Skip to main content

Home/ Sensorica Knowledge/ Group items tagged art

Rss Feed Group items tagged

Kurt Laitner

UK Indymedia - WOS4: The Creative Anti-Commons and the Poverty of Networks - 0 views

  • Something with no reproduction costs can have no exchange-value in a context of free exchange.
  • Further, unless it can be converted into exchange-value, how can the peer producers be able to acquire the material needs for their own subsistence?
  • For Social Production to have any effect on general material wealth it has to operate within the context of a total system of goods and services, where the physical means of production and the virtual means of production are both available in the commons for peer production.
  • ...26 more annotations...
  • "All texts published in Situationist International may be freely reproduced, translated and edited, even without crediting the original source."
  • The website of the creative commons makes the following statement about it's purpose: "Creative Commons defines the spectrum of possibilities between full copyright -- all rights reserved -- and the public domain -- no rights reserved. Our licenses help you keep your copyright while inviting certain uses of your work -- a 'some rights reserved' copyright."
  • The website of the creative commons makes the following statement about it's purpose: "Creative Commons defines the spectrum of possibilities between full copyright -- all rights reserved -- and the public domain -- no rights reserved. Our licenses help you keep your copyright while inviting certain uses of your work -- a 'some rights reserved' copyright."
  • Or more specifically, who is a position to convert the use-value available in the "commons" into the exchange-value needed to acquire essential subsistence or accumulate wealth?
  • All texts published in Situationist International may be freely reproduced, translated and edited, even without crediting the original source
  • The point of the above is clear, the Creative Commons, is to help "you" (the "Producer") to keep control of "your" work. The right of the "consumer" is not mentioned, neither is the division of "producer" and "consumer" disputed.
  • Creative "Commons" is thus really an Anti-Commons, serving to legitimise, rather than deny, Producer-control and serving to enforce, rather than do away with, the distinction between producer and consumer
  • specifically providing a framework then, for "producers" to deny "consumers" the right to either create use-value or material exchange-value of the "common" stock of value in the Creative "Commons" in their own cultural production
  • Thus, the very problem presented by Lawrence Lessig, the problem of Producer-control, is not in anyway solved by the presented solution, the Creative Commons, so long as the producer has the exclusive right to chose the level of freedom to grant the consumer, a right which Lessig has always maintained support for
  • The Free Software foundation, publishers of the GPL, take a very different approach in their definition of "free," insisting on the "four freedoms:" The Freedom to use, the freedom to study, the freedom to share, and the freedom to modify.
  • The website of the creative commons makes the following statement about it's purpose: "Creative Commons defines the spectrum of possibilities between full copyright -- all rights reserved -- and the public domain -- no rights reserved. Our licenses help you keep your copyright while inviting certain uses of your work -- a 'some rights reserved' copyright
  • In all these cases what is evident is that the freedom being insisted upon is the freedom of the consumer to use and produce, not the "freedom" of the producer to control.
  • Moreover, proponents of free cultural must be firm in denying the right of Producer-control and denying the enforcement of distinction between producer and consumer
  • where a class-less community of workers ("peers") produce collaboratively within a property-less ("commons-based") society
  • Clearly, even Marx would agree that the ideal of Communism was commons-based peer production
  • the property in the commons is entirely non-rivalrous property
  • The use-value of this information commons is fantastic
  • However, if commons-based peer-production is limited exclusively to a commons made of digital property with virtual no reproduction costs then how can the use-value produced be translated into exchange-value?
  • Further, unless it can be converted into exchange-value, how can the peer producers be able to acquire the material needs for their own subsistence
  • The root of the problem of poverty does not lay in a lack of culture or information
  • but of direct exploitation of the producing class by the property owning classes
  • The source of poverty is not reproduction costs, but rather extracted economic rents, forcing the producers to accept less than the full product of their labour as their wage by denying them independent access to the means of production
  • So long as commons-based peer-production is applied narrowly to only an information commons, while the capitalist mode of production still dominates the production of material wealth, owners of material property, namely land and capital, will continue to capture the marginal wealth created as a result of the productivity of the information commons.
  • Whatever exchange value is derived from the information commons will always be captured by owners of real property, which lays outside the commons.
  • For Social Production to have any effect on general material wealth it has to operate within the context of a total system of goods and services, where the physical means of production and the virtual means of production are both available in the commons for peer production
  • For free cultural to create a valuable common stock it must destroy the privilege of the producer to control the common stock, and for this common stock to increase the real material wealth of peer producers, the commons must include real property, not just information
  •  
    Strong grasp of the issues, not entirely in agreement on the thesis that the solution is the removal of producer control as this does not support the initiation of an economy, only its ongoing function once established, and the economy is continuously intiating itself, so it is not a one time problem. I do support the notion that producers are in fact none other than consumers of prior art but also that effort is required to remix as much as the magical creation out of nothing. In order to incent this behavior then (or even merely to allow it) the basic scarce needs of the individual must be taken care of. This may be done by ensuring beneficial ownership, but even that suffers from the initiation problem, which the requires us to have a pool of wealth to kickstart the thing by supporting every last person on earth with a basic income - that wealth is in fact available...
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Tiberius Brastaviceanu

