Skip to main content

Home/ qmstech2/ Group items tagged cells

Rss Feed Group items tagged

labrumbra99

Sierra Club Green Home » Blog Archive Fuel Cells: Environmental Benefits » Si... - 0 views

  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • ...4 more annotations...
  • fuel cells
  • metimes produce a by-product of water or heat, though hydrogen fuel cells are considered more difficult to work with because of transportation and storage. More user friendly fuel cells which use natural gas with emissions that are much lower than those produced by conventional engines or energy sources and can reduce your carbon footprint by around 40%. Additionally, there are only negligible levels of NOx, SOx, Volatile organic compounds and particulates, which is a drastic improvement over traditional means of grid power production. Besides the decreased CO2 emissions and high efficiency rates, fuel c
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  • The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country!
  •  
    " The environmental impact of fuel cells depends on the type of cell and the fuel being used. Fuel cells can run on a variety of sources, from natural gas to hydrogen to ethanol to biogas. Those that run on hydrogen can sometimes produce a by-product of water or heat, though hydrogen fuel cells are considered more difficult to work with because of transportation and storage. More user friendly fuel cells which use natural gas with emissions that are much lower than those produced by conventional engines or energy sources and can reduce your carbon footprint by around 40%. Additionally, there are only negligible levels of NOx, SOx, Volatile organic compounds and particulates, which is a drastic improvement over traditional means of grid power production. Besides the decreased CO2 emissions and high efficiency rates, fuel cells offer plenty of positive environmental impacts that should be considered by investors and consumers as solutions for cleaner energy are being further researched. 1. Fuel Conservation The use of fuel cells can significantly diminish our dependency on foreign oil. Since fuel cells make energy electrochemically and do not burn fuel like conventional combustion systems, they are much more efficient. Admittedly, some fuel cells need fossil fuels to start their functions; most residential systems run partially off of natural gas. If just 20% of the cars in America used fuel cells, we could cut oil imports by 1.5 million barrels per day. This is $44 billion per year that could remain in the country! 2. Combined Heat and Power The greatest benefit from high powered, well designed fuel cells is the heat and power produced. This means that a property can reduce additional investments to heat their indoor areas or water. In this case, less is more. Since the heat can be redirected to heat water, the environmental benefit from this is the ability to heat the hot water supply without a need for a separate system as is the case with home solar."
conboyeri98

Fuel cell - Wikipedia, the free encyclopedia - 0 views

  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent
  • ...8 more annotations...
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied.
  • There are many types of fuel cells, but they all consist of an anode (negative side), a cathode (positive side) and an electrolyte that allows charges to move between the two sides of the fuel cell.
  • The principle of the fuel cell was discovered by German scientist Christian Friedrich Schönbein in 1838
  • Stationary fuel cells are used for commercial, industrial and residential primary and backup power generation. Fuel cells are very useful as power sources in remote locations, such as spacecraft, remote weather stations, large parks, communications centers, rural locations including research stations, and in certain military applications. A fuel cell system running on hydrogen can be compact and lightweight, and have no major moving parts. Because fuel cells have no moving parts and do not involve combustion, in ideal conditions they can achieve up to 99.9999% reliability.[49] This equates to less than one minute of downtime in a six-year period.
  • Although there are currently no Fuel cell vehicles available for commercial sale, over 20 FCEVs prototypes and demonstration cars have been released since 2009. Demonstration models include the Honda FCX Clarity, Toyota FCHV-adv, and Mercedes-Benz F-Cell.[64] As of June 2011 demonstration FCEVs had driven more than 4,800,000 km (3,000,000 mi), with more than 27,000 refuelings.[65]
  • A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used.
  • The fuel cell he made used similar materials to today's phosphoric-acid fuel cell.
  • In 2003, U.S. President George W. Bush proposed the Hydrogen Fuel Initiative (HFI). This aimed at further developing hydrogen fuel cells and infrastructure technologies with the goal of producing commercial fuel cell vehicles. By 2008, the U.S. had contributed 1 billion dollars to this project
  •  
    "A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run, but they can produce electricity continually for as long as these inputs are supplied."
  • ...1 more comment...
  •  
    Explains what a fuel cell is.
  •  
    "Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to increase the voltage and meet an application's requirements.[2] In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. The energy efficiency of a fuel cell is generally between 40-60%, or up to 85% efficient if waste heat is captured for use."
  •  
    "A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent.[1] Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used."
labrumbra99

