Skip to main content

Home/ Sensorica Knowledge/ Group items tagged research tools

Rss Feed Group items tagged

Tiberius Brastaviceanu

Collaborations: The rise of research networks : Nature : Nature Publishing Group - 0 views

  • Co-authorship has been increasing inexorably3, 4. Recently it has exploded.
  • Collaboration is normally a good thing from a wider public perspective. Knowledge is better transferred and combined by collaboration, and co-authored papers tend to be cited more frequently
  • The first paper with 1,000 authors was published in 2004
  • ...33 more annotations...
  • a paper with 3,000 authors came in 2008
  • By last year, a total of 120 physics papers had more than 1,000 authors and 44 had more than 3,000
  • independent contributions to joint efforts, usually in the form of data, that involve only weak intellectual interaction
  • Papers with hundreds of co-authors contribute to the apparent pervasiveness of collaboration between countries.
  • Consequently, distinguishing Malta's own science performance is already impossible. This blurring of national distinctiveness could be a growing issue.
  • The rapid growth of each nation's research base and regional links, driven by relatively strong economies investing in innovation, will undoubtedly produce a regional research labour force to be reckoned with by 2020
  • China's rapid growth since 2000 is leading to closer research collaboration with Japan
  • Taiwan
  • South Korea
  • Australia
  • Asia-Pacific region
  • India has a growing research network with Japan, South Korea and Taiwan, although it is not as frequent a collaborator with China as one might expect
  • Middle East, Egypt and Saudi Arabia have a strong research partnership that is drawing in neighbours including Tunisia and Algeria.
  • Latin America has an emerging research network focused around Brazil,
  • has doubled its collaboration with Argentina, Chile and Mexico in the past five years
  • Africa has three distinct networks: in southern Africa, in French-speaking countries in West Africa and in English-speaking nations in East Africa.
  • proximity is just one of several factors in networks
  • use paths of least resistance to partnership, rather than routes that might provide other strategic gains
  • Commonwealth countries
  • have adopted similar research structures
  • Students
  • proximity
  • lower cost of living
  • generous government scholarships
  • Job opportunities
  • countries in science's old guard must drop their patrician tendencies, open up clear communication channels and join in with new alliances as equal participants before they find themselves the supplicants.
  • Collaboration between the public and private sectors has become more apparent because of government interest in exploiting research for economic competitiveness. Some data show that industrial investment in research seems to be dropping — perhaps a reaction to the recession, but the trend seems to be long term, at least in the United Kingdom9
  • Incentives for collaborative innovation investment that draws directly on the science base would be a good start.
  • So what are the costs and benefits of collaboration? It provides access to resources, including funding, facilities and ideas. It will be essential for grand challenges in physics, environment and health to have large, international teams supported by major facilities and rich data, which encourage the rapid spread of knowledge.
  • Research networks are a tool of international diplomacy.
  • As for costs, collaboration takes time and travel and means a shared agenda
  • The risk is that international, national and institutional agendas may become driven by the same bland establishment consensus.
  • The iconoclastic, the maverick and the marginal may find a highly collaborative world a difficult place to flourish
  •  
    "Co-authorship has been increasing inexorably3, 4. Recently it has exploded."
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Francois Bergeron

Cell Tester Opens the Window of Discovery | Product Information | Articles - 0 views

  • Written by Lisa J Fulghum    Physiologic Mechanisms in Cardiac Myocytes and Skeletal Muscle Cells The revolutionary Cell Tester SI-CTS200 is a new research tool for cellular investiga
  • The revolutionary Cell Tester SI-CTS200 is a new research tool for cellular investigation that can (without any changes) be used for one single living cell, for a small multi-cellular preparation and for single or larger skinned muscle strip preparations. Translational experiments from the single living cells to the intact multi-cellular level can be accomplished.
  • The Cell Tester offers: Integral microtweezer apparatus that facilitates cellular attachment Two integrated piezo manipulators are included Bio-compatible adhesive (MyoTak™) included Unique rotational stage that allows for easy cellular alignment, improved experimental throughput (shown in the image above) Ultra-quiet force transducer included Linear displacement motor stretches or compresses cells with 25nm precision Fits ANY inverted microscope Use native cuvette or ANY 35mm glass bottom dish
  •  
    The revolutionary Cell Tester SI-CTS200 is a new research tool
Tiberius Brastaviceanu

