Skip to main content

Home/ Sensorica Knowledge/ Group items tagged compare

Rss Feed Group items tagged

Francois Bergeron

Data-Oriented Contract.pdf - 1 views

  •  
    (submited by Bob) Computable Contracts This Article explains how and why firms are representing certain contractual obligations as computer data. terms. This Article explains how parties can effectively "translate" certain contractual criteria into a comparable set of computer-processable rules. This can have the effect of significantly reducing transaction costs associated with contract monitoring and compliance as compared to the traditional written-language contracting paradigm.
Steve Bosserman

Meg Munn MP - Sheffield Heeley's voice in Parliament | Welcome - 0 views

  •  
    Figures recently issued by Co-operativesUK show that co-operative business grew by 1.5% in 2011, twice the rate of the UK economy as a whole. This is the fourth consecutive year that the co-operative sector has outperformed the rest of UK business. The figures also show that it is not only in growth that co-operative businesses do better, they are also much more reliant - 98% are still in operation after three years compared to 65% of all businesses. Also 88% try to minimize the environmental impact of their activities compared to 44% of all businesses who state they do not take any action in this regard at all. Membership of trading co-operatives from 2010 to 2011 grew by 5.5% to 13.5 million people - the increase from 2008 to 2011 is 19.7%. Currently the number of co-operatives in the UK is around 5,900 - a growth of 23% from 2008. The largest growth by sector was in the renewable energy sector, and there are now 242 co-operative schools across the country.
Francois Bergeron

Comparative study technology incubators in Quebec and abroad - 6. Evaluation ... - 0 views

  • evaluation of Inno-centre and trends in incubation.
  • Evaluation of Inno-centre 6.4.1 How does Inno-centre's business model compare with the business models of comparable incubators in Canada and outside Canada?
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