A Basic Overview of Fuel Cell Technology - 0 views

  • they generate electricity with very little pollution—much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.
  • Scientists and inventors have designed many different types and sizes of fuel cells in the search for greater efficiency, and the technical details of each kind vary
  • in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now “ionized,” and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • ...6 more annotations...
  • But in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now �ionized,� and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • Every fuel cell also has an electrolyte, which carries electrically charged particles from one electrode to the other, and a catalyst, which speeds the reactions at the electrodes. Hydrogen is the basic fuel, but fuel cells also require oxygen. One great appeal of fuel cells is that they generate electricity with very little pollution–much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless byproduct, namely water.
  • A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes.
  • fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode.
  • One detail of terminology:
  • Oxygen enters the fuel cell at the cathode and, in some cell types (like the one illustrated above), it there combines with electrons returning from the electrical circuit and hydrogen ions that have traveled through the electrolyte from the anode. In other cell types the oxygen picks up electrons and then travels through the electrolyte to the anode, where it combines with hydrogen ions. The electrolyte plays a key role. It must permit only the appropriate ions to pass between the anode and cathode. If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity. Even better, since fuel cells create electricity chemically, rather than by combustion, they are not subject to the thermodynamic laws that limit a conventional power plant (see "Carnot Limit" in the glossary). Therefore, fuel cells are more efficient in extracting energy from a fuel. Waste heat from some cells can also be harnessed, boosting system efficiency still further
  •  
    "A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes."
  •  
    "A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode."
Connor Wiggins

HowStuffWorks "How Fuel Cells Work" - 0 views

  • This initiative, supported by legislation in the Energy Policy Act of 2005 (EPACT 2005) and the Advanced Energy Initiative of 2006, aims to develop hydrogen, fuel cell and infrastructure technologies to make fuel-cell vehicles practical and cost-effective by 2020
  • Why are governments, private businesses and academic institutions collaborating to develop and produce them? Fuel cells generate electrical power quietly and efficiently, without pollution. Unlike power
  • that use fossil fuels, the by-products from an operating fuel cell are heat and water
  • ...5 more annotations...
  • With a fuel cell, chemicals constantly flow into the cell so it never goes dead -- as long as there is a flow of chemicals into the cell, the electricity flows out of the cell. Most fuel cells in use today use hydrogen and oxygen as the chemicals.
  • If you want to be technical about it, a fuel cell is an electrochemical energy conversion device. A fuel cell converts the chemicals hydrogen and oxygen into water, and in the process it produces electricity.
  • polymer electrolyte membrane fuel cells (PEMFC)
  • United States has dedicated more than one billion dollars to fuel cell research and development so far.So what exactly is a fuel cell,
  • With a fuel cell, chemicals constantly flow into the cell so it never goes dead -- as long as there is a flow of chemicals into the cell, the electricity flows out of the cell. Most fuel cells in use today use hydrogen and oxygen as the chemicals.
  •  
    "In 2003, President Bush announced a program called the Hydrogen Fuel Initiative (HFI) during his State of the Union Address."
  •  
    It shows how its sustainable 
dpurdy

A Basic Overview of Fuel Cell Technology - 0 views

  •   Fuel Cell Basics Through this website we are seeking historical materials relating to fuel cells. We have constructed the site to gather information from people already familiar with the technology–people such as inventors, researchers, manufacturers, electricians, and marketers. This Basics section presents a general overview of fuel cells for casual visitors. What is a fuel cell? How do fuel cells work? Why can’t I go out and buy a fuel cell? Different types of fuel cells.     What is a fuel cell? A fuel cell is a device that generates electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes.
  • in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now “ionized,” and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.
  • Oxygen enters the fuel cell at the cathode and, in some cell types (like the one illustrated above), it there combines with electrons returning from the electrical circuit and hydrogen ions that have traveled through the electrolyte from the anode. In other cell types the oxygen picks up electrons and then travels through the electrolyte to the anode, where it combines with hydrogen ions.
boothreb99

Group items matching "fuel cell" in title, tags, annotations or url - qmstech2 | Diigo ... - 1 views

  •  
    "The fuel cell is being considered as an eventual replacement for the internal combustion engine for cars, trucks and buses. Major car manufacturers have teamed up with fuel cell research centers or are doing their own development. There are plans for mass-producing cars running on fuel cells. Because of the low operating cost of the combustion engine, and some unresolved technical challenges of the fuel cell, however, experts predict that a large scale implementation of the fuel cell to power cars will not occur before 2015, or even 2020."
dpurdy