INSO-5-2015 - 0 views

  • Scope:  The scope is that of creating a Community, involving social innovators, researchers, citizens, policy makers, which will bring together on the one hand research actions and results and on the other implementation actions, new initiatives, and policy developments.
  • help promote social innovation initiatives
  • increase relevance of policies and actions
  • ...13 more annotations...
  • development of a common understanding
  • evidence and methodologies that contribute to social innovation up-scaling
  • This does not concern only European but also international developments.
  • Such a social innovation community could be seen also as a “network of networks”.
  • Activities should include:
  • rganisation of brokerage events to enhance the networking
  • information and awareness activities t
  • design strategies/activities for ensuring the best possible use of the research results
  • the organisation of events aimed at identifying priorities for collaboration
  • supporting grassroots experiments, replication, incubation and policy uptake of research results
  • setting up of a network of 'Local Facilitators' for a better dissemination and uptake at all levels.
  • EUR 3 million
  • enable convergence towards a common understanding of social innovation as a tool and outcome.
  •  
    "Topic: Social innovation Community INSO-5-2015"
Steve Bosserman

Scientist beams up a real Star Trek tricorder | Reuters - 1 views

  •  
    While it may sound like the stuff of science fiction, Jansen isn't the only one to take notice of just how useful a real functioning tricorder would be - especially as a medical tool. Telecommunications giant Qualcomm Inc this year launched the "Tricorder X-Prize Contest" with the slogan "Healthcare in the palm of your hand." Qualcomm hopes to motivate developers with a $10 million prize to make medical tricorders a reality. Wanda Moebus of the Advanced Medical Technology Association, who is not affiliated with Jansen or Qualcomm, told Reuters the X-Prize "is really cool," but cautioned that making a real medical tricorder device "would have to be measured on its safety and effect, like all other medical technologies." Jansen said he has been approached by "a couple of teams" about the X Prize, but added that his prototypes are more for science research than medical tools. Besides, he said he already is on to his next frontier, making a sort of "replicator," another "Star Trek" device that will create 3D objects and foods that are dimensional copies of real items. Jansen's "replicator" is a 3D printer, which in itself is not really new, but the scientist thinks about it in terms reminiscent of "Star Trek's" famous prologue. It's "like nothing we've ever seen before," Jansen said.
Tiberius Brastaviceanu

Density Design | Fineo - 1 views

  •  
    DensityDesign develops research projects in the domain of visual representation, stemming from a design perspective. Our research interests include theoretical and epistemological reflections on visualizations and analyses of their cognitive underpinnings, in addition to the development of large frameworks for data visualization and ad-hoc solutions for speculative narration. We adopt an open approach to visualization, working from visual storytelling to visual analytics. Design is, thus, treated more like a proper language than a tool. We use this language in practice to define a new-visual-epistemology.
Tiberius Brastaviceanu

