Skip to main content

Home/ Sensorica Knowledge/ Group items tagged central

Rss Feed Group items tagged

Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Tiberius Brastaviceanu

The Baffler - 0 views

  • This tendency to view questions of freedom primarily through the lens of economic competition, to focus on the producer and the entrepreneur at the expense of everyone else, shaped O’Reilly’s thinking about technology.
  • the O’Reilly brand essence is ultimately a story about the hacker as hero, the kid who is playing with technology because he loves it, but one day falls into a situation where he or she is called on to go forth and change the world,
  • His true hero is the hacker-cum-entrepreneur, someone who overcomes the insurmountable obstacles erected by giant corporations and lazy bureaucrats in order to fulfill the American Dream 2.0: start a company, disrupt an industry, coin a buzzword.
  • ...139 more annotations...
  • gospel of individualism, small government, and market fundamentalism
  • innovation is the new selfishness
  • mastery of public relations
  • making it seem as if the language of economics was, in fact, the only reasonable way to talk about the subject
  • memes are for losers; the real money is in epistemes.
  • “Open source software” was also the first major rebranding exercise overseen by Team O’Reill
  • It’s easy to forget this today, but there was no such idea as open source software before 1998; the concept’s seeming contemporary coherence is the result of clever manipulation and marketing.
  • ideological cleavage between two groups
  • Richard Stallman
  • Free Software Foundation, preoccupied with ensuring that users had rights with respect to their computer programs. Those rights weren’t many—users should be able to run the program for any purpose, to study how it works, to redistribute copies of it, and to release their improved version (if there was one) to the public
  • “free software.”
  • association with “freedom” rather than “free beer”
  • copyleft
  • profound critique of the role that patent law had come to play in stifling innovation and creativity.
  • Plenty of developers contributed to “free software” projects for reasons that had nothing to do with politics. Some, like Linus Torvalds, the Finnish creator of the much-celebrated Linux operating system, did so for fun; some because they wanted to build more convenient software; some because they wanted to learn new and much-demanded skills.
  • Stallman’s rights-talk, however, risked alienating the corporate types
  • he was trying to launch a radical social movement, not a complacent business association
  • By early 1998 several business-minded members of the free software community were ready to split from Stallman, so they masterminded a coup, formed their own advocacy outlet—the Open Source Initiative—and brought in O’Reilly to help them rebrand.
  • “open source”
  • The label “open source” may have been new, but the ideas behind it had been in the air for some time.
  • In those early days, the messaging around open source occasionally bordered on propaganda
  • This budding movement prided itself on not wanting to talk about the ends it was pursuing; except for improving efficiency and decreasing costs, those were left very much undefined.
  • extremely decentralized manner, using Internet platforms, with little central coordination.
  • In contrast to free software, then, open source had no obvious moral component.
  • “open source is not particularly a moral or a legal issue. It’s an engineering issue. I advocate open source, because . . . it leads to better engineering results and better economic results
  • While free software was meant to force developers to lose sleep over ethical dilemmas, open source software was meant to end their insomnia.
  • Stallman the social reformer could wait for decades until his ethical argument for free software prevailed in the public debate
  • O’Reilly the savvy businessman had a much shorter timeline: a quick embrace of open source software by the business community guaranteed steady demand for O’Reilly books and events
  • The coup succeeded. Stallman’s project was marginalized. But O’Reilly and his acolytes didn’t win with better arguments; they won with better PR.
  • A decade after producing a singular vision of the Internet to justify his ideas about the supremacy of the open source paradigm, O’Reilly is close to pulling a similar trick on how we talk about government reform.
  • much of Stallman’s efforts centered on software licenses
  • O’Reilly’s bet wa
  • the “cloud”
  • licenses would cease to matter
  • Since no code changed hands
  • So what did matter about open source? Not “freedom”
  • O’Reilly cared for only one type of freedom: the freedom of developers to distribute software on whatever terms they fancied.
  • the freedom of the producer
  • who must be left to innovate, undisturbed by laws and ethics.
  • The most important freedom,
  • is that which protects “my choice as a creator to give, or not to give, the fruits of my work to you, as a ‘user’ of that work, and for you, as a user, to accept or reject the terms I place on that gift.”
  • O’Reilly opposed this agenda: “I completely support the right of Richard [Stallman] or any individual author to make his or her work available under the terms of the GPL; I balk when they say that others who do not do so are doing something wrong.”
  • The right thing to do, according to O’Reilly, was to leave developers alone.
  • According to this Randian interpretation of open source, the goal of regulation and public advocacy should be to ensure that absolutely nothing—no laws or petty moral considerations—stood in the way of the open source revolution
  • Any move to subject the fruits of developers’ labor to public regulation
  • must be opposed, since it would taint the reputation of open source as technologically and economically superior to proprietary software
  • the advent of the Internet made Stallman’s obsession with licenses obsolete
  • Many developers did stop thinking about licenses, and, having stopped thinking about licenses, they also stopped thinking about broader moral issues that would have remained central to the debates had “open source” not displaced “free software” as the paradigm du jour.
  • Profiting from the term’s ambiguity, O’Reilly and his collaborators likened the “openness” of open source software to the “openness” of the academic enterprise, markets, and free speech.
  • “open to intellectual exchange”
  • “open to competition”
  • “For me, ‘open source’ in the broader sense means any system in which open access to code lowers the barriers to entry into the market”).
  • “Open” allowed O’Reilly to build the largest possible tent for the movement.
  • The language of economics was less alienating than Stallman’s language of ethics; “openness” was the kind of multipurpose term that allowed one to look political while advancing an agenda that had very little to do with politics
  • highlight the competitive advantages of openness.
  • the availability of source code for universal examination soon became the one and only benchmark of openness
  • What the code did was of little importance—the market knows best!—as long as anyone could check it for bugs.
  • The new paradigm was presented as something that went beyond ideology and could attract corporate executives without losing its appeal to the hacker crowd.
  • What Raymond and O’Reilly failed to grasp, or decided to overlook, is that their effort to present open source as non-ideological was underpinned by a powerful ideology of its own—an ideology that worshiped innovation and efficiency at the expense of everything else.
  • What they had in common was disdain for Stallman’s moralizing—barely enough to justify their revolutionary agenda, especially among the hacker crowds who were traditionally suspicious of anyone eager to suck up to the big corporations that aspired to dominate the open source scene.
  • linking this new movement to both the history of the Internet and its future
  • As long as everyone believed that “open source” implied “the Internet” and that “the Internet” implied “open source,” it would be very hard to resist the new paradigm
  • Telling a coherent story about open source required finding some inner logic to the history of the Internet
  • “If you believe me that open source is about Internet-enabled collaboration, rather than just about a particular style of software license,”
  • everything on the Internet was connected to everything else—via open source.
  • The way O’Reilly saw it, many of the key developments of Internet culture were already driven by what he called “open source behavior,” even if such behavior was not codified in licenses.
  • No moralizing (let alone legislation) was needed; the Internet already lived and breathed open source
  • apps might be displacing the browser
  • the openness once taken for granted is no more
  • Openness as a happenstance of market conditions is a very different beast from openness as a guaranteed product of laws.
  • One of the key consequences of linking the Internet to the world of open source was to establish the primacy of the Internet as the new, reinvented desktop
  • This is where the now-forgotten language of “freedom” made a comeback, since it was important to ensure that O’Reilly’s heroic Randian hacker-entrepreneurs were allowed to roam freely.
  • Soon this “freedom to innovate” morphed into “Internet freedom,” so that what we are trying to preserve is the innovative potential of the platform, regardless of the effects on individual users.
  • Lumping everything under the label of “Internet freedom” did have some advantages for those genuinely interested in promoting rights such as freedom of expression
  • Forced to choose between preserving the freedom of the Internet or that of its users, we were supposed to choose the former—because “the Internet” stood for progress and enlightenment.
  • infoware
  • Yahoo
  • their value proposition lay in the information they delivered, not in the software function they executed.
  • The “infoware” buzzword didn’t catch on, so O’Reilly turned to the work of Douglas Engelbart
  • to argue that the Internet could help humanity augment its “collective intelligence” and that, once again, open source software was crucial to this endeavor.