Fuel Cells 2000 : Fuel Cell Basics : Applications - 0 views

  • There are many uses for fuel cells — right now, all of the major automakers are working to commercialize a fuel cell car. Fuel cells are powering buses, boats, trains, planes, scooters, forklifts, even bicycles. There are fuel cell-powered vending machines, vacuum cleaners and highway road signs. Miniature fuel cells for cellular phones, laptop computers and portable electronics are on their way to market. Hospitals, credit card centers, police stations, and banks are all using fuel cells to provide power to their facilities. Wastewater treatment plants and landfills are using fuel cells to convert the methane gas they produce into electricity. Telecommunications companies are installing fuel cells at cell phone, radio and 911 towers. The possibilities are endless.
  • Stationary
  • More than 2500 fuel cell systems have been installed all over the world
  • ...2 more annotations...
  • Telecommunications
  • Landfills/Wastewater Treatment Plants/Breweries/Wineries-
  •  
    Current Applications for fuel Cells
olearydev99

Benefits | Fuel Cells 2000 - 0 views

  •  
    "Benefits Fuel Flexibility: Many fuel cells, like these FuelCell Energy units, can run on natural gas or biogas. Fuel cells offer a unique combination of benefits that make them a vital technology ideally suited for a number of applications.  From high efficiency to scalability, fuel cells provide a distinct advantage over incumbent energy generation technologies, which is why top companies, governments, and the military are adopting fuel cells for everyday use.  Below is a list of the major benefits that fuel cells provide."
whalenkil98

Photovoltaics - Timeline of the History of Photovoltaics - 0 views

  • 1839: Nineteen-year-old Edmund Becquerel, a French experimental physicist, discovered the photovoltaic effect while experimenting with an electrolytic cell made up of two metal electrodes. 1873: Willoughby Smith discovered the photoconductivity of selenium.
  •  
    "Today's photovoltaic systems are used to generate electricity to pump water, light up the night, activate switches, charge batteries, supply power to the utility grid, and much more. 1839: Nineteen-year-old Edmund Becquerel, a French experimental physicist, discovered the photovoltaic effect while experimenting with an electrolytic cell made up of two metal electrodes. 1873: Willoughby Smith discovered the photoconductivity of selenium. 1876: Adams and Day observed the photovoltaic effect in solid selenium. 1883: Charles Fritts, an American inventor, described the first solar cells made from selenium wafers. 1887: Heinrich Hertz discovered that ultraviolet light altered the lowest voltage capable of causing a spark to jump between two metal electrodes. 1904: Hallwachs discovered that a combination of copper and cuprous oxide was photosensitive. Einstein published his paper on the photoelectric effect. 1914: The existence of a barrier layer in PV devices was reported. 1916: Millikan provided experimental proof of the photoelectric effect. 1918: Polish scientist Czochralski developed a way to grow single-crystal silicon. 1923: Albert Einstein received the Nobel Prize for his theories explaining the photoelectric effect. 1951: A grown p-n junction enabled the production of a single-crystal cell of germanium. 1954: The PV effect in Cd was reported; primary work was performed by Rappaport, Loferski and Jenny at RCA. Bell Labs researchers Pearson, Chapin, and Fuller reported their discovery of 4.5% efficient silicon solar cells; this was raised to 6% only a few months later (by a work team including Mort Prince). Chapin, Fuller, Pearson (AT&T) submitted their results to the Journal of Applied Physics. AT&T demonstrated solar cells in Murray Hill, New Jersey, then at the National Academy of Science Meeting in Washington, DC. 1955: Western Electric began to sell commercial licenses for silicon PV technologies; early successful products included PV-powered dolla
Connor Wiggins

Fuel Cells Information, Fuel Cells Facts, Fuel Cells Technology - National Geographic - 0 views