Is Shame Necessary? | Conversation | Edge - 0 views

  • What is shame's purpose? Is shame still necessary?
  • Shame is what is supposed to occur after an individual fails to cooperate with the group.
  • Whereas guilt is evoked by an individual's standards, shame is the result of group standards. Therefore, shame, unlike guilt, is felt only in the context of other people.
  • ...53 more annotations...
  • Many animals use visual observations to decide whether to work with others.
  • humans are more cooperative when they sense they're being watched.
  • The feeling of being watched enhances cooperation, and so does the ability to watch others. To try to know what others are doing is a fundamental part of being human
  • Shame serves as a warning to adhere to group standards or be prepared for peer punishment. Many individualistic societies, however, have migrated away from peer punishment toward a third-party penal system
  • Shame has become less relevant in societies where taking the law into one's own hands is viewed as a breach of civility.
  • Many problems, like most concerning the environment, are group problems. Perhaps to solve these problems we need a group emotion. Maybe we need shame.
  • Guilt prevails in many social dilemmas
  • It is perhaps unsurprising that a set of tools has emerged to assuage this guilt
  • Guilt abounds in many situations where conservation is an issue.
  • The problem is that environmental guilt, though it may well lead to conspicuous ecoproducts, does not seem to elicit conspicuous results.
  • The positive effect of idealistic consumers does exist, but it is masked by the rising demand and numbers of other consumers.
  • Guilt is a valuable emotion, but it is felt by individuals and therefore motivates only individuals. Another drawback is that guilt is triggered by an existing value within an individual. If the value does not exist, there is no guilt and hence no action
  • Getting rid of shaming seems like a pretty good thing, especially in regulating individual behavior that does no harm to others. In eschewing public shaming, society has begun to rely more heavily on individual feelings of guilt to enhance cooperation.
  • five thousand years ago, there arose another tool: writing
  • Judges in various states issue shaming punishments,
  • shaming by the state conflicts with the law's obligation to protect citizens from insults to their dignity.
  • What if government is not involved in the shaming?
  • Is this a fair use of shaming? Is it effective?
  • Shaming might work to change behavior in these cases, but in a world of urgent, large-scale problems, changing individual behavior is insignificant
  • vertical agitation
  • Guilt cannot work at the institutional level, since it is evoked by individual scruples, which vary widely
  • But shame is not evoked by scruples alone; since it's a public sentiment, it also affects reputation, which is important to an institution.
  • corporate brand reputation outranked financial performance as the most important measure of success
  • shame and reputation interact
  • in our early evolution we could gauge cooperation only firsthand
  • Shaming, as noted, is unwelcome in regulating personal conduct that doesn't harm others. But what about shaming conduct that does harm others?
  • why we learned to speak.1
  • Language
  • The need to accommodate the increasing number of social connections and monitor one another could be
  • allowed for gossip, a vector of social information.
  • in cooperation games that allowed players to gossip about one another's performance, positive gossip resulted in higher cooperation.
  • Of even greater interest, gossip affected the players' perceptions of others even when they had access to firsthand information.
  • Human society today is so big that its dimensions have outgrown our brains.
  • What tool could help us gossip in a group this size?
  • We can use computers to simulate some of the intimacy of tribal life, but we need humans to evoke the shame that leads to cooperation. The emergence of new tools— language, writing, the Internet—cannot completely replace the eyes. Face-to-face interactions, such as those outside Trader Joe's stores, are still the most impressive form of dissent.
  • what is stopping shame from catalyzing social change? I see three main drawbacks:
  • Today's world is rife with ephemeral, or "one-off," interactions.
  • Research shows, however, that if people know they will interact again, cooperation improves
  • Shame works better if the potential for future interaction is high
  • In a world of one-off interactions, we can try to compensate for anonymity with an image score,
  • which sends a signal to the group about an individual's or institution's degree of cooperation.
  • Today's world allows for amorphous identities
  • It's hard to keep track of who cooperates and who doesn't, especially if it's institutions you're monitoring
  • Shaming's biggest drawback is its insufficiency.
  • Some people have no shame
  • shame does not always encourage cooperation from players who are least cooperative
  • a certain fraction of a given population will always behave shamelessly
  • if the payoff is high enough
  • There was even speculation that publishing individual bankers' bonuses would lead to banker jealousy, not shame
  • shame is not enough to catalyze major social change
  • This is why punishment remains imperative.
  • Even if shaming were enough to bring the behavior of most people into line, governments need a system of punishment to protect the group from the least cooperative players.
  • Today we are faced with the additional challenge of balancing human interests and the interests of nonhuman life.
  •  
    The role of non-rational mechanisms in convergence - social emotions like shame and guilt 
Kurt Laitner

Stanford scientists put free text-analysis tool on the web | Engineering - 1 views