  • Now it was all about Amazon learning from its customers and Google learning from the sites in its index.
  • The idea of the Internet as both a repository and incubator of “collective intelligence”
  • in 2004, O’Reilly and his business partner Dale Dougherty hit on the idea of “Web 2.0.” What did “2.0” mean, exactly?
  • he primary goal was to show that the 2001 market crash did not mean the end of the web and that it was time to put the crash behind us and start learning from those who survived.
  • Tactically, “Web 2.0” could also be much bigger than “open source”; it was the kind of sexy umbrella term that could allow O’Reilly to branch out from boring and highly technical subjects to pulse-quickening futurology
  • O’Reilly couldn’t improve on a concept as sexy as “collective intelligence,” so he kept it as the defining feature of this new phenomenon.
  • What set Web 2.0 apart from Web 1.0, O’Reilly claimed, was the simple fact that those firms that didn’t embrace it went bust
  • find a way to harness collective intelligence and make it part of their business model.
  • By 2007, O’Reilly readily admitted that “Web 2.0 was a pretty crappy name for what’s happening.”
  • O’Reilly eventually stuck a 2.0 label on anything that suited his business plan, running events with titles like “Gov 2.0” and “Where 2.0.” Today, as everyone buys into the 2.0 paradigm, O’Reilly is quietly dropping it
  • assumption that, thanks to the coming of Web 2.0, we are living through unique historical circumstances
  • Take O’Reilly’s musings on “Enterprise 2.0.” What is it, exactly? Well, it’s the same old enterprise—for all we know, it might be making widgets—but now it has learned something from Google and Amazon and found a way to harness “collective intelligence.”
  • tendency to redescribe reality in terms of Internet culture, regardless of how spurious and tenuous the connection might be, is a fine example of what I call “Internet-centrism.”
  • “Open source” gave us the “the Internet,” “the Internet” gave us “Web 2.0,” “Web 2.0” gave us “Enterprise 2.0”: in this version of history, Tim O’Reilly is more important than the European Union
  • For Postman, each human activity—religion, law, marriage, commerce—represents a distinct “semantic environment” with its own tone, purpose, and structure. Stupid talk is relatively harmless; it presents no threat to its semantic environment and doesn’t cross into other ones.
  • Since it mostly consists of falsehoods and opinions
  • it can be easily corrected with facts
  • to say that Tehran is the capital of Iraq is stupid talk
  • Crazy talk, in contrast, challenges a semantic environment, as it “establishes different purposes and assumptions from those we normally accept.” To argue, as some Nazis did, that the German soldiers ended up far more traumatized than their victims is crazy talk.
  • For Postman, one of the main tasks of language is to codify and preserve distinctions among different semantic environments.
  • As he put it, “When language becomes undifferentiated, human situations disintegrate: Science becomes indistinguishable from religion, which becomes indistinguishable from commerce, which becomes indistinguishable from law, and so on.
  • pollution
  • Some words—like “law”—are particularly susceptible to crazy talk, as they mean so many different things: from scientific “laws” to moral “laws” to “laws” of the market to administrative “laws,” the same word captures many different social relations. “Open,” “networks,” and “information” function much like “law” in our own Internet discourse today.
  • For Korzybski, the world has a relational structure that is always in flux; like Heraclitus, who argued that everything flows, Korzybski believed that an object A at time x1 is not the same object as object A at time x2
  • Our language could never properly account for the highly fluid and relational structure of our reality—or as he put it in his most famous aphorism, “the map is not the territory.”
  • Korzybski argued that we relate to our environments through the process of “abstracting,” whereby our neurological limitations always produce an incomplete and very selective summary of the world around us.
  • nothing harmful in this per se—Korzybski simply wanted to make people aware of the highly selective nature of abstracting and give us the tools to detect it in our everyday conversations.
  • Korzybski developed a number of mental tools meant to reveal all the abstracting around us
  • He also encouraged his followers to start using “etc.” at the end of their statements as a way of making them aware of their inherent inability to say everything about a given subject and to promote what he called the “consciousness of abstraction.”
  • There was way too much craziness and bad science in Korzybski’s theories
  • but his basic question
  • “What are the characteristics of language which lead people into making false evaluations of the world around them?”
  • Tim O’Reilly is, perhaps, the most high-profile follower of Korzybski’s theories today.
  • O’Reilly openly acknowledges his debt to Korzybski, listing Science and Sanity among his favorite books
  • It would be a mistake to think that O’Reilly’s linguistic interventions—from “open source” to “Web 2.0”—are random or spontaneous.
  • There is a philosophy to them: a philosophy of knowledge and language inspired by Korzybski. However, O’Reilly deploys Korzybski in much the same way that the advertising industry deploys the latest findings in neuroscience: the goal is not to increase awareness, but to manipulate.
  • O’Reilly, of course, sees his role differently, claiming that all he wants is to make us aware of what earlier commentators may have overlooked. “A metaphor is just that: a way of framing the issues such that people can see something they might otherwise miss,
  • But Korzybski’s point, if fully absorbed, is that a metaphor is primarily a way of framing issues such that we don’t see something we might otherwise see.
  • In public, O’Reilly modestly presents himself as someone who just happens to excel at detecting the “faint signals” of emerging trends. He does so by monitoring a group of überinnovators that he dubs the “alpha geeks.” “The ‘alpha geeks’ show us where technology wants to go. Smart companies follow and support their ingenuity rather than trying to suppress it,
  • His own function is that of an intermediary—someone who ensures that the alpha geeks are heard by the right executives: “The alpha geeks are often a few years ahead of their time. . . . What we do at O’Reilly is watch these folks, learn from them, and try to spread the word by writing down (
  • The name of his company’s blog—O’Reilly Radar—is meant to position him as an independent intellectual who is simply ahead of his peers in grasping the obvious.
  • “the skill of writing is to create a context in which other people can think”
  • As Web 2.0 becomes central to everything, O’Reilly—the world’s biggest exporter of crazy talk—is on a mission to provide the appropriate “context” to every field.
  • In a fascinating essay published in 2000, O’Reilly sheds some light on his modus operandi.
  • The thinker who emerges there is very much at odds with the spirit of objectivity that O’Reilly seeks to cultivate in public
  • meme-engineering lets us organize and shape ideas so that they can be transmitted more effectively, and have the desired effect once they are transmitted
  • O’Reilly meme-engineers a nice euphemism—“meme-engineering”—to describe what has previously been known as “propaganda.”
  • how one can meme-engineer a new meaning for “peer-to-peer” technologies—traditionally associated with piracy—and make them appear friendly and not at all threatening to the entertainment industry.
  • O’Reilly and his acolytes “changed the canonical list of projects that we wanted to hold up as exemplars of the movement,” while also articulating what broader goals the projects on the new list served. He then proceeds to rehash the already familiar narrative: O’Reilly put the Internet at the center of everything, linking some “free software” projects like Apache or Perl to successful Internet start-ups and services. As a result, the movement’s goal was no longer to produce a completely free, independent, and fully functional operating system but to worship at the altar of the Internet gods.
  • Could it be that O’Reilly is right in claiming that “open source” has a history that predates 1998?
  • Seen through the prism of meme-engineering, O’Reilly’s activities look far more sinister.
  • His “correspondents” at O’Reilly Radar don’t work beats; they work memes and epistemes, constantly reframing important public issues in accordance with the templates prophesied by O’Reilly.
  • Or take O’Reilly’s meme-engineering efforts around cyberwarfare.
  • Now, who stands to benefit from “cyberwarfare” being defined more broadly? Could it be those who, like O’Reilly, can’t currently grab a share of the giant pie that is cybersecurity funding?
  • Frank Luntz lists ten rules of effective communication: simplicity, brevity, credibility, consistency, novelty, sound, aspiration, visualization, questioning, and context.
  • Thus, O’Reilly’s meme-engineering efforts usually result in “meme maps,” where the meme to be defined—whether it’s “open source” or “Web 2.0”—is put at the center, while other blob-like terms are drawn as connected to it.
  • The exact nature of these connections is rarely explained in full, but this is all for the better, as the reader might eventually interpret connections with their own agendas in mind. This is why the name of the meme must be as inclusive as possible: you never know who your eventual allies might be. “A big part of meme engineering is giving a name that creates a big tent that a lot of people want to be under, a train that takes a lot of people where they want to go,”
  • News April 4 mail date March 29, 2013 Baffler party March 6, 2013 Žižek on seduction February 13, 2013 More Recent Press I’ve Seen the Worst Memes of My Generation Destroyed by Madness io9, April 02, 2013 The Baffler’s New Colors Imprint, March 21, 2013
  • There is considerable continuity across O’Reilly’s memes—over time, they tend to morph into one another.
Steve Bosserman