Access control - Wikipedia, the free encyclopedia - 0 views

  • The act of accessing may mean consuming, entering, or using.
  • Permission to access a resource is called authorization.
  • Locks and login credentials are two analogous mechanisms of access control.
  • ...26 more annotations...
  • Geographical access control may be enforced by personnel (e.g., border guard, bouncer, ticket checker)
  • n alternative of access control in the strict sense (physically controlling access itself) is a system of checking authorized presence, see e.g. Ticket controller (transportation). A variant is exit control, e.g. of a shop (checkout) or a country
  • access control refers to the practice of restricting entrance to a property, a building, or a room to authorized persons
  • can be achieved by a human (a guard, bouncer, or receptionist), through mechanical means such as locks and keys, or through technological means such as access control systems like the mantrap.
  • Physical access control is a matter of who, where, and when
  • Historically, this was partially accomplished through keys and locks. When a door is locked, only someone with a key can enter through the door, depending on how the lock is configured. Mechanical locks and keys do not allow restriction of the key holder to specific times or dates. Mechanical locks and keys do not provide records of the key used on any specific door, and the keys can be easily copied or transferred to an unauthorized person. When a mechanical key is lost or the key holder is no longer authorized to use the protected area, the locks must be re-keyed.[citation needed] Electronic access control uses computers to solve the limitations of mechanical locks and keys. A wide range of credentials can be used to replace mechanical keys. The electronic access control system grants access based on the credential presented. When access is granted, the door is unlocked for a predetermined time and the transaction is recorded. When access is refused, the door remains locked and the attempted access is recorded. The system will also monitor the door and alarm if the door is forced open or held open too long after being unlocked
  • Credential
  • Access control system operation
  • The above description illustrates a single factor transaction. Credentials can be passed around, thus subverting the access control list. For example, Alice has access rights to the server room, but Bob does not. Alice either gives Bob her credential, or Bob takes it; he now has access to the server room. To prevent this, two-factor authentication can be used. In a two factor transaction, the presented credential and a second factor are needed for access to be granted; another factor can be a PIN, a second credential, operator intervention, or a biometric input
  • There are three types (factors) of authenticating information:[2] something the user knows, e.g. a password, pass-phrase or PIN something the user has, such as smart card or a key fob something the user is, such as fingerprint, verified by biometric measurement
  • Passwords are a common means of verifying a user's identity before access is given to information systems. In addition, a fourth factor of authentication is now recognized: someone you know, whereby another person who knows you can provide a human element of authentication in situations where systems have been set up to allow for such scenarios
  • When a credential is presented to a reader, the reader sends the credential’s information, usually a number, to a control panel, a highly reliable processor. The control panel compares the credential's number to an access control list, grants or denies the presented request, and sends a transaction log to a database. When access is denied based on the access control list, the door remains locked.
  • A credential is a physical/tangible object, a piece of knowledge, or a facet of a person's physical being, that enables an individual access to a given physical facility or computer-based information system. Typically, credentials can be something a person knows (such as a number or PIN), something they have (such as an access badge), something they are (such as a biometric feature) or some combination of these items. This is known as multi-factor authentication. The typical credential is an access card or key-fob, and newer software can also turn users' smartphones into access devices.
  • An access control point, which can be a door, turnstile, parking gate, elevator, or other physical barrier, where granting access can be electronically controlled. Typically, the access point is a door. An electronic access control door can contain several elements. At its most basic, there is a stand-alone electric lock. The lock is unlocked by an operator with a switch. To automate this, operator intervention is replaced by a reader. The reader could be a keypad where a code is entered, it could be a card reader, or it could be a biometric reader. Readers do not usually make an access decision, but send a card number to an access control panel that verifies the number against an access list
  • monitor the door position
  • Generally only entry is controlled, and exit is uncontrolled. In cases where exit is also controlled, a second reader is used on the opposite side of the door. In cases where exit is not controlled, free exit, a device called a request-to-exit (REX) is used. Request-to-exit devices can be a push-button or a motion detector. When the button is pushed, or the motion detector detects motion at the door, the door alarm is temporarily ignored while the door is opened. Exiting a door without having to electrically unlock the door is called mechanical free egress. This is an important safety feature. In cases where the lock must be electrically unlocked on exit, the request-to-exit device also unlocks the doo
  • Access control topology
  • Access control decisions are made by comparing the credential to an access control list. This look-up can be done by a host or server, by an access control panel, or by a reader. The development of access control systems has seen a steady push of the look-up out from a central host to the edge of the system, or the reader. The predominant topology circa 2009 is hub and spoke with a control panel as the hub, and the readers as the spokes. The look-up and control functions are by the control panel. The spokes communicate through a serial connection; usually RS-485. Some manufactures are pushing the decision making to the edge by placing a controller at the door. The controllers are IP enabled, and connect to a host and database using standard networks
  • Access control readers may be classified by the functions they are able to perform
  • and forward it to a control panel.
  • Basic (non-intelligent) readers: simply read
  • Semi-intelligent readers: have all inputs and outputs necessary to control door hardware (lock, door contact, exit button), but do not make any access decisions. When a user presents a card or enters a PIN, the reader sends information to the main controller, and waits for its response. If the connection to the main controller is interrupted, such readers stop working, or function in a degraded mode. Usually semi-intelligent readers are connected to a control panel via an RS-485 bus.
  • Intelligent readers: have all inputs and outputs necessary to control door hardware; they also have memory and processing power necessary to make access decisions independently. Like semi-intelligent readers, they are connected to a control panel via an RS-485 bus. The control panel sends configuration updates, and retrieves events from the readers.
  • Systems with IP readers usually do not have traditional control panels, and readers communicate directly to a PC that acts as a host
  • a built in webservice to make it user friendly
  • Some readers may have additional features such as an LCD and function buttons for data collection purposes (i.e. clock-in/clock-out events for attendance reports), camera/speaker/microphone for intercom, and smart card read/write support
Kurt Laitner