Fostering creativity. A model for developing a culture of collective creativity in science - 0 views

  • Scientific progress depends on both conceptual and technological advances, which in turn depend on the creativity of scientists
  • creative processes behind these discoveries rely on mechanisms that are similar across disciplines as diverse as art and science
  • research into the nature of creativity indicates that it depends strongly on the cultural environment
  • ...48 more annotations...
  • create optimal conditions in a research organization with the aim of enhancing the creativity of its scientific staff
  • Creativity has been traditionally associated with art and literature but since the early twentieth century, science has also been regarded as a creative activity
  • Measuring creativity is a challenging task owing to its complex and elusive nature
  • Measurement of brain activity showed that creativity correlates with two brain states: a quiescent, relaxed state corresponding to the inspiration stage, and a much more active state corresponding to the elaboration stage
  • models of creativity
  • have a common feature: they depend on a balance between analytical and synthetic thinking, and usually describe the creative process as a sequence of phases that alternate between these states
  • Most research on creativity has focused on the individual
  • However, more recent studies suggest that creativity also depends strongly on the social and cultural context
  • breakthroughs depended on collaboration and social support
  • social environment in business organizations affects the creativity of their employees
  • Although creative individuals are essential, the strong link with the environment indicates that creativity might be greatly enhanced by generating a culture that supports the creative process.
  • Many of the interviewees repeatedly emphasized three main qualities necessary to be a good scientist: rigorous intellect, the ability to get the job done and the ability to have creative ideas.
  • almost all interviewees characterized their breakthrough moment as an abrupt leap in understanding
  • Although breakthroughs in science depend on such an ‘internal' conceptual shift, they also rely on ‘external' experimental results. However, most interviewees described their breakthroughs as largely internal:
  • Only two scientists expressed the view that their breakthroughs were purely external events, based on the observation of novel data.
  • intuition
  • must be combined with rational thinking to be effective
  • Although the synthesis of a new concept relies on intuition, which is based on subconscious mental processing, it must be subjected to conscious examination and analysis
  • specific mental skills or attitudes
  • ability to make unexpected connections
  • ability to choose relevant possibilities from an infinite set of irrelevant ones
  • interest in the unknown'
  • enjoyment of the creative process
  • stimulation by interacting with colleagues
  • undoubtedly the most crucial trait for creativity, which thrives on the exchange of ideas
  • The majority felt that the individual and the collective are equally important:
  • what interactions are optimal for creativity
  • The majority of interviewees answered that other people provided them with ‘inspiration to do something new'
  • positive feedback after the emergence of a new idea is almost as important as the inspiration that triggered it
  • collective provides the individual with technical expertise
  • Therefore, scientists would value a culture of interaction and mutual inspiration more highly than access to technology, although the latter is essential for their experiments.
  • At the end of the interviews, each scientist was asked to describe the best possible conditions for generating creativity at a research institute.
  • Cross-fertilization is absolutely essential
  • These results indicate strongly that an interactive environment is the single most important factor for stimulating creativity
  • interacting with people doing very different things
  • interacting with colleagues informally
  • interactions within any institution are strongly affected by its organization
  • Several interviewees described ‘an open hierarchy' as an important factor for creativity
  • hierarchy is based on genuine respect because people are great scientists, but at the same time they're very approachable and open towards what you have to say
  • These results suggest that the best conditions for scientific creativity come with a free-flowing hierarchy and a highly developed culture of interaction to guarantee the exchange of ideas and inspiration.
  • Furthermore, interdisciplinary interactions lead to the generation of new and unusual ideas
  • Finally, because of the freedom to try new things, these ideas can be tested and eventually generate new insights.
  • Creativity can be described as an emergent phenomenon
  • nonlinear phenomena
  • Emergence depends on dynamic interactions between individual agents within the system
  • The importance of a ‘freedom to try new things' and a ‘free-flowing hierarchy' further supports the idea that individual components in an emergent system must be able to interact flexibly without central control
  • During the interviews, it became apparent that although a culture of interaction and creativity exists at EMBL, this itself is not often the subject of discussion. The values on which this culture is based are seemingly implicit rather than explicit
  • Potentially, the EMBL culture of interaction could be strengthened further by consciously expressing and discussing the values on which it is based
Tiberius Brastaviceanu