http://www.central2013.eu/fileadmin/user_upload/Downloads/Tools_Resources/Cluster.pdf - 3 views

  •  
    contributes to the rationale for value networks
Tiberius Brastaviceanu

How The Blockchain Will Transform Everything From Banking To Government To Our Identities - 1 views

  • The first generation of the Internet was a great tool for communicating, collaborating and connecting online, but it was not ideal for business. When you send and share information on the Internet, you’re not sending an original but a copy. That’s good for information — it means people have a printing press for information and that information becomes democratized — but if you want to send an asset, it’s a problem. If I send you $100 online, you need to be sure you have it and I don’t, and that I can’t spend the same $100 somewhere else. As a result, we need intermediaries to perform critical roles — to establish identity between two parties in a transaction, and to do all the settlement transaction logic, which includes record-keeping.
  • With blockchain, for the first time, we have a new digital medium for value where anyone can access anything of value — stocks, bonds, money, digital property, titles, deeds — and even things like identity and votes can be moved, stored and managed securely and privately. Trust is not established though a third party but with clever code and mass consensus using a network. That’s got huge implications for intermediaries and businesses and society at large
  • And also with government, as a central repository of information an entity that delivers services.
  • ...35 more annotations...
  • There’s an opportunity to disrupt how those organizations work. Intermediaries, though they do a good job, have a few problems — they’re centralized, which makes them vulnerable to attack or failure
  • They tax the system
  • They capture data
  • They exclude billions of people from the global economy
  • internet of value
  • With blockchain, we can go from redistributing wealth to distributing value and opportunity value fairly a priori, from cradle to grave.
  • creating a true sharing economy by replacing service aggregators like Uber with distributed applications on the blockchain
  • unleashing a new age of entrepreneurship
  • build accountable governments through transparency, smart contracts and revitalized models of democracy.
  • The virtual you is owned by large intermediaries
  • This virtual you knows more about you than you do sometimes
  • So there’s a strange phenomenon from the first generation of the Internet where the most important asset class that’s been created is data —and we don’t control it or own it.
  • individuals taking back their identity through your own personal avatar
  • The financial services industry
  • antiquated
  • a complicated machine that does a simple thing
  • settlement
  • an opportunity to profoundly change the nature of the entire industry. The Starbucks transaction should be instant.
  • At the heart of it, the financial services industry moves value.
  • so this is both an existential threat to the financial services industry and an historic opportunity.
  • Banks trade on trust
  • Within the decade, every single financial asset, which is really just a contract
  • will all move to a blockchain-based format
  • In the accounting world, a lot of firms rely on costly audits to drive their profits
  • With blockchain, you could have a third entry time-stamped in a distributed ledger that could be acceptable to any relevant stakeholders from regulators to shareholders, giving you a perfect record of the truth and thus the financial health of an organization.
  • Nobel-winning economist Ronald Coase argued that firms exist because transaction costs in an open market are greater than the cost of doing things inside the boundaries of the corporation.
  • four costs — of search, coordination, contracting and establishing trust
  • Blockchains will profoundly affect all of these.
  • you can now synthesize trust on an open platform and people who’ve never met can trust each other to do certain things. So this results in a whole number of new business models
  • It turns out the Internet of Everything needs a Ledger of Everything, because a lightbulb buying power from your neighbor’s solar panel definitely won’t use banks or the Visa network
  • Right now, governments take tax revenue from corporations, individuals, licenses and so on. All of that can change. We can first of all have transparency in a radical sense because sunlight is the best disinfectant. Secondly, we can open up governments in a different sense of sharing data.
  • governments can enable self-organization to occur in society where companies, civil society organizations, NGOs, academics, foundations, and government agencies and individual citizens ought to use this data to self-organize and create what we used to call services or forms of public value. The third one has to do with the relationship between citizens and their governments.
  • There are more opportunities to create government by the people for the people
  • Electronic voting won’t be delivered by traditional server technology because it won’t be trusted by citizens
Tiberius Brastaviceanu

If not Global Captalism - then What? - 0 views

  • I posit an optimistic view of the potential for Society from the emergence of a new and “Open” form of Capitalism.
  • Open Capital
  • the concept of “Open” Capital is “so simple…. it repels the mind".
  • ...162 more annotations...
  • Open Capital is defined as “a proportional share in an enterprise for an indeterminate time”
  • ‘Enterprise’ is defined as ‘any entity within which two or more individuals create, accumulate or exchange Value”.
  • Value is to Economics as Energy and Matter are to Physics.
  • The Metaphysics Of Value
  • division between “subject” and “object”.
  • primary reality is “Quality”
  • formless and indefinable
  • not a “thing”
  • a non-intellectual awareness or “pre-intellectual reality”
  • but an event at which the subject becomes aware of the object and before he distinguishes it
  • Quality is the basis of both subject and object
  • distinguish between “Static” and “Dynamic” Quality
  • treating Value as a form of “Quality” as envisioned by Pirsig.
  • Riegel
  • defined “Value” as “ the Relativity of Desire” again implying indeterminacy.
  • Pirsig’s approach Capital may be viewed as “Static” Value and Money as “Dynamic” Value. “Transactions” are the “events” at which individuals (Subjects) interact with each other or with Capital (both as Objects) to create forms of Value and at which “Value judgments” are made based upon a “Value Unit”.
  • The result of these Value Events /Transactions is to create subject/object pairings in the form of data ie Who “owns” or has rights of use in What,
  • at what Price
  • accounting data
  • Neo-Classical” Economics confuses indeterminate Value with a market– determined Price –
  • Data may be static
  • This Data identifies the subject with objects such as tangible ‘Material Value’
  • Data may itself constitute ‘Intellectual Value’
  • It, too, may then be defined in a subject/object pairing through the concept of “intellectual property”.
  • Other forms of Value are however not definable by data:
  • “sentimental” Value
  • Emotional Value’
  • 'Spiritual Value’
  • We may therefore look at the “transaction” or “value event” in a new light.
  • The creation and circulation of Value essentially comprises the concept we know of as “Money”.
  • Money / Dynamic Value
  • “The purpose of money is to facilitate barter by splitting the transaction into two parts, the acceptor of money reserving the power to requisition value from any trader at any time
  • money
  • value unit dissociated from any object
  • monetary unit
  • the basis relative to which other values may be expressed
  • The monetary process is a dynamic one involving the creation and recording of obligations as between individuals and the later fulfilment of these obligations
  • The monetary “Value Event”/ Transaction involves the creation of “Credit”
  • obligation to provide something of equivalent Value at a future point in time.
  • These obligations may be recorded on transferable documents
  • database of “Credit”/obligations is not Money, but temporary “Capital”
  • “Working Capital”
  • Static Value – which only becomes “Money”/ Dynamic Value when exchanged in the transitory Monetary process.
  • what we think of as Money is in fact not tangible “cash” but rather
  • the flow of data between databases of obligations maintained by Credit Institutions
  • or dynamic
  • Banks literally “loan” Money into existence
  • In exchange for an obligation by an Individual to provide to the Bank something of Value
  • Bank’s obligation is merely to provide another obligation at some future time
  • These Bank-issued obligations are therefore
  • claim upon a claim upon Value
  • The true source of Credit is the Individual, not the intermediary Bank
  • this Money they create from nothing despite the fact that it is literally Value-less
  • Thus there is no true sharing of Risk and Reward involved in Lending
  • issue in relation to Credit/Debt and this relates to the nature of Lending itself.
  • the practice of Lending involves an incomplete exchange in terms of risk and reward: a Lender, as opposed to an Investor, has no interest in the outcome of the Loan, and requires the repayment of Principal no matter the ability of the Borrower to repay.
  • Ethical problem
    • Tiberius Brastaviceanu
       
      "The Lender has no interest in the outcome of the loan", i.e doesn't care what happens in the end. The Lender ins not interested in the economical outcome of the Lender-Loner relation. So in fact there is no real risk sharing. the only risk for the Lender is when the Loner doesn't pay back, which is not really a risk... In fact it is a risk for the small bank, who has to buy money from the central bank, but not for the central bank. 
  • Money is not
  • an “Object” circulating but rather a dynamic process of Value creation and exchange by reference to a “Value Unit”.
  • Capital/ Static Value
  • Capital represents the static accumulation of Value
  • Some forms of Capital are “productive”
  • An ethical question
  • in relation to Productive Capital relates to the extent of “property rights” which may be held over it thereby allowing individuals to assert “absolute” permanent and exclusive ownership - in particular in relation to Land
  • our current financial system is based not upon Value but rather a claim upon Value
  • Financial Capital consists of two types:
  • “Debt”
  • “Equity”
  • Interest
  • obligations of finite/temporary duration but with no participation in the assets or revenues
  • absolute and permanent ownership/participation (without obligation) in assets and revenues
  • discontinuity between Debt and Equity
  • at the heart of our current problems as a Society
  • The Enterprise
  • ‘Charitable’ Enterprise
  • ‘Social’ Enterprise
  • Value
  • exchanged in agreed proportions;
  • Value is exchanged for the Spiritual and Emotional Value
  • ‘Commercial’ Enterprise
  • ‘closed’
  • Value are exchanged between a limited number of individuals
  • Early enterprises were partnerships and unincorporated associations
  • need for institutions which outlived the lives of the Members led to the development of the Corporate body with a legal existence independent of its Members
  • The key development in the history of Capitalism was the creation of the ‘Joint Stock’ Corporate with liability limited by shares of a ‘Nominal’ or ‘Par’ value
  • over the next 150 years the Limited Liability Corporate evolved into the Public Limited Liability Corporate
  • Such “Closed” Shares of “fixed” value constitute an absolute and permanent claim over the assets and revenues of the Enterprise to the exclusion of all other “stakeholders” such as Suppliers, Customers, Staff, and Debt Financiers.
  • The latter are essentially ‘costs’ external to the
  • owners of the Enterprise
  • maximise ‘Shareholder Value’
  • There is a discontinuity/ fault-line within the ‘Closed’ Corporate
  • It has the characteristics of what biologists call a ‘semi-permeable membrane’ in the way that it allows Economic Value to be extracted from other stakeholders but not to pass the other way.
    • Tiberius Brastaviceanu
       