Guidelines on Measuring Subjective Well-being.pdf - 0 views

  • such as interest,engagement and meaning,
  • subjective well-being is taken to be:2Good mental states, including all of the various evaluations, positive and negative, that peoplemake of their lives, and the affective reactions of people to their experiences
  • “subjective well-being is an umbrella term for the different valuationspeople make regarding their lives, the events happening to them, their bodies and minds,and the circumstances in which they live”.
  • ...16 more annotations...
  • In measuring overall human well-being then, subjective well-being should be placedalongside measures of non-subjective outcomes, such as income, health, knowledge andskills, safety, environmental quality and social connections
  • Inparticular, a distinction is commonly made between life evaluations, which involve acognitive evaluation of the respondent’s life as a whole (or aspects of it), and measures ofaffect, which capture the feelings experienced by the respondent at a particular point in time(Diener, 1984; Kahneman et al., 1999
  • eudaimonic aspect ofsubjective well-being, reflecting people’s sense of purpose and engagement
  • The framework used here covers all three concepts of well-being:●Life evaluation.●Affect.●Eudaimonia (psychological “flourishing”)
  • the result of a judgement by the individual rather than thedescription of an emotional state.
  • Elements of subjective well-beingLife evaluation
  • making an evaluation of this sort as involving the individual constructing a “standard” thatthey perceive as appropriate for themselves, and then comparing the circumstances oftheir life to that standard
  • Life evaluations are based on how people remember their experiences (Kahneman et al.,1999) and can differ significantly from how they actually experienced things at the time
  • It is for this reason that life evaluations are sometimes characterised as measures of“decision utility” in contrast to “experienced utility”
  • One of the mostwell documented measures of life evaluation – thePersonal Wellbeing Index– consists of eightquestions, covering satisfactions with eight different aspects of life, which are summedusing equal weights to calculate an overall index (International Wellbeing Group, 2006)
  • (job satisfaction, financial satisfaction, house satisfaction, healthsatisfaction, leisure satisfaction and environmental satisfaction),
  • AffectAffect is the term psychologists use to describe a person’s feelings. Measures of affectcan be thought of as measures of particular feelings or emotional states, and they aretypically measured with reference to a particular point in time.
  • Such measures capturehow people experience life rather than how they remember it (Kahneman and Krueger,2006
  • While an overall evaluation of life can be captured in a single measure, affect has atleast two distinct hedonic dimensions: positive affect and negative affect (Kahneman et al.,1999; Diener et al., 1999
  • positive affect is thought to be largely uni-dimensional
  • negative affect may be more multi-dimensional.
Tiberius Brastaviceanu

Card reader - Wikipedia, the free encyclopedia - 0 views

  • Smart card
  • There are two types of smart cards: contact and contactless. Both have an embedded microprocessor and memory. The smart card differs from the proximity card in that the microchip in the proximity card has only one function: to provide the reader with the card's identification number. The processor on the smart card has an embedded operating system and can handle multiple applications such as a cash card, a pre-paid membership card, or an access control card.
  • A contactless card does not have to touch the reader or even be taken out of a wallet or purse. Most access control systems only read serial numbers of contactless smart cards and do not utilize the available memory. Card memory may be used for storing biometric data (i.e. fingerprint template) of a user. In such case a biometric reader first reads the template on the card and then compares it to the finger (hand, eye, etc.) presented by the user. In this way biometric data of users does not have to be distributed and stored in the memory of controllers or readers, which simplifies the system and reduces memory requirements.
Francois Bergeron

Robot's Gentle Touch Aids Delicate Cancer Surgery - 0 views

  • Surgeons have developed new minimally invasive surgery (MIS) techniques and instruments so that procedures that would previously have required a large incision can now be performed through a tiny 10mm cut.
  • University of Western Ontario and Canadian Surgical Technologies and Advanced Robotics (CSTAR) in London, Ontario
  • The researchers used a torque sensor to measure the force of the palpations.
  • ...2 more annotations...
  • Using tactile MIS sensing instruments under robotic control reduces the maximum force applied to the tissue by over 35% compared to a human controlling the same instrument. Accuracy in detecting the tumours was also far greater with the robot - between 59 and 90% depending on the robot control method used for palpation.
  • If developed further, the authors suggest that this type of instrument would particularly benefit surgeons performing lung tumour resection, where tissue often shifts significantly.
Francois Bergeron

AUTOMOTIVE FIBER: Plastic optical fiber builds on MOST success - Laser Focus World - 0 views

