative, distributed, cooperative means to provide those same functions
  • We can only eliminate the state from these areas once they actually exist, which means we actually have to build them
  • What I mean by insurrectionary finance is that we have to acknowledge that it’s not only forming capital and distributing capital, it’s also important how intensively we use capital
  • I’m not proposing that the cooperative movement needs to engage in the kind of derivative speculative madness that led to the financial crisis, but at the same time we can’t… it can’t be earn a dollar, spend a dollar
  • We have to find ways to create liquidity
  • to deal with economic cycles
  • they did things the organized left hasn’t been able to do, which is takeover industrial means of production
  • if they can take over these industrial facilities, just in order to shut them down and asset strip them, why can’t we take them over and mutualize them?
  • more ironic once you understand that the source of investment that Milken and his colleagues were working with were largely workers pension funds
  • idea of venture communism
  • pooling, based on the capture of unearned income
  • in Québec, there is a particular form of co-op that’s been developed that allows small or medium producers to pool their capital to purchase machinery and to use it jointly
  • The other idea I liked was trying to minimize a management class
  • much more lean and accountable because they are accountable to boards of directors that represent the interests of the members
  • I’ve run into this repeatedly among social change activists who immediately recoil at the notion of thinking about markets and capital, as part of their change agenda
  • I had thought previously, like so many, that economics is basically a bought discipline, and that it serves the interests of existing elites. I really had a kind of reaction against that
  • complete rethinking of economics
  • recapture the initiative around vocabulary, and vision, with respect to economics
  • reimagining and reinterpreting, for a popular and common good, the notion of market and capital
  • advocating for a vision of social change that isn’t just about politics, and isn’t just about protest, it has to be around how do we reimagine and reclaim economics
  • markets actually belong to communities and people
  • capital wasn’t just an accumulated wealth for the rich
  • I think what we’re potentially  talking about here is to make the social economy hyper-productive, hyper-competitive, hyper-cooperative
  • The paradox is that capital already knows this. Capital is investing in these peer production projects
  • Part of the proposal of the FLOK society project in Ecuador will be to get that strategic reorganization to make the social economy strategic
  •  
    A lot of really interesting points of discussion in here.
Tiberius Brastaviceanu

Co-Creating as Disruption to the Dominant Cultural Framework » Wirearchy - 0 views

  • more open people processes
  • Participative processes like Open Space, World Cafes, Unconferences, Peer Circles
  • Barcamps, Wordcamps, Govcamps, Foo Camps, Unconferences, high-end celebrity-and-marketing-and venture-capital ‘experience’ markets, new cultural and artistic festivals with technology-and-culture-making themes
  • ...45 more annotations...
  • maker faires
  • community-and-consensus building, organizing for activism and fundraising
  • The impetus behind this explosion is both technological and sociological
  • Technological
  • information technology and the creation and evolution of the Internet and the Web
  • appearance, development and evolution of social tools, web services, massive storage, and the ongoing development of computer-and-smart-devices development
  • Sociological
  • People are searching for ways to find others with similar interests and motivations so that they can engage in activities that help them learn, find work, grow capabilities and skills, and tackle vexing social and economic problems
  • get informed and take action
  • Developing familiarity and practice with open and collaborative processes
  • play and work together
  • rules about self-management, operate democratically, and produce results grounded in ownership and the responsibilities that have been agreed upon by the ‘community’
  • The relationships and flows of information can be transferred to online spaces and often benefit from wider connectivity.
  • Today, our culture-making activities are well engaged in the early stages of cultural mutation
  • What’s coming along next ?  “Smart” devices and Internet everywhere in our lives ?  Deep(er) changes to the way things are conceived, carried out, managed and used ?  New mental models ?  Or, will we discover real societal limits to what can be done given the current framework of laws, institutions and established practices with which people are familiar and comfortable ?
  • Shorter cycle-based development and release
  • Agile development
  • It is clear evidence that the developmental and learning dynamics generated by continuous or regular feedback loops are becoming the norm in areas of activity in which change and short cycles of product development are constants.
  • The Internet of Things (IoT)
  • clothes, homes, cars, buildings, roads, and a wide range of other objects that have a place in peoples’ daily life activities
  • experiencing major growth, equally in terms of hardware, software and with respect to the way the capabilities are configured and used
  • The IoT concept is being combined with the new-ish concepts of Open Data and Big Data
  • ethical, political and social impact policy decisions
  • that key opportunities associated with widespread uptake of the IoT are derived from the impact upon peoples’ activities and lives
  • ‘we’ are on our way towards more integrated eco-systems of issues, people and technologies
  • participation and inclusion enabled by interconnectedness are quickly becoming the ‘new rules’
  • What the Future May Hold
  • the ‘scenario planning’ approach
  • world’s politics, economics, anthropology, technology, psychology, sociology and philosophy
  • A scenario planning exercise carried out by the Rockefeller Foundation
  • Clearly these early (and now not-so-weak) signals and patterns tell us that the core assumptions and principles that have underpinned organized human activities for most of the past century
  • are being changed by the combinations and permutations of new, powerful, inexpensive and widely accessible information-processing technologies
  • The short description of each scenario reinforces the perception that we are both individually and collectively in transition from a linear, specialized, efficiency-driven paradigm towards a paradigm based on continuous feedback loops and principles of participation, both large and small in scope.
  • cultural ‘mutation’
  • Wirearchy
  • a dynamic two-way flow of power and authority based on knowledge, trust, credibility and a focus on results, enabled by interconnected people and technology.
  • the role of social media and smart mobile devices in the uprisings in Egypt, Libya and elsewhere in the Middle East
  • The roots of organizational development (OD) are in humanistic psychology and sociology action and ethnographic and cybernetic/ socio-technical systems theory.  It’s a domain that emerged essentially as a counter-balance to the mechanistic and machine-metaphor-based core assumptions about the organized activities in our society.
  • Organizational development principles are built upon some basic assumptions about human motivations, engagement and activities.
  • Participative Work Design – The Six Criteria
  • in recent years created models that help clarify how to evaluate and respond to the continuous turbulence and ambiguity generated by participating in interconnected flows of information.
  • contexts characterized by either Simple, Complicated or Chaotic dynamics (from complexity theory fundamentals). Increasingly, Complexity is emerging as a key definer of the issues, problems and opportunities faced by our societies.
  • peer-to-peer movement(s) unfolding around the world
  • Co-creating in a wide range of forms, processes and purpose may become an effective and important antidote to the spreading enclosure of human creative activity.
  • But .. the dominant models of governance, commercial ownership and the use and re-use of that which is co-created by people are going to have to undergo much more deep change in order to disrupt the existing paradigm of proprietary commercial creation and the model of socio-economic power that this paradigm enables and carries today.
Francois Bergeron

OpenTrons | Automation for Everyone - 1 views

  • OpenTrons is an open automation platform based on modular, customizable hardware and intuitive, accessible software. It’s for maker-pros, labs, and everyone who needs to easily, affordably, and reliably automate tasks.
1 - 17 of 17
Showing 20 items per page