      It is a way to extract value from productive systems. It is a system of exploitation. 
  • Capital most certainly is and always has been - through the discontinuity (see diagram) between:‘Fixed’ Capital in the form of shares ie Equity; and ‘Working’ Capital in the form of debt finance, credit from suppliers, pre-payments by customers and obligations to staff and management.
  • irreconcilable conflict between Equity and Debt
  • xchange of Economic Value in a Closed Corporate is made difficult and true sharing of Risk and Reward is simply not possible
  • No Enterprise Model has been capable of resolving this dilemma. Until now.
  • Corporate Partnerships with unlimited liability
  • mandatory for partnerships with more than 20 partners to be incorporated
  • in the USA
  • it is the normal structure for professional partnerships
  • Limited Liability Partnerships
  • In the late 1990's
  • litigation
  • The UK LLP is supremely simple and remarkably flexible.
  • All that is needed is a simple ‘Member Agreement’ – a legal protocol which sets out the Aims, Objectives. Principles of Governance, Revenue Sharing, Dispute Resolution, Transparency and any other matters that Members agree should be included. Amazingly enough, this Agreement need not even be in writing, since in the absence of a written agreement Partnership Law is applied by way of default.
  • The ease of use and total flexibility enables the UK LLP to be utilised in a way never intended – as an ‘Open’ Corporate partnership.
  • ‘Open’ Corporate Partnership
  • concepts which characterise the ‘Open’ Corporate Partnership
  • it is now possible for any stakeholder to become a Member of a UK LLP simply through signing a suitably drafted Member Agreement
  • ‘Open’
  • supplier
  • employee
  • may instead become true Partners in the Enterprise with their interests aligned with other stakeholders.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be a UK LLP?
  • no profit or loss in an Open Corporate Partnership, merely Value creation and exchange between members in conformance with the Member Agreement.
  • Proportional shares
  • in an Enterprise constitute an infinitely divisible, flexible and scaleable form of Capital capable of distributing or accumulating Value organically as the Enterprise itself grows in Value or chooses to distribute it.
  • Emergence of “Open” Capital
  • example of how ‘Temporary Equity’ may operate in practice
  • The Open Capital Partnership (“OCP”)
  • Within the OCP Capital and Revenue are continuous: to the extent that an Investee pays Rental in advance of the due date he becomes an Investor.
  • Open Capital – a new Asset Class
  • create a new asset class of proportional “shares”/partnership interests
  • in Capital holding OCP’s
  • Property Investment Partnerships (“PIP’s”)
  • Open Corporate Partnerships as a Co-operative Enterprise model
  • A Co-operative is not an enterprise structure: it is a set of Principles that may be applied to different types of enterprise structure.
  • Within a Partnership there is no “Profit” and no “Loss”.
  • Partnerships
  • mutual pursuit of the creation and exchange of Value
  • Partners do not compete with each othe
  • the crippling factors in practical terms have been, inter alia: the liability to which Member partners are exposed from the actions of their co-partners on their behalf; limited ability to raise capital.
  • they favour the interests of other stakeholders, are relatively restricted in accessing investment; are arguably deficient in incentivising innovation.
  • The ‘new’ LLP was expressly created to solve the former problem by limiting the liability of Member partners to those assets which they choose to place within its protective ‘semi-permeable membrane’
  • However, the ability to configure the LLP as an “Open” Corporate permits a new and superior form of Enterprise.
  • it is possible to re-organise any existing enterprise as either a partnership or as a partnership of partnerships.
  • the revenues
  • would be divided among Members in accordance with the LLP Agreement. This means that all Members share a common interest in collaborating/co-operating to maximise the Value generated by the LLP collectively as opposed to competing with other stakeholders to maximise their individual share at the other stakeholders’ expense.
  • facilitate the creation of LLP’s as “Co-operatives of Co-operatives”.
  • he ‘Commercial’ Enterprise LLP – where the object is for a closed group of individuals to maximise the value generated in their partnership. There are already over 7,000 of these.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be one of these?
  • the Profit generated in a competitive economy based upon shareholder value and unsustainable growth results from a transfer of risks outwards, and the transfer of reward inwards, leading to a one way transfer of Economic Value.
  • This,
  • will very often impoverish one or more constituency of stakeholders
  • A partnership, however, involves an exchange of value through the sharing of risk and reward.
  • Whether its assets are protected within a corporate entity with limited liability or not, it will always operate co-operatively – for mutual profit.
  • Open Capital, Economics and Politics
  • continuity between Capital as Static Value and Money as Dynamic Value which has never before been possible due to the dichotomy between the absolute/infinite and the absolute/finite durations of the competing claims over assets – “Equity” and “Debt”
  • Open Capital Partnership gives rise to a new form of Financial Capital of indeterminate duration. It enables the Capitalisation of assets and the monetisation of revenue streams in an entirely new way.
  • It is possible to envisage a Society within which individuals are members of a portfolio of Enterprises constituted as partnerships, whether limited in liability or otherwise.
  • Some will be charitable
  • Others will be ‘social’
  • ‘Commercial’ enterprises of all kinds aimed at co-operatively working together to maximise value for the Members.
  • the process has already begun
  • Capitalism
  • superior
  • to all other models, such as Socialism.
  • It can only be replaced by another ‘emergent’ phenomenon, which is adopted ‘virally’ because any Enterprise which does not utilise it will be at a disadvantage to an Enterprise which does.
  • The ‘Open’ Corporate Partnership is: capable of linking any individuals anywhere in respect of collective ownership of assets anywhere; extremely cheap and simple to operate; and because one LLP may be a Member of another it is organically flexible and ‘scaleable’. The phenomenon of “Open Capital” – which is already visible in the form of significant commercial transactions - enables an extremely simple and continuous relationship between those who wish to participate indefinitely in an Enterprise and those who wish to participate for a defined period of time.
  • Moreover, the infinitely divisible proportionate “shares” which constitute ‘Open’ Capital allow stakeholder interests to grow flexibly and organically with the growth in Value of the Enterprise. In legal terms, the LLP agreement is essentially consensual and ‘pre-distributive’: it is demonstrably superior to prescriptive complex contractual relationships negotiated adversarially and subject to subsequent re-distributive legal action. Above all, the ‘Open’ Corporate Partnership is a Co-operative phenomenon which is capable, the author believes, of unleashing the “Co-operative Advantage” based upon the absence of a requirement to pay returns to “rentier” Capitalists.
Tiberius Brastaviceanu

Private 'Distributed Ledgers' Miss the Point of a Blockchain | Bank Think - 0 views

  • a new buzzword making waves throughout the financial industry: “distributed ledger.”
  • Some say it's a tool to enable transparency by ensuring that all members of a group receive cryptographically secured messages about participants’ activities
  • Some are even bold enough to predict that distributed ledgers will end the madness of managing multiple database and reconciliation structures.
  • ...13 more annotations...
  • Distributed ledgers have primarily claimed to supplant the need for Bitcoin's mining process by introducing trust requirements among participants. These ledgers also promise users the immutability of Bitcoin without the need for expensive mining operations.
  • the technology powering distributed ledgers predates blockchains by well over 20 years.
  • Proponents of distributed ledgers argue that they can displace centralized providers such as SWIFT,
  • by moving money faster
  • There’s no doubt that blockchain technology will facilitate disruptive innovations in finance
  • But a world of private ledgers sounds eerily similar to a range of “private Internets.”
  • Blockchain technology is useful not because it offers efficiency in a world of message-passing but because it uses a complex process to settle value between untrusted parties.
  • But distributed ledgers do not offer users the ability to easily convert their tokens and messages into fungible units of value. Nor do distributed ledgers escrow value between parties that don't trust each other.
  • If a ledger is not a public resource, it will have the pressures incumbent to existing settlement systems plus the overhead of maintaining a shared database among competitors. What efficiency will remain thereafter remains dubious.
  • Permissioned Blockchains
  • their institutional users will probably find it expedient to hash their private-chain transactions and use those hashes to create bitcoin addresses and then send tiny fractions of a bitcoin to them to register their data at a location that cannot be hacked or changed.
    • Tiberius Brastaviceanu
       