  • Bending the fiber in one direction leads to a better transmission whereas bending in the other direction leads to a lower transmission, compared to the straight position.
  • Plastic optical fiber can also be used for seat-occupancy recognition
  • One approach for seat-occupancy recognition is the Kinotex cavity sensor from Canpolar East (St. John’s, NF, Canada).
  • ...1 more annotation...
  • Many consumers are probably aware of the use of tactile sensors that can stop a car window if an object is in the way. While many of these sensors are nonoptical, the evanescent field of an optical fiber can also be exploited in this application.
Tiberius Brastaviceanu

Science and Technology Consultation - Industry Canada - 0 views

  • Under this strategy
    • Yasir Siddiqui
       
      Testing
    • Yasir Siddiqui
       
      testing
  • Genome Canada, the Canadian Institute for Advanced Research and the Canada Foundation for Innovation.
  • Still, Canadian businesses continue to underperform when it comes to innovation—a primary driver of productivity growth—when compared to other competing nations. The performance of business R&D is one oft-cited measure used to gauge the level of innovative activity in a country's business sector.
  • ...38 more annotations...
  • Canadians have reached top tier global performance in reading, mathematics, problem solving and science, and Canada has rising numbers of graduates with doctoral degrees in science and engineering.
  • This valuable resource of highly qualified and skilled individuals needs to be better leveraged.
  • The ease and ability of the academic community to collaborate, including through research networks, is also well-recognized.
  • to develop technologies, products and services that add value and create high-paying jobs.
  • Canada has an impressive record when it comes to research and the quality of its knowledge base.
  • Still, the innovative performance of Canada's firms and the productivity growth continue to lag behind competing nations.
  • The government is also committed to moving forward with a new approach to promoting business innovation—one that emphasizes active business-led initiatives and focuses resources on better fostering the growth of innovative firms.
  • Achieving this requires the concerted effort of all players in the innovation system—to ensure each does what one does best and to leverage one another's strengths.
  • the government has invested more to support science, technology and innovative companies than ever before
  • Canada must become more innovative
    • Kurt Laitner
       
      problem statement
  • providing a new framework to guide federal ST&I investments and priorities. That is why the Government of Canada stated its intention to release an updated ST&I Strategy in the October 2013 Speech from the Throne.
    • Kurt Laitner
       
      exercise
  • seeking the views of stakeholders from all sectors of the ST&I system—including universities, colleges and polytechnics, the business community, and Canadians
  • written submissions from all Canadians on the policy issues and questions presented in this paper.
  • The government remains focused on creating jobs, growth and long-term prosperity for Canadians
  • encouraging partnerships with industry, attracting highly skilled researchers, continuing investments in discovery-driven research, strengthening Canada's knowledge base, supporting research infrastructure and providing incentives to private sector innovation.
  • has transformed the National Research Council, doubled its investment
  • supported research collaborations through the federal granting councils
  • created the new Venture Capital Action Plan
  • helping to promote greater commercialization of research and development
  • Our country continues to lead the G7 in spending on R&D
  • Canada has a world-class post-secondary education system that embraces and successfully leverages collaboration with the private sector, particularly through research networks
  • destination for some of the world's brightest minds
  • global race
  • businesses that embrace innovation-based strategies
  • post-secondary and research institutions that attract and nurture highly qualified and skilled talent
  • researchers who push the frontiers of knowledge
  • governments that provide the support
    • Tiberius Brastaviceanu
       
      Why a race? We need to change the way we see this!!! We need to open up. See the European Commission Horizon 2020 program  http://ec.europa.eu/programmes/horizon2020/en/ They are acknowledging that Europe cannot do it alone, and are spending money on International collaboration. 
    • Tiberius Brastaviceanu
       
      There is nothing about non-institutionalized innovation, i.e. open source! There is nothing about the public in this equation like the Europeans do in the Digital Era for Europe program  https://ec.europa.eu/digital-agenda/node/66731 
  • low taxes, strong support for new businesses, a soundly regulated banking system, and ready availability of financial services
  • reducing red tape
  • expanding training partnerships and improving access to venture capital.
  • Collaboration is key to mobilizing innovation
  • invest in partnerships between businesses and colleges and universities
    • Tiberius Brastaviceanu
    • Tiberius Brastaviceanu
       