  •  
    Perhaps useful tool
Tiberius Brastaviceanu

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Eme... - 1 views

  • how technological innovation is restructuring productivity and the social and economic impact resulting from these changes
  • concern about the technological displacement of jobs, stagnant middle class income, and wealth disparities in an emerging "winner-take-all" economy
  • personal data ecosystems that could potentially unlock a revolutionary wave of individual economic empowerment
  • ...70 more annotations...
  • the bell curve described the wealth and income distribution of American society
  • As the technology boom of the 1990s increased productivity, many assumed that the rising water level of the economy was raising all those middle class boats. But a different phenomenon has also occurred. The wealthy have gained substantially over the past two decades while the middle class has remained stagnant in real income, and the poor are simply poorer.
  • America is turning into a power-curve society: one where there are a relative few at the top and a gradually declining curve with a long tail of relatively poorer people.
  • For the first time since the end of World War II, the middle class is apparently doing worse, not better, than previous generations.
  • an alarming trend
  • What is the role of technology in these developments?
  • a sweeping look at the relationship between innovation and productivity
  • New Economy of Personal Information
  • Power-Curve Society
  • the future of jobs
  • the report covers the social, policy and leadership implications of the “Power-Curve Society,”
  • World Wide Web
  • as businesses struggle to come to terms with this revolution, a new set of structural innovations is washing over businesses, organizations and government, forcing near-constant adaptation and change. It is no exaggeration to say that the explosion of innovative technologies and their dense interconnections is inventing a new kind of economy.
  • the new technologies are clearly driving economic growth and higher productivity, the distribution of these benefits is skewed in worrisome ways.
  • the networked economy seems to be producing a “power-curve” distribution, sometimes known as a “winner-take-all” economy
  • Economic and social insecurity is widespread.
  • major component of this new economy, Big Data, and the coming personal data revolution fomenting beneath it that seeks to put individuals, and not companies or governments, at the forefront. Companies in the power-curve economy rely heavily on big databases of personal information to improve their marketing, product design, and corporate strategies. The unanswered question is whether the multiplying reservoirs of personal data will be used to benefit individuals as consumers and citizens, or whether large Internet companies will control and monetize Big Data for their private gain.
  • Why are winner-take-all dynamics so powerful?
  • appear to be eroding the economic security of the middle class
  • A special concern is whether information and communications technologies are actually eliminating more jobs than they are creating—and in what countries and occupations.
  • How is the power-curve economy opening up opportunities or shutting them down?
  • Is it polarizing income and wealth distributions? How is it changing the nature of work and traditional organizations and altering family and personal life?
  • many observers fear a wave of social and political disruption if a society’s basic commitments to fairness, individual opportunity and democratic values cannot be honored
  • what role government should play in balancing these sometimes-conflicting priorities. How might educational policies, research and development, and immigration policies need to be altered?
  • The Innovation Economy
  • Conventional economics says that progress comes from new infusions of capital, whether financial, physical or human. But those are not necessarily the things that drive innovation
  • What drives innovation are new tools and then the use of those new tools in new ways.”
  • at least 50 percent of the acceleration of productivity over these years has been due to ICT
  • economists have developed a number of proxy metrics for innovation, such as research and development expenditures.
  • Atkinson believes that economists both underestimate and overestimate the scale and scope of innovation.