      This is also a problem with access, if an access event needs to be recorded in a way that cannot be altered, in a data location that cannot be altered, it will need to be stored on a block chain. 
  • In other words, all private ledger/blockchains will lead to Bitcoin's Rome, driven there by its low cost and high public accountability.
  •  
    the case against private chains.
Tiberius Brastaviceanu

The commons law project: A vision of green governance - 0 views

  • “commons law” (not to be confused with common law)
  • Commons law consists of those social practices, cultural traditions and specific bodies of formal law that recognize the rights of commoners to manage their own resources
  • Ever since the rise of the nation-state and especially industrialized markets, however, commons law has been marginalized if not eclipsed by contemporary forms of market-based law
  • ...19 more annotations...
  • individual property rights and market exchange have been elevated over most everything else, and this has only eroded the rights of commoners,
  • reframe the very notion of “the economy” to incorporate non-market sharing and collaboration.
  • we had concluded that incremental efforts to expand human rights and environmental protection within the framework of the State/Market duopoly were simply not going to achieve much
  • the existing system of regulation and international treaties has been a horrendous failure over the past forty years. Neoliberal economics has corrupted and compromised law and regulation, slashing away at responsible stewardship of our shared inheritance while hastening a steady decline of the world’s ecosystems
  • We concluded that new forms of ecological governance that respect human rights, draw upon commons models and reframe our understanding of economic value, hold great promise
  • An economics and supporting civic polity that valorizes growth and material development as the precondition for virtually everything else is ultimately a dead end—literally.
  • Achieving a clean, healthy and ecologically balanced environment requires that we cultivate a practical governance paradigm based on, first, a logic of respect for nature, sufficiency, interdependence, shared responsibility and fairness among all human beings; and, second, an ethic of integrated global and local citizenship that insists upon transparency and accountability in all activities affecting the integrity of the environment.
  • We believe that commons- and rights-based ecological governance—green governance—can fulfill this logic and ethic. Properly done, it can move us beyond the neoliberal State and Market alliance—what we call the ‘State/Market’—which is chiefly responsible for the current, failed paradigm of ecological governance.
  • The basic problem is that the price system, seen as the ultimate governance mechanism of our polity, falls short in its ability to represent notions of value that are subtle, qualitative, long-term and complicated.
  • These are, however, precisely the attributes of natural systems.
  • Exchange value is the primary if not the exclusive concern.
  • anything that does not have a price and exists ‘outside’ the market is regarded (for the purposes of policy-making) as having subordinate or no value.
  • industry lobbies have captured if not corrupted the legislative process
  • regulation has become ever more insulated from citizen influence and accountability as scientific expertise and technical proceduralism have come to be more and more the exclusive determinants of who may credibly participate in the process
  • we have reached the limits of leadership and innovation within existing institutions and policy structures
  • it will not be an easy task to make the transition from State/Market ecological governance to commons- and rights-based ecological governance
  • It requires that we enlarge our understanding of ‘value’ in economic thought to account for nature and social well-being; that we expand our sense of human rights and how they can serve strategic as well as moral purposes; that we liberate ourselves from the limitations of State-centric models of legal process; and that we honor the power of non-market participation, local context and social diversity in structuring economic activity and addressing environmental problems.
  • articulate and foster a coherent new paradigm
  • deficiencies of centralized governments (corruption, lack of transparency, rigidity, a marginalized citizenry)
Tiberius Brastaviceanu

PeerPoint « Poor Richard's Almanack 2010 - 1 views

  • Each PeerPoint is an autonomous node on a p2p network with no centralized corporate  infrastructure.
  • The PeerPoint will be connected between the user’s pc, home network, or mobile device and the ISP connection.
  • The PeerPoint is designed to Occupy the Internet.
  • ...7 more annotations...
  • provide greater user value
  • For numerous reasons the services provided by the commercial companies do not adequately meet the creative, social, political, and financial needs of the 99%
  • allows self-selected individuals to coalesce into powerful workgroups, forums, and movements.
  • With the PeerPoint approach, each user will own her own inexpensive internet appliance and all the data and content she creates
  • If a FreedomBox were used as a starting platform, the PeerPoint application package would be added on top of the FreedomBox security stack.
  • The common requirements for each PeerPoint app are: world class, best-of-breed open source p2p architecture consistent, granular, user-customizable security management and identity protection integrated with other apps in the suite via a common distributed database and/or “data bus” architecture. consistent, user-customizable large, medium, and small-screen (mobile device) user interfaces ability to interface with its corresponding major-market-share service (Facebook, Twitter, etc.) GPS enabled
  • First tier applications: distributed database social networking  (comparison of distributed social network applications) trust/reputation metrics crowdsourcing: content collaboration & management  (wiki, Google Docs, or better) project management/workflow data visualization (data sets, projects, networks, etc.) user-customizable complementary currency and barter exchange (Community Forge or better) crowd funding (http://www.quora.com/Is-there-an-open-source-crowdfunding-platform) voting (LiquidFeedback or better) universal search across all PeerPoint data/content and world wide web content
Guillaume Barreau

Des drones intelligents au secours de l'agriculture biologique - 0 views

  •  
    Des drones intelligents au secours de l'agriculture biologique Quand les drones ne sont pas employés pour survoler des centrales nucléaires ou pour livrer des colis d'une quelconque multinationale, ils peuvent parfois trouver une utilité dans le milieu alternatif. Michael Godfrey, un jeune étudiant en agronomie de l'université du Queensland (Australie), propose une application peu commune pour ces engins : le lâcher d'insectes.
Kurt Laitner

Decentralize - Web 3.0 News & Opinions | Synereo: A fully decentralized social network ... - 1 views

  •  
    Very interesting, of course, will it get traction? This is the architecture I see needed, but execution is key, then traction is required. No wonder one of the founders is a professional gambler.. I do wish them the best, *diaspora has been a bit of a disappointment
Kurt Laitner

What do we need corporations for and how does Valve's management structure fit into tod... - 0 views