      But the public and in people is still not in sight of the fed gov. 
  • Economic Action Plans (EAP) 2012 and 2013
  • provide incentive for innovative activity in firms, improved access to venture capital, augmented and more coordinated direct support to firms, and deeper partnerships and connections between the public and private sectors.
Guillaume Barreau

Growing lettuce under LED in Japan - 0 views

  •  
    The LED lights are a key part of the farm's magic. They allow Shimamura to control the night-and-day cycle and accelerate growth. "What we need to do is not just setting up more days and nights," he says. "We want to achieve the best combination of photosynthesis during the day and breathing at night by controlling the lighting and the environment." Shimamura says that the systems allows him to grow lettuce full of vitamins and minerals two-and-a-half times faster than an outdoor farm. He is also able to cut discarded produce from 50 percent to just 10 percent of the harvest, compared to a conventional farm. As a result, the farms productivity per square foot is up 100-fold, he says.
Kurt Laitner

Crowding Out - P2P Foundation - 1 views

  • The curve indicates that while workers will initially chose to work more when paid more per hour, there is a point after which rational workers will choose to work less
    • Kurt Laitner
       
      in other words, people are financially motivated until they are financially secure, then other motivations come in
  • "leaders" elsewhere will come and become your low-paid employees
  • At that point, the leaders are no longer leaders of a community, and they turn out to be suckers after all, working for pittance, comparatively speaking
    • Kurt Laitner
       
      so part of the dynamic is that everyone is paid fairly, if not there is the feeling of exploitation
  • ...36 more annotations...
  • under certain structural conditions non-price-based production is extraordinarily robust
    • Kurt Laitner
       
      which are... abundance?
  • There is, in fact, a massive amount of research that supports the idea that when you pay people to do something for you, they stop enjoying it, and distrust their own motivations. The mysterious something that goes away, and that “Factor X” even has a name: intrinsic motivation.
    • Kurt Laitner
       
      the real question though is why, and whether it is the paying them that is the problem, or perhaps how that is determined, and who else gets what on what basis..  if you have to have them question the fairness of the situation, they will likely check out
  • giving rewards to customers can actually undermine a company’s relationship with them
  • It just is not so easy to assume that because people behave productively in one framework (the social process of peer production that is Wikipedia, free and open source software, or Digg), that you can take the same exact behavior, with the same exact set of people, and harness them to your goals by attaching a price to what previously they were doing in a social process.
  • Extrinsic rewards suggest that there is actually an instrumental relationship at work, that you do the activity in order to get something else
  • If you pay me for it, it must be work
    • Kurt Laitner
       
      only because a dichotomy of work and play exists in western culture
  • It’s what we would call a robust effect. It shows up in many contexts. And there’s been considerable testing to try to find out exactly why it works. A major school of thought is that there is an “Overjustification Effect.” (http://kozinets.net/archives/133)
    • Kurt Laitner
       
      yes, why is key
  • interesting examples of an effect called crowding
  • Offering financial rewards for contributions to online communities basically means mixing external and intrinsic motivation.
  • A good example is children who are paid by their parents for mowing the family lawn. Once they expect to receive money for that task, they are only willing to do it again if they indeed receive monetary compensation. The induced unwillingness to do anything for free may also extend to other household chores.
  • Once ‘gold-stars’ were introduced as a symbolic reward for a certain amount of time spent practicing the instrument, the girl lost all interest in trying new, difficult pieces. Instead of aiming at improving her skills, her goal shifted towards spending time playing well-learned, easy pieces in order to receive the award (Deci with Flaste 1995)
    • Kurt Laitner
       
      this is a more troubling example, as playing the harder pieces is also practicing - I would take this as a more complex mechanism at work - perhaps the reinterpretation by the girl that all playing was considered equal, due to the pricing mechanism, in which case the proximal solution would be to pay more for more complex pieces, or for levels of achievement - the question remains of why the extrinsic reward was introduced in the first place (unwillingness to practice as much as her parents wanted?) - which would indicate intrinsic motivation was insufficient in this case
  • Suddenly, she managed to follow the prescription, as her own (intrinsic) motivation was recognized and thereby reinforced.
    • Kurt Laitner
       
