Skip to main content

Home/ Science Technology Society/ Group items tagged two

Rss Feed Group items tagged

Todd Suomela

Amateur Science and the Rise of Big Science | Citizen Scientists League - 0 views

  • Several trends came together to increase the professional nature of scientific work. First was the increasing cost of scientific work and its complexity. Scientific equipment became more precise and expensive. Telescopes, like those by Herschel, became bigger and bigger. Also, the amount of knowledge one needed to gain to contribute became increasingly daunting.
  • Second, the universities changed. Pioneered by the German states, which at the beginning of the 19th century was dismissed as a scientific backwater, universities began offering focused majors which trained students in a specific discipline rather than classical education as a whole. This was pioneered by Wilhelm von Humboldt, brother of the famous scientist Alexander von Humboldt, who was the Prussian Minister of Education.
  • Germany, once united, also provided impetus to two other trends that accelerated their dominance of science and the decline of amateurs. First, was the beginning of large-scale state sponsorship of science through grants which were first facilitated through the Kaiser Wilhelm Institute (now the Max Planck Institute). This eventually supplanted prizes as the dominant large-scale source of scientific funding. Countries like France that relied on prizes began to fall behind. Second, was the intimate cooperation between industrial firms like BASF and universities.
  • ...1 more annotation...
  • he final nail in the coffin was undoubtedly the Second World War. The massive mobilization of scientific resources needed to win and the discovery of war-winning inventions such as the atomic bomb and self-correcting bomb sight (with help from Norbert Wiener of MIT) convinced the nations of the world that the future was in large-scale funding and support of science as a continuous effort. Vannevar Bush, former president of MIT, and others pioneered the National Science Foundation and the military also invested heavily in its own research centers. Industrial labs such as those from Bell Labs, GE, Kodak, and others began dominating research as well. Interestingly, the first military investment in semiconductors coupled with research from Bell Labs led to what is now known as Silicon Valley.
Todd Suomela

PLoS ONE: A Demonstration of the Transition from Ready-to-Hand to Unready-to-Hand - 1 views

  • In Chapter III of Being and Time, Heidegger distinguishes three modes of experiencing the world. Most human activity, Heidegger argued, is absorbed, skillful engagement with entities in the world. When we are coping skillfully with the world, we experience entities around us as ready-to-hand.
  • Heidegger argues that skilled coping, when we engage with entities as ready-to-hand, is our primary way of engaging with the world. Sometimes, though, our skillful coping is temporarily disturbed. When this happens, we encounter entities as unready-to-hand. When we go from smoothly hammering to having difficulty, our experience of the previously ready-to-hand entities changes: we experience the hammer, nails and board as failing to serve their function appropriately.
  • Heidegger's third way of experiencing the world is as present-at-hand. The hammer is encountered as present-at-hand when we stop hammering and consider the hammer's shape or color or weight; when considered this way the hammer is no longer a useful tool but merely an object with various properties. Heidegger argued that readiness-to-hand is primary in two ways. First, the majority of our experience of the world is engaging with entities ready-to-hand. Second, readiness-to-hand is, from a phenomenological standpoint, ontologically primary while the other modes are derivative of it.
Todd Suomela

The Technium: Chosen, Inevitable, and Contingent - 0 views

  • There are two senses of "inevitable" when used with technology. In the first case, an invention merely has to exist once. In that sense, every technology is inevitable because sooner or later some mad tinkerer will cobble together almost anything that can be cobbled together. Jetpacks, underwater homes, glow-in-the-dark cats, forgetting pills — in the goodness of time every invention will inevitably be conjured up as a prototype or demo. And since simultaneous invention is the rule not the exception, any invention that can be invented will be invented more than once. But few will be widely adopted. Most won't work very well. Or more commonly they will work but be unwanted. So in this trivial sense, all technology is inevitable. Rewind the tape of time and it will be re-invented. The second more substantial sense of "inevitable" demands a level of common acceptance and viability. A technology's use must come to dominate the technium or at least its corner of the technosphere. But more than ubiquity, the inevitable must contain a large-scale momentum, and proceed on its own determination beyond the free choices of several billion humans. It can't be diverted by mere social whims.
‹ Previous 21 - 24 of 24
Showing 20 items per page