  • Valve’s management model; one in which there are no bosses, no delegation, no commands, no attempt by anyone to tell someone what to do
  • Every social order, including that of ants and bees, must allocate its scarce resources between different productive activities and processes, as well as establish patterns of distribution among individuals and groups of output collectively produced.
  • the allocation of resources, as well as the distribution of the produce, is based on a decentralised mechanism functioning by means of price signals:
  • ...18 more annotations...
  • Interestingly, however, there is one last bastion of economic activity that proved remarkably resistant to the triumph of the market: firms, companies and, later, corporations. Think about it: market-societies, or capitalism, are synonymous with firms, companies, corporations. And yet, quite paradoxically, firms can be thought of as market-free zones. Within their realm, firms (like societies) allocate scarce resources (between different productive activities and processes). Nevertheless they do so by means of some non-price, more often than not hierarchical, mechanism!
  • they are the last remaining vestiges of pre-capitalist organisation within… capitalism
  • The miracle of the market, according to Hayek, was that it managed to signal to each what activity is best for herself and for society as a whole without first aggregating all the disparate and local pieces of knowledge that lived in the minds and subconscious of each consumer, each designer, each producer. How does this signalling happen? Hayek’s answer (borrowed from Smith) was devastatingly simple: through the movement of prices
  • The idea of spontaneous order comes from the Scottish Enlightenment, and in particular David Hume who, famously, argued against Thomas Hobbes’ assumption that, without some Leviathan ruling over us (keeping us “all in awe”), we would end up in a hideous State of Nature in which life would be “nasty, brutish and short”
  • Hume’s counter-argument was that, in the absence of a system of centralised command, conventions emerge that minimise conflict and organise social activities (including production) in a manner that is most conducive to the Good Life
  • Hayek’s argument was predicated upon the premise that knowledge is always ‘local’ and all attempts to aggregate it are bound to fail. The world, in his eyes, is too complex for its essence to be distilled in some central node; e.g. the state.
  • The idea here is that, through this ever-evolving process, people’s capacities, talents and ideas are given the best chance possible to develop and produce synergies that promote the Common Good. It is as if an invisible hand guides Valve’s individual members to decisions that both unleash each person’s potential and serve the company’s collective interest (which does not necessarily coincide with profit maximisation).
  • Valve differs in that it insists that its employees allocate 100% of their time on projects of their choosing
  • In contrast, Smith and Hayek concentrate their analysis on a single passion: the passion for profit-making
  • Hume also believed in a variety of signals, as opposed to Hayek’s exclusive reliance on price signalling
  • One which, instead of price signals, is based on the signals Valve employees emit to one another by selecting how to allocate their labour time, a decision that is bound up with where to wheel their tables to (i.e. whom to work with and on what)
  • He pointed out simply and convincingly that the cost of subcontracting a good or service, through some market, may be much larger than the cost of producing that good or service internally. He attributed this difference to transactions costs and explained that they were due to the costs of bargaining (with contractors), of enforcing incomplete contracts (whose incompleteness is due to the fact that some activities and qualities cannot be fully described in a written contract), of imperfect monitoring and asymmetrically distributed information, of keeping trade secrets… secret, etc. In short, contractual obligations can never be perfectly stipulated or enforced, especially when information is scarce and unequally distributed, and this gives rise to transaction costs which can become debilitating unless joint production takes place within the hierarchically structured firm. Optimal corporation size corresponds, in Coase’s scheme of things, to a ‘point’ where the net marginal cost of contracting out a service or good (including transaction costs) tends to zero 
  • As Coase et al explained in the previous section, the whole point about a corporation is that its internal organisation cannot turn on price signals (for if it could, it would not exist as a corporation but would, instead, contract out all the goods and services internally produced)
  • Each employee chooses (a) her partners (or team with which she wants to work) and (b) how much time she wants to devote to various competing projects. In making this decision, each Valve employee takes into account not only the attractiveness of projects and teams competing for their time but, also, the decisions of others.
  • Hume thought that humans are prone to all sorts of incommensurable passions (e.g. the passion for a video game, the passion for chocolate, the passion for social justice) the pursuit of which leads to many different types of conventions that, eventually, make up our jointly produced spontaneous order
  • Valve is, at least in one way, more radical than a traditional co-operative firm. Co-ops are companies whose ownership is shared equally among its members. Nonetheless, co-ops are usually hierarchical organisations. Democratic perhaps, but hierarchical nonetheless. Managers may be selected through some democratic or consultative process involving members but, once selected, they delegate and command their ‘underlings’ in a manner not at all dissimilar to a standard corporation. At Valve, by contrast, each person manages herself while teams operate on the basis of voluntarism, with collective activities regulated and coordinated spontaneously via the operations of the time allocation-based spontaneous order mechanism described above.
  • In contrast, co-ops and Valve feature peer-based systems for determining the distribution of a firm’s surplus among employees.
  • There is one important aspect of Valve that I did not focus on: the link between its horizontal management structure and its ‘vertical’ ownership structure. Valve is a private company owned mostly by few individuals. In that sense, it is an enlightened oligarchy: an oligarchy in that it is owned by a few and enlightened in that those few are not using their property rights to boss people around. The question arises: what happens to the alternative spontaneous order within Valve if some or all of the owners decide to sell up?
Tiberius Brastaviceanu

Access control - Wikipedia, the free encyclopedia - 0 views

  • The act of accessing may mean consuming, entering, or using.
  • Permission to access a resource is called authorization.
  • Locks and login credentials are two analogous mechanisms of access control.
  • ...26 more annotations...
  • Geographical access control may be enforced by personnel (e.g., border guard, bouncer, ticket checker)
  • n alternative of access control in the strict sense (physically controlling access itself) is a system of checking authorized presence, see e.g. Ticket controller (transportation). A variant is exit control, e.g. of a shop (checkout) or a country
  • access control refers to the practice of restricting entrance to a property, a building, or a room to authorized persons
  • can be achieved by a human (a guard, bouncer, or receptionist), through mechanical means such as locks and keys, or through technological means such as access control systems like the mantrap.
  • Physical access control is a matter of who, where, and when
  • Historically, this was partially accomplished through keys and locks. When a door is locked, only someone with a key can enter through the door, depending on how the lock is configured. Mechanical locks and keys do not allow restriction of the key holder to specific times or dates. Mechanical locks and keys do not provide records of the key used on any specific door, and the keys can be easily copied or transferred to an unauthorized person. When a mechanical key is lost or the key holder is no longer authorized to use the protected area, the locks must be re-keyed.[citation needed] Electronic access control uses computers to solve the limitations of mechanical locks and keys. A wide range of credentials can be used to replace mechanical keys. The electronic access control system grants access based on the credential presented. When access is granted, the door is unlocked for a predetermined time and the transaction is recorded. When access is refused, the door remains locked and the attempted access is recorded. The system will also monitor the door and alarm if the door is forced open or held open too long after being unlocked
  • Credential
  • Access control system operation
  • The above description illustrates a single factor transaction. Credentials can be passed around, thus subverting the access control list. For example, Alice has access rights to the server room, but Bob does not. Alice either gives Bob her credential, or Bob takes it; he now has access to the server room. To prevent this, two-factor authentication can be used. In a two factor transaction, the presented credential and a second factor are needed for access to be granted; another factor can be a PIN, a second credential, operator intervention, or a biometric input
  • There are three types (factors) of authenticating information:[2] something the user knows, e.g. a password, pass-phrase or PIN something the user has, such as smart card or a key fob something the user is, such as fingerprint, verified by biometric measurement
  • Passwords are a common means of verifying a user's identity before access is given to information systems. In addition, a fourth factor of authentication is now recognized: someone you know, whereby another person who knows you can provide a human element of authentication in situations where systems have been set up to allow for such scenarios
  • When a credential is presented to a reader, the reader sends the credential’s information, usually a number, to a control panel, a highly reliable processor. The control panel compares the credential's number to an access control list, grants or denies the presented request, and sends a transaction log to a database. When access is denied based on the access control list, the door remains locked.
  • A credential is a physical/tangible object, a piece of knowledge, or a facet of a person's physical being, that enables an individual access to a given physical facility or computer-based information system. Typically, credentials can be something a person knows (such as a number or PIN), something they have (such as an access badge), something they are (such as a biometric feature) or some combination of these items. This is known as multi-factor authentication. The typical credential is an access card or key-fob, and newer software can also turn users' smartphones into access devices.
  • An access control point, which can be a door, turnstile, parking gate, elevator, or other physical barrier, where granting access can be electronically controlled. Typically, the access point is a door. An electronic access control door can contain several elements. At its most basic, there is a stand-alone electric lock. The lock is unlocked by an operator with a switch. To automate this, operator intervention is replaced by a reader. The reader could be a keypad where a code is entered, it could be a card reader, or it could be a biometric reader. Readers do not usually make an access decision, but send a card number to an access control panel that verifies the number against an access list
  • monitor the door position
  • Generally only entry is controlled, and exit is uncontrolled. In cases where exit is also controlled, a second reader is used on the opposite side of the door. In cases where exit is not controlled, free exit, a device called a request-to-exit (REX) is used. Request-to-exit devices can be a push-button or a motion detector. When the button is pushed, or the motion detector detects motion at the door, the door alarm is temporarily ignored while the door is opened. Exiting a door without having to electrically unlock the door is called mechanical free egress. This is an important safety feature. In cases where the lock must be electrically unlocked on exit, the request-to-exit device also unlocks the doo
  • Access control topology
  • Access control decisions are made by comparing the credential to an access control list. This look-up can be done by a host or server, by an access control panel, or by a reader. The development of access control systems has seen a steady push of the look-up out from a central host to the edge of the system, or the reader. The predominant topology circa 2009 is hub and spoke with a control panel as the hub, and the readers as the spokes. The look-up and control functions are by the control panel. The spokes communicate through a serial connection; usually RS-485. Some manufactures are pushing the decision making to the edge by placing a controller at the door. The controllers are IP enabled, and connect to a host and database using standard networks
  • Access control readers may be classified by the functions they are able to perform
  • and forward it to a control panel.
  • Basic (non-intelligent) readers: simply read
  • Semi-intelligent readers: have all inputs and outputs necessary to control door hardware (lock, door contact, exit button), but do not make any access decisions. When a user presents a card or enters a PIN, the reader sends information to the main controller, and waits for its response. If the connection to the main controller is interrupted, such readers stop working, or function in a degraded mode. Usually semi-intelligent readers are connected to a control panel via an RS-485 bus.
  • Intelligent readers: have all inputs and outputs necessary to control door hardware; they also have memory and processing power necessary to make access decisions independently. Like semi-intelligent readers, they are connected to a control panel via an RS-485 bus. The control panel sends configuration updates, and retrieves events from the readers.
  • Systems with IP readers usually do not have traditional control panels, and readers communicate directly to a PC that acts as a host
  • a built in webservice to make it user friendly
  • Some readers may have additional features such as an LCD and function buttons for data collection purposes (i.e. clock-in/clock-out events for attendance reports), camera/speaker/microphone for intercom, and smart card read/write support
Kurt Laitner