Open Source 3-D Printed Nutating Mixer - Appropedia, the sustainability wiki - 0 views

  •  
    "As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood samples) without foam formation. The custom components for the nutating mixer are designed using open source FreeCAD software to enable customization. All of the non-readily available components can be fabricated with a low-cost RepRap 3-D printer using an open source software tool chain from common thermoplastics. All of the designs are open sourced and can be configured to add more functionality to the equipment in the future. It is relatively easy to assemble and is accessible to both the science education of younger students as well as state-of-the-art research laboratories. Overall, the open source nutating mixer can be fabricated with US$37 in parts, which is 1/10th of the cost of proprietary nutating mixers with similar capabilities. The open source nature of the device allow it to be easily repaired or upgraded with digital files, as well as to accommodate custom sample sizes and mixing velocities with minimal additional costs."
Tiberius Brastaviceanu

P2P Foundation » Blog Archive » Ethical Marketing in Age of Horizontal Social... - 0 views

  • the development of marketing is sensible to its environment and is hence already self-limiting itself according to the previously mentioned legal and social framework
  • neuromarketing
  • explore new inner dynamics of marketing, new directions in the field of possibilities offered by the current organology and its articulations between techniques and social organization in order to influence and shape marketing as an associative force – in opposition to its current dissociative force – in the larger psychic, social and technic organology
  • ...70 more annotations...
  • find new ways of efficiency
  • arbitration between efficiency and care
  • a global thinking of the problem
  • Fighting the attention and desire resource shortage: stoping to use advertisement?
  • The question is rather here to think the moderation of the psychopower
  • empower transindividuation, i.e. to make sure that an economic activity creates more possibilities of individuation than it tend to destroy by attempting to capture attention and canalize motivation in a funnel. Empower transindividuation would imply to empowering actors of their own lifestyle, winning back the savoir-vivre prescribing production
  • Should marketing stop using psychopower?
  • marketing ethics guidelines
  • transactions are more likely to be morally defensible if both parties enter it freely and fully informed
  • the goal of marketing should be to increase the likelihood and frequency of free and informed transactions in the marketplace
  • putting freedom as a criteria of morality
  • the industrial use of pycho- and neuropower tend to fall under the category of barriers to freedom
  • neurotechniques – to capture the attention
  • psychotechniques – to attempt to create motivation
  • Most people think commercials are a small price to pay for these benefits
  • advertising
  • denying the schemes of addiction and the fact that we are becoming through the objects of attentions
  • right to avoid attention capture by advertising
  • progress made in cognitive sciences proving that
  • reward system being abnormally stimulated
  • Advertisements exploit
  • vulnerability and reinforce their overconsumption behaviors
  • “if food advertising on TV were banned, significant reductions in the prevalence of childhood obesity are possible.” (Veerman et al. 2009)
  • What is at stake falls to be much more complex than the sole Freedom of Speech invoked for the advertiser
  • liberty of non-reception
  • would mean to guaranty every citizen the right to choose where and when he wants to access the advertising information
  • Change in the industrial and commercial paradigm
  • Economy of contribution and peer production
  • An economy of contribution means that users of a service are contributing to the production of these services.
  • example
  • is open-source software that are contributively build by potentially hundreds of developers organized in communities
  • minimize the gap between the producer and consumer
  • blur the frontier between professionals and amateurs
  • The Copernican revolution of the Vendor Relationship Management paradigm
  • change in the commercial paradigm, described as an Intention Economy i.e. the opposite of the Attention Economy
  • consumers are charged to express and discuss their intention
  • with businesses rather than the usual paradigm in which businesses where fighting for a piece of canalized motivation
