Skip to main content

Home/ qmstech2/ Group items tagged free

Rss Feed Group items tagged

5More

Solar power in the United States - Wikipedia, the free encyclopedia - 0 views

  • Solar potential from very large scale solar power plants State Land used (sq mi) Potential (GWp) Annual generation (TWh) Arizona 19,279 2,468 5,837 California 6,853 877 2,075 Colorado 2,124 272 643 Nevada 5,589 715 1,692 New Mexico 15,156 1,940 4,588 Texas 1,162 149 351 Utah 3,564 456 1,079
  • 6,877
  • Total generation in the United States is about 3,800 TWh.[11]
  • ...1 more annotation...
  • ) systems. This was double the 435 MW installed in 2009 around the U.S.[16] According to a 2011 survey conducted by independent polling firm Kelton Research, nine out of 10 Americans support the use and development of solar technology. Eight out of 10 respondents indicated that "the federal government should support solar manufacturing in the U.S. and should give federal subsidies for solar energy".[17] According to the Energy Information Administration, in 2010, subsidies to the solar power industry amounted to 8.2% ($968 million) of all federal subsidies for electricity generation.[18] Solar Energy Industries Association and GTM Research found that the amount of new solar electric capacity increased in 2012 by 76 percent from 2011, raising the United States’ market share of the world’s installations above 10 percent, up from roughly 5 to 7 percent in the last seven years. [19]
  •  
    "Total: 42,554 MW - 76,577 MW, depending on the technology used"
11More

Wave & Tidal Energy Technology | Renewable Northwest Project - 0 views

  • Potential
  • Wave energy resources are best between 30º and 60º latitude in both hemispheres, and the potential tends to be the greatest on western coasts
  • While no commercial wave or tidal projects have yet been developed in the United States, several projects are planned for the near future, including projects in the Northwest
  • ...7 more annotations...
  • ‘Pelamis’ wave energy conversion devices and generates a combined 2.25 MW of electricity. OPD plans to expand the facility to produce 22.5 MW in 2007
  • The United States receives 2,100 terawatt-hours of incident wave energy along its coastlines each year, and tapping just one quarter of this potential could produce as much energy as the entire U.S. hydropower system.
  • Total Annual U.S. Incident Wave Energy 2,110 terrawatt-hours
  • The United States receives 2,100 terawatt-hours of incident wave energy along its coastlines each year, and tapping just one quarter of this potential could produce as much energy as the entire U.S. hydropower system
  • In addition to its abundant solar, wind and geothermal resources, the Pacific Northwest is also uniquely situated to capture the renewable energy of the ocean. Special buoys, turbines, and other technologies can capture the power of waves and tides and convert it into clean, pollution-free electricity. Like other renewable resources, both wave and tidal energy are variable in nature. Waves are produced by winds blowing across the surface of the ocean. However, because waves travel across the ocean, their arrival time at the wave power facility may be more predictable than wind. In contrast, tidal energy, which is driven by the gravitational pull of the moon and sun, is predictable centuries in advance.
  • The United States receives 2,100 terawatt-hours of incident wave energy along its coastlines each year, and tapping just one quarter of this potential could produce as much energy as the entire U.S. hydropower system
  • The Unit
  •  
    the amount of 1/4 of energy around the coasts could be equal to the amount energy produced by hydropower
4More

Group items tagged pollution - qmstech2 | Diigo Groups - 0 views

    • filionmar99
       
      read this
  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • ...1 more annotation...
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
1More

Wind power - Wikipedia, the free encyclopedia - 0 views

  • Sailboats and sailing ships have been using wind power for thousands of years, and architects have used wind-driven natural ventilation in buildings since similarly ancient times. The use of wind to provide mechanical power came somewhat later in antiquity. The windwheel of the Greek engineer Heron of Alexandria in the 1st century AD is the earliest known instance of using a wind-driven wheel to power a machine.[15][16].
4More

Sustainable energy - Wikipedia, the free encyclopedia - 1 views

  • Sustainable energy is the sustainable provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs.
  • Sustainable energy is the sustainable provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs.
  • Sustainable energy is the sustainable provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs. Technologies that promote sustainable energy include renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, and tidal power, and also technologies designed to improve energy efficiency.
  • ...1 more annotation...
  • At this rate, many experts believe that solar energy is not efficient enough to be economically sustainable given the cost to produce the panels themselves.
7More