Towards a Material Commons | Guerrilla Translation! - 0 views

  • the modes of communication we use are very tightly coupled with the modes of production that finance them
  • I’m focused on the policy formation around this transition to a new, open knowledge and commons-based economy, and that’s the research work I’m doing here
  • The problem is I can only make a living by still working for capital.
  • ...88 more annotations...
  • We now have a technology which allows us to globally scale small group dynamics, and to create huge productive communities, self-organized around the collaborative production of knowledge, code, and design. But the key issue is that we are not able to live from that, right
  • A lot of co-ops have been neo-liberalizing, as it were, have become competitive enterprises competing against other companies but also against other co-ops, and they don’t share their knowledge
  • We cannot create our own livelihood within that sphere
  • instead of having a totally open commons, which allows multinationals to use our commons and reinforce the system of capital, the idea is to keep the accumulation within the sphere of the commons.
  • The result would be a type of open cooperative-ism, a kind of synthesis or convergence between peer production and cooperative modes of production
  • then the material work, the work of working for clients and making a livelihood, would be done through co-ops
  • But it hasn’t had much of a direct connection to this emerging commons movement, which shares so many of the values and  principles of the traditional cooperative movement.
  • There’s also a lot of peer-to-peer work going on, but it’s not very well versed around issues like cooperative organization, formal or legal forms of ownership, which are based on reciprocity and cooperation, and how to interpret the commons vision with a structure, an organizational structure and a legal structure that actually gives it economic power, market influence, and a means of connecting it to organizational forms that have durability over the long-term.
  • The young people, the developers in open source or free software, the people who are in co-working centers, hacker spaces, maker spaces. When they are thinking of making a living, they think startups
  • They have a kind of generic reaction, “oh, let’s do a startup”, and then they look for venture funds. But this is a very dangerous path to take
  • Typically, the venture capital will ask for a controlling stake, they have the right to close down your start up whenever they feel like it, when they feel that they’re not going to make enough money
  • Don’t forget that with venture capital, only 1 out of 10 companies will actually make it, and they may be very rich, but it’s a winner-take-all system
  • we don’t have what Marx used to call social reproduction
  • I would like John to talk about the solidarity co-ops, and how that integrates the notion of the commons or the common good in the very structure of the co-op
  • They don’t have a commons of design or code, they privatize and patent, just like private competitive enterprise, their knowledge
  • Cooperatives, which are basically a democratic and collective form of enterprise where members have control rights and democratically direct the operations of the co-op, have been the primary stakeholders in any given co-op – whether it’s a consumer co-op, or a credit union, or a worker co-op.
  • Primarily, the co-op is in the service of its immediate members
  • What was really fascinating about the social co-ops was that, although they had members, their mission was not only to serve the members but also to provide service to the broader community
  • In the city of Bologna, for example, over 87% of the social services provided in that city are provided through contract with social co-ops
  • democratically run
  • much more participatory, and a much more engaged model
  • The difference, however, is that the structure of social co-ops is still very much around control rights, in other words, members have rights of control and decision-making within how that organization operates
  • And it is an incorporated legal structure that has formal recognition by the legislation of government of the state, and it has the power, through this incorporated power, to negotiate with and contract with government for the provision of these public services
  • In Québec they’re called Solidarity co-ops
  • So, the social economy, meaning organizations that have a mutual aim in their purpose, based on the principles of reciprocity, collective benefit, social benefit, is emerging as an important player for the design and delivery of public services
  • This, too, is in reaction to the failure of the public market for provision of services like affordable housing or health care or education services
  • This is a crisis in the role of the state as a provider of public services. So the question has emerged: what happens when the state fails to provide or fulfill its mandate as a provider or steward of public goods and services, and what’s the role of civil society and the social economy in response?
  • we have commonses of knowledge, code and design. They’re more easily created, because as a knowledge worker, if you have access to the network and some means, however meager, of subsistence, through effort and connection you can actually create knowledge. However, this is not the case if you move to direct physical production, like the open hardware movement
  • I originally encountered Michel after seeing some talks by Benkler and Lessig at the Wizard of OS 4, in 2006, and I wrote an essay criticizing that from a materialist perspective, it was called “The creative anti-commons and the poverty of networks”, playing on the terms that both those people used.
  • In hardware, we don’t see that, because you need to buy material, machines, plastic, metal.
  • Some people have called the open hardware community a “candy” economy, because if you’re not part of these open hardware startups, you’re basically not getting anything for your efforts
  • democratic foundations like the Apache foundation
  • They conceive of peer production, especially Benkler, as being something inherently immaterial, a form of production that can only exist in the production of immaterial wealth
  • From my materialist point of view, that’s not a mode of production, because a mode of production must, in the first place, reproduce its productive inputs, its capital, its labor, and whatever natural wealth it consumes
  • From a materialist point of view, it becomes  obvious that the entire exchange value produced in these immaterial forms would be captured by the same old owners of materialist wealth
  • different definition of peer production
  • independent producers collectively sharing a commons of productive assets
  • I wanted to create something like a protocol for the formation and allocation of physical goods, the same way we have TCP/IP and so forth, as a way to allocate immaterial goods
  • share and distribute and collectively create immaterial wealth, and become independent producers based on this collective commons.
  • One was the Georgist idea of using rent, economic rent, as a fundamental mutualizing source of wealth
  • Mutualizing unearned income
  • So, the unearned income, the portion of income derived from ownership of productive assets is evenly distributed
  • This protocol would seek to normalize that, but in a way that doesn’t require administration
  • typical statist communist reaction to the cooperative movement is saying that cooperatives can exclude and exploit one another
  • But then, as we’ve seen in history, there’s something that develops called an administrative class,  which governs over the collective of cooperatives or the socialist state, and can become just as counterproductive and often exploitive as capitalist class
  • So, how do we create cooperation among cooperatives, and distribution of wealth among cooperatives, without creating this administrative class?
  • This is why I borrowed from the work of Henry George and Silvio Gesell in created this idea of rent sharing.
  • This is not done administratively, this is simply done as a protocol
  • The idea is that if a cooperative wants an asset, like, an example is if one of the communes would like to have a tractor, then essentially the central commune is like a bond market. They float a bond, they say I want a tractor, I am willing to pay $200 a month for this tractor in rent, and other members of the cooperative can say, hey, yeah, that’s a good idea,we think that’s a really good allocation of these productive assets, so we are going to buy these bonds. The bond sale clears, the person gets the tractor, the money from the rent of the tractor goes back to clear the bonds, and  after that, whatever further money is collected through the rent on this tractor – and I don’t only mean tractors, same would be applied to buildings, to land, to any other productive assets – all this rent that’s collected is then distributed equally among all of the workers.
  • The idea is that people earn income not only by producing things, but by owning the means of production, owning productive assets, and our society is unequal because the distribution of productive assets is unequal
  • This means that if you use your exact per capita share of property, no more no less than what you pay in rent and what you received in social dividend, will be equal
  • But if you’re not working at that time, because you’re old, or otherwise unemployed, then obviously the the productive assets that you will be using will be much less than the mean and the median, so what you’ll receive as dividend will be much more than what you pay in rent, essentially providing a basic income
  • venture communism doesn’t seek to control the product of the cooperatives
  • It doesn’t seek to limit, control, or even tell them how they should distribute it, or under what means; what they produce is entirely theirs, it’s only the collective management of the commons of productive assets
  • On paper this would seem to work, but the problem is that this assumes that we have capital to allocate in this way, and that is not the case for most of the world workers
  • how do we get to that stage?
  • other two being counter politics and insurrectionary finance
  • do we express our activism through the state, or do we try to achieve our goals by creating the alternative society outside
  • pre-figurative politics, versus statist politics
  • My materialist background tells me that when you sell your labor on the market, you have nothing more than your subsistence costs at the end of it, so where is this wealth meant to come from
  • I believe that the only reason that we have any extra wealth beyond subsistence is because of organized social political struggle; because we have organized in labor movements, in the co-op movement, and in other social forms
  • To create the space for prefiguring presupposes engagement with the state, and struggle within parliaments, and struggle within the public social forum
  • Instead, we should think that no, we must engage in the state in order to protect our ability to have alternative societies
  • We can only get rid of the state in these areas once we have alternative, distributed, cooperative means to provide those same functions
  • We can only eliminate the state from these areas once they actually exist, which means we actually have to build them
  • What I mean by insurrectionary finance is that we have to acknowledge that it’s not only forming capital and distributing capital, it’s also important how intensively we use capital
  • I’m not proposing that the cooperative movement needs to engage in the kind of derivative speculative madness that led to the financial crisis, but at the same time we can’t… it can’t be earn a dollar, spend a dollar
  • We have to find ways to create liquidity
  • to deal with economic cycles
  • they did things the organized left hasn’t been able to do, which is takeover industrial means of production
  • if they can take over these industrial facilities, just in order to shut them down and asset strip them, why can’t we take them over and mutualize them?
  • more ironic once you understand that the source of investment that Milken and his colleagues were working with were largely workers pension funds
  • idea of venture communism
  • pooling, based on the capture of unearned income
  • in Québec, there is a particular form of co-op that’s been developed that allows small or medium producers to pool their capital to purchase machinery and to use it jointly
  • The other idea I liked was trying to minimize a management class
  • much more lean and accountable because they are accountable to boards of directors that represent the interests of the members
  • I’ve run into this repeatedly among social change activists who immediately recoil at the notion of thinking about markets and capital, as part of their change agenda
  • I had thought previously, like so many, that economics is basically a bought discipline, and that it serves the interests of existing elites. I really had a kind of reaction against that
  • complete rethinking of economics
  • recapture the initiative around vocabulary, and vision, with respect to economics
  • reimagining and reinterpreting, for a popular and common good, the notion of market and capital
  • advocating for a vision of social change that isn’t just about politics, and isn’t just about protest, it has to be around how do we reimagine and reclaim economics
  • markets actually belong to communities and people
  • capital wasn’t just an accumulated wealth for the rich
  • I think what we’re potentially  talking about here is to make the social economy hyper-productive, hyper-competitive, hyper-cooperative
  • The paradox is that capital already knows this. Capital is investing in these peer production projects
  • Part of the proposal of the FLOK society project in Ecuador will be to get that strategic reorganization to make the social economy strategic
  •  
    A lot of really interesting points of discussion in here.
Tiberius Brastaviceanu