  • Calculating the magnitude of innovation is also difficult because many innovations now require less capital than they did previously.
  • Others scholars
  • see innovation as going in cycles, not steady trajectories.
  • A conventional approach is to see innovation as a linear, exponential phenomenon
  • leads to gross errors
  • Atkinson
  • believes that technological innovation follows the path of an “S-curve,” with a gradual increase accelerating to a rapid, steep increase, before it levels out at a higher level. One implication of this pattern, he said, is that “you maximize the ability to improve technology as it becomes more diffused.” This helps explain why it can take several decades to unlock the full productive potential of an innovation.
  • innovation keeps getting harder. It was pretty easy to invent stuff in your garage back in 1895. But the technical and scientific challenges today are huge.”
  • costs of innovation have plummeted, making it far easier and cheaper for more people to launch their own startup businesses and pursue their unconventional ideas
  • innovation costs are plummeting
  • Atkinson conceded such cost-efficiencies, but wonders if “the real question is that problems are getting more complicated more quickly than the solutions that might enable them.
  • we may need to parse the different stages of innovation: “The cost of innovation generally hasn’t dropped,” he argued. “What has become less expensive is the replication and diffusion of innovation.”
  • what is meant by “innovation,”
  • “invention plus implementation.”
  • A lot of barriers to innovation can be found in the lack of financing, organizational support systems, regulation and public policies.
  • 90 percent of innovation costs involve organizational capital,”
  • there is a serious mismatch between the pace of innovation unleashed by Moore’s Law and our institutional and social capacity to adapt.
  • This raises the question of whether old institutions can adapt—or whether innovation will therefore arise through other channels entirely. “Existing institutions are often run by followers of conventional wisdom,”
  • The best way to identify new sources of innovation, as Arizona State University President Michael Crow has advised, is to “go to the edge and ignore the center.”
  • Paradoxically, one of the most potent barriers to innovation is the accelerating pace of innovation itself.
  • Institutions and social practice cannot keep up with the constant waves of new technologies
  • “We are moving into an era of constant instability,”
  • “and the half-life of a skill today is about five years.”
  • Part of the problem, he continued, is that our economy is based on “push-based models” in which we try to build systems for scalable efficiencies, which in turn demands predictability.
  • The real challenge is how to achieve radical institutional innovations that prepare us to live in periods of constant two- or three-year cycles of change. We have to be able to pick up new ideas all the time.”
  • pace of innovation is a major story in our economy today.
  • The App Economy consists of a core company that creates and maintains a platform (such as Blackberry, Facebook or the iPhone), which in turn spawns an ecosystem of big and small companies that produce apps and/or mobile devices for that platform
  • tied this success back to the open, innovative infrastructure and competition in the U.S. for mobile devices
  • standard
  • The App Economy illustrates the rapid, fluid speed of innovation in a networked environment
  • crowdsourcing model
  • winning submissions are
  • globally distributed in an absolute sense
  • problem-solving is a global, Long Tail phenomenon
  • As a technical matter, then, many of the legacy barriers to innovation are falling.
  • small businesses are becoming more comfortable using such systems to improve their marketing and lower their costs; and, vast new pools of personal data are becoming extremely useful in sharpening business strategies and marketing.
  • Another great boost to innovation in some business sectors is the ability to forge ahead without advance permission or regulation,
  • “In bio-fabs, for example, it’s not the cost of innovation that is high, it’s the cost of regulation,”
  • This notion of “permissionless innovation” is crucial,
  • “In Europe and China, the law holds that unless something is explicitly permitted, it is prohibited. But in the U.S., where common law rather than Continental law prevails, it’s the opposite
Tiberius Brastaviceanu