  • A fuel cell is a device that uses a source of fuel, such as hydrogen, and an oxidant to create electricity from an electrochemical process.
  • Most fuel cells in use today, however, use hydrogen and oxygen as the chemicals.
  • Although hydrogen is the most abundant element in the universe, it is difficult to store and distribute. Canisters of pure hydrogen are readily available from hydrogen producers, but as of now, you can't just fill up with hydrogen at a local gas station.
  • ...2 more annotations...
  • All fuel cells have the same basic configuration; an electrolyte and two electrodes. But there are different types of fuel cells, based mainly on what kind of electrolyte they use.
  • All fuel cells have the same basic configuration; an electrolyte and two electrodes. But there are different types of fuel cells, based mainly on what kind of electrolyte they use.
  •  
    According to many experts, we may soon find ourselves using fuel cells to generate electrical power for all sorts of devices we use every day
marloweth98

Solar panel - Wikipedia, the free encyclopedia - 0 views

  • so solar module, photovoltaic module or photovoltaic panel
  • photovoltaic cells
  • arger photovoltaic system to generate and supply electricity in commercial and residential applications. Because a single solar panel can produce only a limited amount of power, many installations contain several panels.
  • ...5 more annotations...
  • Third generation solar cells are advanced thin-film cells. They produce high-efficiency conversion at low cost.
  • photovoltaic system typically
  • includes an array of solar panels, an inverter, and sometimes a battery and interconnection wiring.
  • lexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate. If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used. If it is a conductor then another technique for electrical connection must be used. The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side. The only commercially available (in MW quantities) flexible module uses amorphous silicon triple junction (from Unisolar). So-called inverted metamorphic (IMM) multijunction solar cells made on compound-semiconductor technology are just becoming commercialized in July 2008. The University of Michigan's solar car that won the North American Solar Challenge in July 2008 used IMM thin-film flexible solar cells. The requirements for residential and commercial are different in that the residential needs are simple and can be packaged so that as solar cell technology progresses, the other base line equipment such as the battery, inverter and voltage sensing transfer switch still need to be compacted and unitized for residential use. Commercial use, depending on the size of the service will be limited in the photovoltaic cell arena, and more complex parabolic reflectors and solar concentrators are becoming the dominant technology. The global flexible and thin-film photovoltaic (PV) market, despite caution in the overall PV industry, is expected to experience a CAGR of over 35% to 2019, surpassing 32 GW according to a major new study by IntertechPira.[4]
  • t $4.50, which was 33 times lower than the cost in 1970 of $150.[8][9]
  •  
    facts
crandallchr98

Fuel Cell Markets - Advantages & Benefits of Fuel Cell & Hydrogen Technologies - 2 views

  • Advantages by Application Telecoms CHP Fuel Cell Generators Electric Vehicles - APU's and Range Extenders Fuel Cell Forklifts Marine Power Portable Power
  • Low Emissions – Using hydrogen, PEM fuel cells only emit water at the point of use. Even when using hydrocarbon fuels, fuel cells emit considerably less emissions than other combustion based technologies, this is for two reasons. Firstly their higher efficiency means they require less fuel to generate the same energy and secondly because there is no combustion, there are negligible NOx or SOx emissions and no particulate emissions.
  • Reliability & Maintenance – The only moving parts in fuel cells are involved with water, heat and air management (pumps, blowers, compressors). When compared to internal combustion engines, there are considerably less moving parts and these require less maintenance (no oil changes every 150 hours). Less maintenance means less site visits or trips to the garage and reduced operating costs. Fuel cells can be monitored remotely and any problems dealt with quickly.
  • ...2 more annotations...
  • Few moving parts means all you will ever hear of a fuel cell is either a compressor, blower or pump
  • Hydrogen is the lightest of all gases and disperses very quickly, it is also non-polluting and hazardous to the surrounding environment (unlike gasoline a spillage / leak will not cause an environmental disaster). Hydrogen, like natural gas and petrol, is a fuel and will burn when ignited. Hydrogen is only explosive when it is able to build up in a enclosed space, which is very difficult as it has a habit of escaping (hydrogen is the smallest of all elements). As long as appropriate safety procedures are followed, as they should with any fuel, hydrogen is a safe fuel.
  •  
    Advantages & Benefits of Hydrogen and Fuel Cell Technologies High Efficiency - Like generators and other engines, fuel cells are energy conversion devices - they convert stored energy within a fuel into usable energy. A fuel cell uses an electrochemical reaction to extract energy directly in the form of heat and electricity, both of which can be utilised at the point of generation.
dpurdy