Tidal power - Wikipedia, the free encyclopedia - 0 views

  • The world's first large-scale tidal power plant (the Rance Tidal Power Station) became operational in 1966.
    • dpurdy
       
      This is a barrage system. Old tech.
  • Tidal power, also called tidal energy, is a form of hydropower that converts the energy of tides into useful forms of power - mainly electricity.
  • Tidal power is extracted from the Earth's oceanic tides; tidal forces are periodic variations in gravitational attraction exerted by celestial bodies
  • ...2 more annotations...
  • Tidal power is the only technology that draws on energy inherent in the orbital characteristics of the Earth–Moon system, and to a lesser extent in the Earth–Sun system.
  • A tidal generator converts the energy of tidal flows into electricity. Greater tidal variation and higher tidal current velocities can dramatically increase the potential of a site for tidal electricity generation
  •  
    "tidal power has potential for future electricity generation. Tides are more predictable than wind energy and solar power."
11More

Wave Energy Pros and Cons - Tidal and Ocean Wave Power Still Niche Technologies | Green... - 2 views

  • Wave Power is quite immature,costly and unproven in large scale. While some companies have made good progress, the technology remains largely unproven and has only been put to actual test in pilot cases.
  • While Wave Energy has been known since the 1700s the progress has been extremely slow.
  • One of the biggest problems of Renewable Power is that it is intermittent in nature as it generates energy only when there are waves. This problem can be solved with energy storage however this leads to additional costs.
  • ...8 more annotations...
  • Severe Weather like Storms and Typhoons can be quite devastating on the Wave Power Equipment especially those place on the Sea Floor.
  • This is a disadvantage which is common to all  the 3 types of Water based Energy that is Tidal, Hydro and Waver Energy. Some forms of Energy are just better suited to some places.
  • Wave Power generate power quite far away from the consumption of electricity. Transportation of Wave Energy can be quite cumbersome and expensive. Some Wave Energy Generators are converting power at the bottom of the ocean or far away from the shoreline. Moving that power towards where it is used can be difficult.
  • The sight of wave generators around the shoreline can look quite ugly and cause loss of tourism potential around shorelines. Also local residents can have problems even with wave power equipment which is not far offshore. The Cape Wind Energy project off the shore of Massachusetts has been delayed by over 10 years as it has drawn serious objections from the owners of coastal homes about loss in their property values.
  • A Wave Power Plant can cost around$6-10 million million to be spent in building 1 Megawatt.
  • Waver Energy does not require any fuel like most other sources of energy
  • Wave Energy is powered by the waves of the ocean which are totally free just like Wind and Sunlight.
  • Wave Energy Generators can be installed in various sizes with as little as 1 MW. This is not possible for other energy forms which require a minimum large size such as Coal, Nuclear etc.
1More

Energy from Wind Power - 0 views

  • Wind energy is a pollution-free, infinitely sustainable form of energy. It doesn’t use fuel; it doesn’t produce greenhouse gasses and it doesn’t produce toxic or radioactive waste.
3More

Photovoltaic power station - Wikipedia, the free encyclopedia - 0 views

  • A photovoltaic power station, also known as a solar park, is a large-scale photovoltaic system designed for the supply of merchant power into the electricity grid. They are differentiated from most building-mounted and other decentralised solar power applications because they supply power at the utility level, rather than to a local user or users. They are sometimes also referred to as solar farms or solar ranches, especially when sited in agricultural areas.
  • Most stations are sited within a few kilometres of a suitable grid connection point. This network needs to be capable of absorbing the output of the solar park when operating at its maximum capacity. The project developer will normally have to absorb the cost of providing powerlines to this point and making the connection; in addition often to any costs associated with upgrading the grid, so it can accommodate the output from the plant.
  • Income is therefore affected not only by the reliability of equipment within the plant, but also by the availability of the grid network to which it is exporting
3More

Hydrogen fuel - Wikipedia, the free encyclopedia - 0 views

  • Because pure hydrogen does not occur naturally, it takes energy to manufacture it. There are different ways to manufacture it, such as, electrolysis and steam-methane reforming process.
  • In electrolysis, electricity is run through water to separate the hydrogen and oxygen atoms. This method can be used by using wind, solar, geothermal, hydro, fossil fuels, biomass, and many other resources.
  • The more natural methods of making electricity (wind, solar, hydro, geothermal, biomass), rather than fossil fuels, would be better used as to continue the environment-friendly process of the fuel. Obtaining hydrogen from this process is being studied as a viable way to produce it domestically at a low cost. Steam-methane reforming process extracts the hydrogen from methane. However, this reaction causes a side production of carbon dioxide and carbon monoxide which are greenhouse gases and contribute to global warming.
2More