      or perhaps the key was to help her fit the medication into her day, which she was having trouble with...
  • The introduction of a monetary fine transforms the relationship between parents and teachers from a non-monetary into a monetary one
    • Kurt Laitner
       
      absolutely, in some sense the guilt of being late is replaced by a rationalization that you are paying them - it is still a rationalization, and parents in this case need to be reminded that staff have lives too to reinforce the moral suasion
  • "The effects of external interventions on intrinsic motivation have been attributed to two psychological processes: (a) Impaired self-determination. When individuals perceive an external intervention to reduce their self-determination, they substitute intrinsic motivation by extrinsic control. Following Rotter (1966), the locus of control shifts from the inside to the outside of the person affected. Individuals who are forced to behave in a specific way by outside intervention, feel overjustified if they maintained their intrinsic motivation. (b) Impaired self-esteem. When an intervention from outside carries the notion that the actor's motivation is not acknowledged, his or her intrinsic motivation is effectively rejected. The person affected feels that his or her involvement and competence is not appreciated which debases its value. An intrinsically motivated person is taken away the chance to display his or her own interest and involvement in an activity when someone else offers a reward, or commands, to undertake it. As a result of impaired self-esteem, individuals reduce effort.
    • Kurt Laitner
       
      these are finally very useful - so from (a) as long as self determination is maintained (actively) extrinsic reward should not shut down intrinsic motivation AND (b) so long as motivations are recognized and reward dimensions OTHER THAN financial continue to operate, extrinsic reward should not affect intrinsic motivation
  • External interventions crowd-out intrinsic motivation if the individuals affected perceive them to be controlling
    • Kurt Laitner
       
      emphasis on "if" and replacing that with "in so far as"
  • External interventions crowd-in intrinsic motivation if the individuals concerned perceive it as supportive
    • Kurt Laitner
       
      interesting footnote
  • In that case, self-esteem is fostered, and individuals feel that they are given more freedom to act, thus enlarging self-determination
    • Kurt Laitner
       
      so effectively a system needs to ensure it is acting on all dimensions of reward, or at least those most important to the particular participant, ego (pride, recognition, guilt reduction, feeling needed, being helpful, etc), money (sustenance, beyond which it is less potent), meaning/purpose etc.  If one ran experiments controlling for financial self sufficiency, then providing appreciation and recognition as well as the introduced financial reward, they might yield different results
  • cultural categories that oppose marketplace modes of behavior (or “market logics”) with the more family-like modes of behavior of caring and sharing that we observe in close-knit communities (”community logics”)
    • Kurt Laitner
       
      are these learned or intrinsic?
  • this is labor, this is work, just do it.
    • Kurt Laitner
       
      except that this cultural meme is already a bias, not a fact
  • When communal logics are in effect, all sorts of norms of reciprocity, sacrifice, and gift-giving come into play: this is cool, this is right, this is fun
    • Kurt Laitner
       
      true, and part of our challenge then is to remove this dichotomy
  • So think about paying a kid to clean up their room, paying parishioners to go to church, paying people in a neighborhood to attend a town hall meeting, paying people to come out and vote. All these examples seem a little strange or forced. Why? Because they mix and match the communal with the market-oriented.
    • Kurt Laitner
       
      and perhaps the problem is simply the conversion to money, rather than simply tracking these activities themselves (went to church 50 times this year!, helped 50 orphans get families!) (the latter being more recognition than reward
  • Payment as disincentive. In his interesting book Freakonomics, economist Steven Levitt describes some counterintuitive facts about payment. One of the most interesting is that charging people who do the wrong thing often causes them to do it more, and paying people to do the right thing causes them to do it less.
    • Kurt Laitner
       
      and tracking them causes them to conform to cultural expectations
  • You direct people _away_ from any noble purpose you have, and instead towards grubbing for dollars
    • Kurt Laitner
       