The Fuel Cell: Is it Ready? - 0 views

  • The fuel cell is being considered as an eventual replacement for the internal combustion engine for cars, trucks and buses. Major car manufacturers have teamed up with fuel cell research centers or are doing their own development. There are plans for mass-producing cars running on fuel cells. Because of the low operating cost of the combustion engine, and some unresolved technical challenges of the fuel cell, however, experts predict that a large scale implementation of the fuel cell to power cars will not occur before 2015, or even 2020.
  • Most fuel cells are still handmade and are used for experimental purposes. Fuel cell promoters remind the public that the cost will come down once the cells are mass-produced and lower cost material are found. While an internal combustion engine requires an investment of $35 to $50 to produce one kilowatt (kW) of power, the equivalent cost in a fuel cells is still a whopping $3,000 to $7,500. The goal is a fuel cell that would cost equal or less than diesel engines.
slentzkel99

Haldor Topsoe - Fuel cells for sustainable energy - 0 views

  • What is a fuel cell?A fuel cell produces electricity from fuel and air. The simplest fuel cell produces electricity from hydrogen and air with water as the only by-product.
  • Where can fuel cells be used?Fuel cells in general can be used in many different circumstances, depending on the type of fuel cell. Topsoe Fuel Cell focuses on SOFC fuel cells, which can be used in:Auxiliary power units (APUs) provide electricity where there is no access to grid power. Fuel cell based APUs can be used on, for instance, long-haul trucks to generate power during breaks.Micro combined heat and power units may be scaled to meet the electricity demand in single family households. Combined heat and power generation for households is one of the most efficient ways to meet residential energy requirements.Distributed generation using SOFC technology offers efficient power generation, for example hospitals, shopping malls, in apartment buildings and in areas with low power capacity.
streetscor99

Fuel cells, what is a fuel cell, disadvantages, benefits - 0 views

  • * Because there is no combustion in a fuel cell, fuel is converted to electricity more efficiently than any other electrical generating technology available today. * There are no moving parts in a fuel cell stack, making them more reliable and quieter than generators. Even the ancillary systems (fans, pumps, controls, etcetera) in a complete fuel cell unit are relatively mature and simple technologies that should prove extremely reliable.
  • In the past, fuel cells were large and extremely expensive to manufacture, just as the first calculators and computers were. But, just like these products, the cost of fuel cells will quickly come down to consumer-affordable levels with mass production. We are currently in a transition period now, where many fuel cell companies are investing literally hundreds of millions of dollars to gear up for mass manufacturing at the same time they are trying to begin to develop a variety of markets for their product.
shortsleevesky99

FAQ | Fuel Cells 2000 - 0 views

  •  
    "The first fuel cell was built in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, who conducted dozens of experiments using his "gas battery."  More than a century later, equipment manufacturer Allis Chalmers plowed a Wisconsin alfalfa field using fuel cell-powered tractor (1959).  Serious interest in the fuel cell as a practical energy generator did not begin until the 1960′s, when the U.S. space program chose fuel cells over riskier nuclear power and more expensive solar energy, using fuel cells to furnish power for the Gemini and Apollo spacecraft and electricity and water for the space shuttle.  Also in the 1960s, the first passenger vehicle, a prototype van, was built by GM (1966); major auto manufacturers began more concerted fuel cell development efforts in the 1990s."
crandallchr98

Hydrogen Fuel Cells - Disadvantages - 0 views

  • Fuel cells are currently very expensive, but since they have a simple construction, mass production costs would become extremely low. 
  • Prototype fuel cells last only 1/5th as long as would be needed to make fuel cells cost-effective.
  • They are energy losers because it costs more to produce hydrogen than is earned by using hydrogen in fuel cells:  Electricity generated by fuel cells in cars costs thousands of dollars per kilowatt:  This would have to fall by a factor of 10 for fuel cells to become economically viable.
dpurdy