Photoelectric effect - Wikipedia, the free encyclopedia - 0 views

  • In the photoelectric effect, electrons are emitted from matter (metals and non-metallic solids, liquids or gases) as a consequence of their absorption of energy from electromagnetic radiation of very short wavelength and high frequency, such as ultraviolet radiation.
  • Light–matter interaction Low-energy phenomena: Photoelectric effect Mid-energy phenomena: Thomson scattering Compton scattering High-energy phenomena: Pair production
1More

Kinetic energy - Wikipedia, the free encyclopedia - 0 views

  • The kinetic energy of an object is the energy which it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body in decelerating from its current speed to a state of rest.
2More

http://ec.europa.eu/research/energy/pdf/hlg_vision_report_en.pdf - 1 views

    • slentzkel99
       
      Report on hydrogen economy potential 
  •  
    Challenges Producing hydrogen in the large quantities necessary for the transport and stationary power markets could become a barrier to progress beyond the initial demonstration phase.  Uses: Fuel cells will be used in a wide range of products, ranging from very small fuel cells in portable devices such as mobile phones and laptops, through mobile applications like cars, delivery vehicles, buses and ships, to heat and power generators in stationary applications in the domestic and industrial sector. Future energy systems will also include improved conventional energy converters running on hydrogen (e.g. internal combustion engines, Stirling engines, and turbines) as well as other energy carriers (e.g. direct heat and electricity from renewable energy, and bio-fuels for transport). 
11More

Wind Energy Basics - 1 views

  • The major challenge to using wind as a source of power is that it is intermittent and does not always blow when electricity is needed. Wind cannot be stored (although wind-generated electricity can be stored, if batteries are used), and not all winds can be harnessed to meet the timing of electricity demands. Further, good wind sites are often located in remote locations far from areas of electric power demand (such as cities).
  • Although wind power plants have relatively little impact on the environment compared to fossil fuel power plants, there is some concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and birds and bats having been killed (avian/bat mortality) by flying into the rotors. Most of these problems have been resolved or greatly reduced through technological development or by properly siting wind plants.
  • A Renewable Non-Polluting Resource Wind energy is a free, renewable resource, so no matter how much is used today, there will still be the same supply in the future. Wind energy is also a source of clean, non-polluting, electricity. Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases. According to the U.S. Department of Energy, in 1990, California's wind power plants offset the emission of more than 2.5 billion pounds of carbon dioxide, and 15 million pounds of other pollutants that would have otherwise been produced. It would take a forest of 90 million to 175 million trees to provide the same air quality.
  • ...7 more annotations...
  • Cost Issues Even though the cost of wind power has decreased dramatically in the past 10 years, the technology requires a higher initial investment than fossil-fueled generators. Roughly 80% of the cost is the machinery, with the balance being site preparation and installation. If wind generating systems are compared with fossil-fueled systems on a "life-cycle" cost basis (counting fuel and operating expenses for the life of the generator), however, wind costs are much more competitive with other generating technologies because there is no fuel to purchase and minimal operating expenses.
    • dpurdy
       
      Good point for how we will need to change in future! To get more wind energy.
  • Wind energy is very abundant in many parts of the United States. Wind resources are characterized by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many locations
  • Wind speed is a critical feature of wind resources,
  • In other words, a stronger wind means a lot more power.
  • Horizontal turbine components include: blade or rotor, which converts the energy in the wind to rotational shaft energy; a drive train, usually including a gearbox and a generator; a tower that supports the rotor and drive train; and other equipment, including controls, electrical cables, ground support equipment, and interconnection equipment. Wind turbine diagram - click for enlarged image.
  • Wind is a form of solar energy. Winds are caused by the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and rotation of the earth. Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover.
  • How Wind Power Is Generated The terms "wind energy" or "wind power" describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power.
4More