Open Source 3-D Printed Nutating Mixer - Appropedia, the sustainability wiki - 0 views

  •  
    "As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood samples) without foam formation. The custom components for the nutating mixer are designed using open source FreeCAD software to enable customization. All of the non-readily available components can be fabricated with a low-cost RepRap 3-D printer using an open source software tool chain from common thermoplastics. All of the designs are open sourced and can be configured to add more functionality to the equipment in the future. It is relatively easy to assemble and is accessible to both the science education of younger students as well as state-of-the-art research laboratories. Overall, the open source nutating mixer can be fabricated with US$37 in parts, which is 1/10th of the cost of proprietary nutating mixers with similar capabilities. The open source nature of the device allow it to be easily repaired or upgraded with digital files, as well as to accommodate custom sample sizes and mixing velocities with minimal additional costs."
Kurt Laitner

The Energy Efficiency of Trust & Vulnerability: A Conversation | Switch and Shift - 0 views

  • trusting people because of who they are personally vs. who they are professionally
  • also need to trust systems
  • our own resources
  • ...34 more annotations...
  • How much we need to trust others depends on the context,
  • how much we trust ourselves,
  • our ability to understand the context we are in
  • When we trust, we re-allocate that energy and time to getting things done and making an impact
  • the more information and/or experience we have, the better we can decide whether or not to trust
  • Trust is a tool to assess and manage (reduce and/or increase) risk, depending on the situation.
  • Trusting someone implies making oneself more vulnerable
  • When we don’t trust, we exert a lot of energy to keep up our guard, to continually assess and verify.  This uses a lot of energy and time.
  • If the alternative is worse, we might opt for no trust
  • As we let ourselves be vulnerable, we also leave ourselves more open to new ideas, new ways of thinking which leads to empathy and innovation.
  • the more we can focus on the scope and achievement of our goals
  • trusting is efficient….and effective
  • Being vulnerable is a way to preserve energy
  • It lets us reallocate our resources to what matters and utilize our skills and those around us to increase effectiveness…impact.
  • If we are working together, we need to agree on the meaning of ‘done’.  When are we done, what does that look like?
  • “Control is for Beginners”
  • Strategic sloppiness is a way to preserve energy
  • Build on the same shared mental models
  • use the same language
  • As the ability to replicate something has become more of a commodity, we are increasingly seeing that complex interactions are the way to create ‘value from difference’ (as opposed to ‘value from sameness’).
  • allow for larger margins of error in our response and our acceptance of others
  • higher perfection slows down the tempo
  • We can’t minimize the need to be effective.
  • Efficient systems are great at dealing with complicated things – things that have many parts and sequences, but they fall flat dealing with complex systems, which is most of world today.
  • make sure we hear and see the same thing (reduce buffers around our response)
  • timing
  • intuition
  • judgment
  • experience
  • ability to look at things from many different perspective
  • to discover, uncover, understand and empathize is critical
  • focus on meaning and purpose for work (outcomes) instead of just money and profit (outputs)
  • When we have a common goal of WHY we want to do something, we are better able to trust
  • When we never do the same thing or have the same conversation twice, it becomes much more important to figure out why and what we do than how we do it (process, which is a given)
  •  
    spot on conversation on *trust, I see creating a trustful environment quickly among strangers as a key capability of an OVN, we need to quickly get past the need to protect and verify and move on to making purpose and goals happen
Kurt Laitner

Value Creating Service Systems: From Service Systems to Digital Lives - 0 views

  •  
    "Service dominant logic suggest that value is always co-created in context of use and experience. Co-creation is not an option (Vargo and Lusch, 2004, 2008). "Moving things along meant a focus on 2 key aspects. philosophy and methods. "An SD logic approach is not one that you can run a survey of attitude, behaviours or intentions. The person is embedded in his actions and practices of value creation. The focus on context means the unit of analysis is in the sociology of real life behaviours. A sociological approach makes methods a problem because we've inherited a world where we have created tools from analysing water in a bucket, not by looking at its behaviour in a river. "GD logic is compelling not only because it is entrenched for over 500 years, but also because you could measure its constructs. GDP, sales, revenues, CPI - they are all constructs of a GD logic society. What SD logic needed was better methods and new constructs. "To that end, and rather ironically, I found an ally in digital technology. Here was a world of sensors and actuators with an enthusiastic community looking for novel ways of deploying them into homes and buildings i.e. the internet-of-things. "I also found, as an ally, the thinking around new economic and business models. Here was another strand of literature largely marginalised by mainstream business literature because it was (the way I interpreted it) taking a systemic view of value proposition, value creation and value capture (ie, change one, change all) and the way the organisation had to be agile and transformed for it - which sat very nicely with SD logic. "Customised products are firm centric. Personalised products are customer initiated and empowering. Personalised products also tend to move the product into becoming platforms to afford co-creation, which advanced the notion of symmetry in value co-creation further. Finally, with the advent of platforms, the economics of 2 or multi-sided markets completed my set of theoretica
  •  
    an interesting starting point for research
1 - 16 of 16
Showing 20 items per page