Fostering creativity. A model for developing a culture of collective creativity in science - 0 views

  • Scientific progress depends on both conceptual and technological advances, which in turn depend on the creativity of scientists
  • creative processes behind these discoveries rely on mechanisms that are similar across disciplines as diverse as art and science
  • research into the nature of creativity indicates that it depends strongly on the cultural environment
  • ...48 more annotations...
  • create optimal conditions in a research organization with the aim of enhancing the creativity of its scientific staff
  • Creativity has been traditionally associated with art and literature but since the early twentieth century, science has also been regarded as a creative activity
  • Measuring creativity is a challenging task owing to its complex and elusive nature
  • Measurement of brain activity showed that creativity correlates with two brain states: a quiescent, relaxed state corresponding to the inspiration stage, and a much more active state corresponding to the elaboration stage
  • models of creativity
  • have a common feature: they depend on a balance between analytical and synthetic thinking, and usually describe the creative process as a sequence of phases that alternate between these states
  • Most research on creativity has focused on the individual
  • However, more recent studies suggest that creativity also depends strongly on the social and cultural context
  • breakthroughs depended on collaboration and social support
  • social environment in business organizations affects the creativity of their employees
  • Although creative individuals are essential, the strong link with the environment indicates that creativity might be greatly enhanced by generating a culture that supports the creative process.
  • Many of the interviewees repeatedly emphasized three main qualities necessary to be a good scientist: rigorous intellect, the ability to get the job done and the ability to have creative ideas.
  • almost all interviewees characterized their breakthrough moment as an abrupt leap in understanding
  • Although breakthroughs in science depend on such an ‘internal' conceptual shift, they also rely on ‘external' experimental results. However, most interviewees described their breakthroughs as largely internal:
  • Only two scientists expressed the view that their breakthroughs were purely external events, based on the observation of novel data.
  • intuition
  • must be combined with rational thinking to be effective
  • Although the synthesis of a new concept relies on intuition, which is based on subconscious mental processing, it must be subjected to conscious examination and analysis
  • specific mental skills or attitudes
  • ability to make unexpected connections
  • ability to choose relevant possibilities from an infinite set of irrelevant ones
  • interest in the unknown'
  • enjoyment of the creative process
  • stimulation by interacting with colleagues
  • undoubtedly the most crucial trait for creativity, which thrives on the exchange of ideas
  • The majority felt that the individual and the collective are equally important:
  • what interactions are optimal for creativity
  • The majority of interviewees answered that other people provided them with ‘inspiration to do something new'
  • positive feedback after the emergence of a new idea is almost as important as the inspiration that triggered it
  • collective provides the individual with technical expertise
  • Therefore, scientists would value a culture of interaction and mutual inspiration more highly than access to technology, although the latter is essential for their experiments.
  • At the end of the interviews, each scientist was asked to describe the best possible conditions for generating creativity at a research institute.
  • Cross-fertilization is absolutely essential
  • These results indicate strongly that an interactive environment is the single most important factor for stimulating creativity
  • interacting with people doing very different things
  • interacting with colleagues informally
  • interactions within any institution are strongly affected by its organization
  • Several interviewees described ‘an open hierarchy' as an important factor for creativity
  • hierarchy is based on genuine respect because people are great scientists, but at the same time they're very approachable and open towards what you have to say
  • These results suggest that the best conditions for scientific creativity come with a free-flowing hierarchy and a highly developed culture of interaction to guarantee the exchange of ideas and inspiration.
  • Furthermore, interdisciplinary interactions lead to the generation of new and unusual ideas
  • Finally, because of the freedom to try new things, these ideas can be tested and eventually generate new insights.
  • Creativity can be described as an emergent phenomenon
  • nonlinear phenomena
  • Emergence depends on dynamic interactions between individual agents within the system
  • The importance of a ‘freedom to try new things' and a ‘free-flowing hierarchy' further supports the idea that individual components in an emergent system must be able to interact flexibly without central control
  • During the interviews, it became apparent that although a culture of interaction and creativity exists at EMBL, this itself is not often the subject of discussion. The values on which this culture is based are seemingly implicit rather than explicit
  • Potentially, the EMBL culture of interaction could be strengthened further by consciously expressing and discussing the values on which it is based
Tiberius Brastaviceanu

Value network - Wikipedia - 0 views

  • a business analysis perspective
  • describes
  • resources within and between businesses
  • ...38 more annotations...
  • nodes in a value network represent people
  • nodes are connected by interactions that represent tangible and intangible deliverables
  • Value networks exhibit interdependence
  • Companies have both internal and external value networks.[1]
  • customers or recipients, intermediaries, stakeholders, complementary, open innovation networks and suppliers
  • key activities
  • processes and relationships that cut across internal boundaries
  • Value is created through exchange and the relationships between roles
  • F&S's value networks consists of these components
  • customers
  • Some service the customers all use, and enables interaction between the customers
  • service
  • contracts that enables access to the service
  • the network formed by phone users
  • example
  • example
  • car insurance company
  • how a company understands itself
  • value creation process
  • value creating system
  • all stakeholders co-produce value
  • systematic social innovation
  • strategy as
  • the Value Network to emerge as a mental model
  • Verna Allee defines value networks [5] as any web of relationships that generates both tangible and intangible value through complex dynamic exchanges between two or more individuals, groups or organizations. Any organization or group of organizations engaged in both tangible and intangible exchanges can be viewed as a value network, whether private industry, government or public sector.
  • Allee developed Value network analysis, a whole systems mapping and analysis approach to understanding tangible and intangible value creation among participants in an enterprise system
  • participants, transactions and tangible and intangible deliverables that together form a value network.
  • knowledge
  • benefits
  • favors
  • know-how
  • policy
  • planning
  • process
  • biological organisms, including humans, function in a self-organizing mode internally and externally
  • no central “boss” to control this dynamic activity
  • The purpose of value networks is to create the most benefit for the people involved in the network (5)
    • Tiberius Brastaviceanu
       
      Verna starts with relationships. I think this is wrong. Perceived value and how to get  to it determines the type of relationships we forge with other people with whom we robe shoulders.  
Kurt Laitner

The Promise of the Commons: an Interview with David Bollier - 0 views

  • We need to imagine new forms of governance
  • Because at a local, self-organized level, the commons can perform lots of tasks that governments just aren't doing well because they’re too corrupted or bought off or too centralized and incapable of dealing with diverse, distributed complexity.”
  • “the commons provides for more fairness, it provides for more individual freedom of participation and it provides for a sense of sufficiency for everyone without getting into the consumerist, growth forever syndrome.
Tiberius Brastaviceanu

ThreeFold - 0 views

  •  
    ThreeFold is a peer-to-peer open-source Internet platform that connects users directly with local Internet capacity provided by farmers. No intermediaries such as centralized servers
1 - 20 of 21 Next ›
Showing 20 items per page