Wind - Wikipedia, the free encyclopedia - 0 views

shared by dynesbri97 on 13 Mar 12 - Cached
  • Wind is the flow of gases on a large scale. On Earth, wind consists of the bulk movement of air. In outer space, solar wind is the movement of gases or charged particles from the sun through space, while planetary wind is the outgassing of light chemical elements from a planet's atmosphere into space. Winds are commonly classified by their spatial scale, their speed, the types of forces that cause them, the regions in which they occur, and their effect. The strongest observed winds on a planet in our solar system occur on Neptune and Saturn.
  • Winds can shape landforms, via a variety of aeolian processes such as the formation of fertile soils, such as loess, and by erosion. Dust from large deserts can be moved great distances from its source region by the prevailing winds; winds that are accelerated by rough topography and associated with dust outbreaks have been assigned regional names in various parts of the world because of their significant effects on those regions. Wind affects the spread of wildfires. Winds disperse seeds from various plants, enabling the survival and dispersal of those plant species, as well as flying insect populations. When combined with cold temperatures, wind has a negative impact on livestock. Wind affects animals' food stores, as well as their hunting and defensive strategies.
  • Wind is caused by differences in pressure. When a difference in pressure exists, the air is accelerated from higher to lower pressure. On a rotating planet, the air will be deflected by the Coriolis effect, except exactly on the equator. Globally, the two major driving factors of large-scale winds (the atmospheric circulation) are the differential heating between the equator and the poles (difference in absorption of solar energy leading to buoyancy forces) and the rotation of the planet. Outside the tropics and aloft from frictional effects of the surface, the large-scale winds tend to approach geostrophic balance. Near the Earth's surface, friction causes the wind to be slower than it would be otherwise. Surface friction also causes winds to blow more inward into low pressure areas.
  • ...1 more annotation...
  • [hide]General wind classifications Tropical cyclone classifications (all winds are 10-minute averages) Beaufort scale[17] 10-minute sustained winds (knots) General term[20] N Indian Ocean IMD SW Indian Ocean MF Australian region South Pacific BoM, BMKG, FMS, MSNZ NW Pacific JMA NW Pacific JTWC NE Pacific & N Atlantic NHC & CPHC 0 <1 Calm Low Pressure Area Tropical disturbance Tropical low Tropical Depression Tropical depression Tropical depression Tropical depression 1 1–3 Light air 2 4–6 Light breeze 3 7–10 Gentle breeze 4 11–16 Moderate breeze 5 17–21 Fresh breeze Depression 6 22–27 Strong breeze 7 28–29 Moderate gale Deep depression Tropical depression 30–33 8 34–40 Fresh gale Cyclonic storm Moderate tropical storm Tropical cyclone (1) Tropical storm Tropical storm Tropical storm 9 41–47 Strong gale 10 48–55 Whole gale Severe cyclonic storm Severe tropical storm Tropical cyclone (2) Severe tropical storm 11 56–63 Storm 12 64–72 Hurricane Very severe cyclonic storm Tropical cyclone Severe tropical cyclone (3) Typhoon Typhoon Hurricane (1) 13 73–85 Hurricane (2) 14 86–89 Severe tropical cyclone (4) Major hurricane (3) 15 90–99 Intense tropical cyclone 16 100–106 Major hurricane (4) 17 107–114 Severe tropical cyclone (5) 115–119 Very intense tropical cyclone Super typhoon >120 Super cyclonic storm Major hurricane (5)
9More

Solar panel - Wikipedia, the free encyclopedia - 0 views

  • so solar module, photovoltaic module or photovoltaic panel
  • photovoltaic cells
  • arger photovoltaic system to generate and supply electricity in commercial and residential applications. Because a single solar panel can produce only a limited amount of power, many installations contain several panels.
  • ...5 more annotations...
  • Third generation solar cells are advanced thin-film cells. They produce high-efficiency conversion at low cost.
  • includes an array of solar panels, an inverter, and sometimes a battery and interconnection wiring.
  • photovoltaic system typically
  • lexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate. If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used. If it is a conductor then another technique for electrical connection must be used. The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side. The only commercially available (in MW quantities) flexible module uses amorphous silicon triple junction (from Unisolar). So-called inverted metamorphic (IMM) multijunction solar cells made on compound-semiconductor technology are just becoming commercialized in July 2008. The University of Michigan's solar car that won the North American Solar Challenge in July 2008 used IMM thin-film flexible solar cells. The requirements for residential and commercial are different in that the residential needs are simple and can be packaged so that as solar cell technology progresses, the other base line equipment such as the battery, inverter and voltage sensing transfer switch still need to be compacted and unitized for residential use. Commercial use, depending on the size of the service will be limited in the photovoltaic cell arena, and more complex parabolic reflectors and solar concentrators are becoming the dominant technology. The global flexible and thin-film photovoltaic (PV) market, despite caution in the overall PV industry, is expected to experience a CAGR of over 35% to 2019, surpassing 32 GW according to a major new study by IntertechPira.[4]
  • t $4.50, which was 33 times lower than the cost in 1970 of $150.[8][9]
  •  
    facts
11More