  • Implementing such a system would nevertheless imply that marketing departments dispose of a system in which they could value their supplies and where they could be easily found by customers. Doc Searls promotes his answer to this issue: the Vendor Relationship Management system.
  • the belief that free customers are more valuable than captive ones — to themselves, to vendors, and to the larger economy.
  • To be free
  • 1. Customers must enter relationships with vendors as independent actors.
  • 2. Customers must be the points of integration for their own data.
  • 3. Customers must have control of data they generate and gather. This means they must be able to share data selectively and voluntarily.
  • 4. Customers must be able to assert their own terms of engagement.
  • 5. Customers must be free to express their demands and intentions outside of any one company’s control.
  • This is a profoundly game-changing approach
  • big data that is the rush for consumers’ information potentially leading to the same dead-end of attention destruction and affective saturation than the former offline paradigm
  • VRM system working as a marketplace
  • the goal of marketing should be to increase the likelihood and frequency of free and informed transactions in the marketplace
  • less imperfect and less biased information in a cultural context overvaluing transparency, and a bigger atomicity due to the hereafter introduced trend for re-localized peer production.
  • 3.2.2.3 VRM and externalization of the socialization process
  • Promoting the end of advertisement
  • means to find a new way to make the information circulate, what was the primary goal of advertisement
  • Until there is no alternative to massive advertisement campaign for the information circulation, it is indeed hard to ask entrepreneurs and managers to get rid of those successors of propaganda: such a transition process necessarily imply adaptation costs from the producer and the consumer side, and possible competitive disadvantage against competitors still maximizing profit through advertisement means
  • But the internet transformation of the general organology offers new way to think information circuits and potentially constitute an opportunity to externalize the socialization process of products that is to empower citizen-consumers organized in communities
  • Empowering groups of citizen doesn’t annihilate the risks of mis-use or counterproductive interest-taker behaviors but a well-designed system of trust between peers could minimize this risk by creating a dependency to what social capital other peers give you, as it is happening in the sharing economy: the credibility of a contributive peer would be guaranteed through what the P2P Foundation calls Feedback systems and peer-police
  • a strong structuration of products characteristics, allowing customers to personalize their choices according to their desire and constraints: such a “VRM+” system
  • Marketing would then be the art of being as high as possible in this ranking, as it is happening in SEO for search engines, but in this context of criteria explosion, marketing would then be the disciple of listening to customers’ wishes and aspiration needing an attention, in order to kick in the production or to adapt the following series.
  • 3.2.2.4 Toward a possible equi-power
  • Such a system would tremendously re-configure the balance of power and tend toward a form of equi-power i.e. a social organization in which abuses of a “big” would be the potential object of a ranking sanction by the peers
  • self-regulative function
  • a form of economic Darwinism would let to conscious organization the right to curve their path toward a durable configuration in accordance with the social ecosystem.
  • the idea of equi-power is a form of homogenization of the social matter, in which the distortions in the balance of power would be compensated by the gathering of small forces sharing a common interest
  • Such a sanction systems, if successfully implemented, would make value-destructing businesses progressively decline and hopefully bankrupt,
  • long-term valuable strategic choice
  • long term satisfyingly high ranking
  • It would be utopic to think that the “being cool” marketing
  • would disappear, but marketers would have to make those two objectives compose together.
  • This social capital contagion is nevertheless a tool that would need to be controlled in its form of violence by extensive testings and iterations with forms of protections for the smallest peers, that is to say to keep this form of social violence to institutionalized, classic forms of businesses, clearly beyond the line of what should be acceptable in the global village.
  • the goal is here to create an artificial form of majority that is a self-censuring responsible behavior of corporations
Francois Bergeron