      and we are left with the challenge, how to work to purpose but still have our scarce goods needs sufficiently provided for?  it has to be for love AND money
  • When people work for a noble purpose, they are told that their work is highly valued. When people work for $0.75/hour, they are told that their work is very low-valued
    • Kurt Laitner
       
      so pay them highly for highly valued labour, and don't forget to recognize them as well... no?
  • you're going to have to fight your way through labour laws and tax issues all the way to bankruptcy
    • Kurt Laitner
       
      this is a non argument, these are just interacting but separate problems, use ether or bitcoin, change legislation, what have you
  • Market economics. If you have open content, I can copy your content to another wiki, not pay people, and still make money. So by paying contributors, you're pricing yourself out of the market.
    • Kurt Laitner
       
      exactly, so use commonsource, they can use it all they want, but they have to flow through benefit (provide attribution, recognition, and any financial reward must be split fairly)
  • You don't have to pay people to do what they want to do anyways. The labour cost for leisure activities is $0. And nobody is going to work on a wiki doing things they don't want to do.
    • Kurt Laitner
       
      wow, exploitative in the extreme - no one can afford to do work for free, it cuts into paid work, family time etc.  if they are passionate about something they will do it for free if they cannot get permission to do it for sustenance, but they still need to sustain themselves, and they are making opportunity cost sacrifices, and if you are in turn making money off of this you are an asshole.. go ahead look in the mirror and say "I am an asshole"
  • No fair system. There's simply no fair, automated and auditable way to divvy up the money
    • Kurt Laitner
       
      this is an utter cop out - figure out what is close enough to fair and iterate forward to improve it, wow
  • too complicated to do automatically. But if you have a subjective system -- have a human being evaluate contributions to an article and portion out payments -- it will be subject to constant challenges, endless debates, and a lot of community frustration.
    • Kurt Laitner
       
      yes to the human evaluation part, but "it's too complicated" is disingenuous at the least
  • Gaming the system. People are really smart. If there's money to be made, they'll figure out how to game your payment system to get more money than they actually deserve
    • Kurt Laitner
       
      yes indeed, so get your metrics right, and be prepared to adjust them as they are gamed - and ultimately, as financial penalties are to BP, even if some people game the system, can we better the gaming of the capitalist system.. it's a low bar I know
  • They'll be trying to get as much money out of you as possible, and you'll be trying to give as little as you can to them
    • Kurt Laitner
       
      it doesn't have to be this way, unless you think that way already
  • If you can't convince people that working on your project is worth their unpaid time, then there's probably something wrong with your project.
    • Kurt Laitner
       
      wow, talk about entrepreneurial taker attitude rationalization
  • People are going to be able to sense that -- it's going to look like a cover-up, something sleazy
    • Kurt Laitner
       
      and getting paid for others free work isn't sleazy, somehow...?
  • Donate.
    • Kurt Laitner
       
      better yet, give yourself a reasonable salary, and give the rest away
  • Thank-you gifts
    • Kurt Laitner
       
      cynical.. here have a shiny bobble you idiot
  • Pay bounties
    • Kurt Laitner
       
      good way to get people to compete ineffectively instead of cooperating on a solution, the lottery mechanism is evil
  •  
    while good issue are brought up in this article, the solutions offered are myopic and the explanations of the observed effects not satisfying
Francois Bergeron

The Rise of the Service Robot - 2 views

  • Some experts believe that service robots will change the world the same way the personal computer did 30 years ago.
  • The field is relatively new, so the definition of “service robot” is still up for discussion, but it is generally considered to be a robot that is not installed in an industrial setting.
  • New sensors and processes that provide real-time environment monitoring in 3-D must not only prevent collisions during manipulation but also identify and learn new objects. The increasing use of service robots in everyday environments ultimately calls for new user interfaces that can take into account the full range of communications channels.
  • ...1 more annotation...
  • “The biggest challenge is to cope with the dynamic and unpredictable environment of service robots,” Fischer said. “Compared to industrial robots, the environment is totally undefined
1 - 14 of 14
Showing 20 items per page