A Basic Overview of Fuel Cell Technology - 0 views

  • they generate electricity with very little pollution—much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.
  • Scientists and inventors have designed many different types and sizes of fuel cells in the search for greater efficiency, and the technical details of each kind vary
  • in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now “ionized,” and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • ...6 more annotations...
  • But in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now �ionized,� and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • Every fuel cell also has an electrolyte, which carries electrically charged particles from one electrode to the other, and a catalyst, which speeds the reactions at the electrodes. Hydrogen is the basic fuel, but fuel cells also require oxygen. One great appeal of fuel cells is that they generate electricity with very little pollution–much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.
  • A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes.
  • fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode.
  • One detail of terminology:
  • Oxygen enters the fuel cell at the cathode and, in some cell types (like the one illustrated above), it there combines with electrons returning from the electrical circuit and hydrogen ions that have traveled through the electrolyte from the anode. In other cell types the oxygen picks up electrons and then travels through the electrolyte to the anode, where it combines with hydrogen ions. The electrolyte plays a key role. It must permit only the appropriate ions to pass between the anode and cathode. If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity. Even better, since fuel cells create electricity chemically, rather than by combustion, they are not subject to the thermodynamic laws that limit a conventional power plant (see "Carnot Limit" in the glossary). Therefore, fuel cells are more efficient in extracting energy from a fuel. Waste heat from some cells can also be harnessed, boosting system efficiency still further
  •  
    "A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes."
  •  
    "A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode."
1More

Solar vehicle - Wikipedia, the free encyclopedia - 0 views

  • Power density: Power from a solar array is limited by the size of the vehicle and area that can be exposed to sunlight. While energy can be accumulated in batteries to lower peak demand on the array and provide operation in sunless conditions, the battery adds weight and cost to the vehicle. The power limit can be mitigated by use of conventional electric cars supplied by solar (or other) power, recharging from the electrical grid.
9More

Top 15 Unexpected Uses For Biodiesel - 0 views

  • Producing Hydrogen for Fuel-Cell Vehicles
  • Cleaning Up Oil Spills
  • Generating Electricity
  • ...5 more annotations...
  • Heating Your Home
  • Camping: Cooking and Illumination
  • Cleaning Up Tools and Grease
  • Adding Lubricity to Diesel Fuel
  • 8. Removing Paint and Adhesives Biodiesel can replace the exceedingly toxic products designed for paint removal. It’s probably best used for smaller-scale and non-critical applications (ie not on your car’s custom paint job). Biodiesel can also be used to remove adhesive residues, like those left by duct tape. The last 7 uses I’ve heard about but wasn’t able to substantiate. If you know something about these, or have a resource to contribute, feel free to add it here: 9. Asphalt Cleanup Agent 10. Hand Cleaner 11. Crop Adjuvant 12. Screen Printing Ink Remover 13. Auto Wax Remover 14. Corrosion Preventative 15. Metal Working Lubricant
  •  
    Uses for biofuel
8More

Biofuel - Wikipedia, the free encyclopedia - 1 views

  • Biodiesel is made from vegetable oils and animal fats. Biodiesel can be used as a fuel for vehicles in its pure form
  • Most transportation fuels are liquids, because vehicles usually require high energy density, as occurs in liquids and solids.
  • First generation biofuels 'First-generation' or conventional biofuels are biofuels made from sugar, starch, and vegetable oil.
  • ...4 more annotations...
  • Examples include wood, sawdust, grass trimmings, domestic refuse, charcoal, agricultural waste, non-food energy crops, and dried manure.
  • In 2010 worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009, and biofuels provided 2.7% of the world's fuels for road transport, a contribution largely made up of ethanol and biodiesel.[2] Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010.[2] As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states/provinces.[3] According to the International Energy Agency, biofuels have the potential to meet more than a quarter of world demand for transportation fuels by 2050.[4]
  • In 2010 worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009,[3] and biofuels provided 2.7% of the world's fuels for road transpor
  • Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for 90% of global production.
  •  
    Bioethano
« First ‹ Previous 61 - 80 of 112 Next › Last »
Showing 20 items per page