A model for device development | Researchers at the Stanford University Program in Biod... - 2 views

  • clinical need.
  • estimated market size and clinical impact associated with each.
  • prior art related
  • ...4 more annotations...
  • barriers to further development exist from an intellectual property perspective
  • Inventors must also determine if they are in a position to efficiently seize the market opportunity.
  • regulatory considerations, reimbursement strategies, intellectual property, and business development objectives. This leads to Phase I of the development model.
  • R&D in Phase II is responsible for generating early concepts. Brainstorming sessions are often held during this stage of development with members of R&D, marketing, and physician consultants. Computational analyses, such as stress and flow studies, are conducted to further understand the behavior of a proposed device. The team often develops a 3D CAD model of a proposed device
  •  
    medical device development steps
sebastianklemm

DOEN Foundation - 1 views

  •  
    The DOEN Foundation supports pioneers who work hard to establish a greener, more socially-inclusive, and more creative society, in which: > the capacity of the planet is the starting point (green); > everybody can participate, where people work together and help each other with respect for individual needs and possibilities (socially inclusive); > art and culture are at the heart in the belief that society can not do without (creative). The DOEN Foundation supports initiatives that focus on one of these three themes. Within these themes, we work with programs which specify the type of initiatives we support.
Tiberius Brastaviceanu

Business models for Open Hardware - 1 views

  • guidelines for the development and evaluation of licenses for Open Source Hardware
  • Open Hardware is “a term for tangible artifacts — machines, devices, or other physical things — whose design has been released to the public in such a way that anyone can make, modify, distribute, and use those things“.
  • Open Hardware is derivative: here a fork is the rule, not the exception.
  • ...35 more annotations...
  • hardware hacking community
  • overviews of Open Hardware can be found on Make Magazine’s Blog, MIT Technology Review, Computerworld, O’Reilly Radar.
  • Lists of existing Open Hardware projects can be found on the GOpen Hardware 2009 website, on the P2P Foundation website (here and here), on Make Magazine’s Blog, Open Innovation Projects and Open Knowledge Foundation.
  • 4 possible levels of Openness in Open Hardware projects,
  • by SparkFun Electronics (USA)
  • Open Interface
  • Open Design
  • Open Implementation
  • Arduino
  • most popular Open Hardware project
  • open-source electronics prototyping platform based on flexible, easy-to-use hardware and software
  • ommercially produced
  • Most of Arduino official boards are manufactured by SmartProjects in Italy.
  • Arduino brand name
  • Gravitech (USA).
  • starting point
  • Closed
  • ecosystem
  • community
  • mature and simple
  • Creative Commons license
  • produce
  • redesign
  • sell boards
  • you just have to credit the original Arduino group and use the same CC license
  • without paying a license fee or even ask permission
  • the name Arduino
  • is trademarked
  • cheap and durable enough
  • two different business model
  • sharing open hardware to sell expertise, knowledge and custom services and projects around it;
  • hardware is becoming a commodity
  • selling the hardware but trying to keep ahead of competition with better products
  • companies that are selling open source hardware
  • the open source hardware community to reach $ 1 billion by 2015
1 - 15 of 15
Showing 20 items per page