EIA Energy Kids - Solar - 2 views

  • Energy from the Sun The sun has produced energy for billions of years.  Solar energy is the sun’s rays (solar radiation) that reach the Earth. This energy can be converted into other forms of energy, such as heat and electricity.
  • Photovoltaic (PV devices) or “solar cells” change sunlight directly into electricity. Individual PV cells are grouped into panels and arrays of panels that can be used in a wide range of applications ranging from single small cells that charge calculator and watch batteries, to systems that power single homes, to large power plants covering many acres.
  • Solar energy systems do not produce air pollutants or carbon-dioxide
  • ...5 more annotations...
  • Solar energy is by far the Earth's most available energy source. Solar power is capable of providing many times the total current energy demand. But it is an intermittent energy source, meaning that it is not available at all times.
  • Photons Carry Solar Energy Sunlight is composed of photons, or particles of solar energy. These photons contain various amounts of energy corresponding to the different wavelengths of the solar spectrum. When photons strike a photovoltaic cell, they may be reflected, pass right through, or be absorbed. Only the absorbed photons provide energy to generate electricity. When enough sunlight (energy) is absorbed by the material (a semiconductor), electrons are dislodged from the material's atoms. Special treatment of the material surface during manufacturing makes the front surface of the cell more receptive to free electrons, so the electrons naturally migrate to the surface.
  • Weather Affects Photovoltaics The performance of a photovoltaic array is dependent upon sunlight. Climate conditions (such as clouds or fog) have a significant effect on the amount of solar energy received by a photovoltaic array and, in turn, its performance.
  • History of the Photovoltaic Cell The first practical photovoltaic (PV) cell was developed in 1954 by Bell Telephone researchers examining the sensitivity of a properly prepared silicon wafer to sunlight. Beginning in the late 1950s, PV cells were used to power U.S. space satellites. PV cells were next widely used for small consumer electronics like calculators and watches and to provide electricity in remote or "off-grid" locations were there were no electric power lines. Technology advances and government financial incentives have helped to greatly expand PV use since the mid-1990s.
  • Using solar energy produces no air or water pollution and no greenhouse gases, but does have some indirect impacts on the environment.
  •  
    Most quality online stores. Know whether you are a trusted online retailer in the world. Whatever we can buy very good quality. and do not hesitate. Everything is very high quality. Including clothes, accessories, bags, cups. Highly recommended. This is one of the trusted online store in the world. View now www.retrostyler.com
dpurdy

HowStuffWorks "How Fuel Cells Work" - 1 views

  • The fuel cell will compete with many other energy­ conversion devices, including the gas turbine in your city's power plant, the gasoline engine in your car and the battery in your laptop. Combustion engines like the turbine and the gasoline engine burn fuels and use the pressure created by the expansion of the gases to do mechanical work. Batteries convert chemical energy back into electrical energy when needed. Fuel cells should do both tasks more efficiently.
  • Sir William Grove invented the first fuel cell in 1839. Grove knew that water could be split into hydrogen and oxygen by sending an electric current through it (a process called electrolysis). He hypothesized that by reversing the procedure you could produce electricity and water. He created a primitive fuel cell and called it a gas voltaic battery. After experimenting with his new invention, Grove proved his hypothesis. Fifty years later, scientists Ludwig Mond and Charles Langer coined the term fuel cell while attempting to build a practical model to produce electricity.
  •  
    " Combustion engines like the turbine and the gasoline engine burn fuels and use the pressure created by the expansion of the gases to do mechanical work. Batteries convert chemical energy back into electrical energy when needed. Fuel cells should do both tasks more efficiently."
freedenjoh99

Hydrogen Basics - Fuel Cells - 1 views

  • A fuel cell converts the chemical energy in hydrogen and oxygen into direct current electrical energy by electrochemical reactions. Fuel cells are devices that convert hydrogen gas directly into low-voltage, direct current electricity. The cell has no moving parts.
  • The process is essentially the reverse of the electrolytic method of splitting water into hydrogen and oxygen. In the fuel cell, the cathode terminal is positively charged and the anode terminal is negatively charged. These electrodes are separated by a membrane. Hydrogen gas is converted into electrons and protons (positive hydrogen ions) at the anode. The protons pass through the membrane to the cathode, leaving behind negatively charged electrons. This creates a flow of direct current electricity between the terminals when connected with an external circuit. This current can power an electric motor placed in this circuit. The hydrogen ions, electrons, and oxygen combine at the cathode to form water, the only byproduct of the process.
  •  
    " 13kW PEM fuel cell (Photo: Ballard Power Systems, Inc.) The process is essentially the reverse of the electrolytic method of splitting water into hydrogen and oxygen. In the fuel cell, the cathode terminal is positively charged and the anode terminal is negatively charged. These electrodes are separated by a membrane. Hydrogen gas is converted into electrons and protons (positive hydrogen ions) at the anode. The protons pass through the membrane to the cathode, leaving behind negatively charged electrons. This creates a flow of direct current electricity between the terminals when connected with an external circuit. This current can power an electric motor placed in this circuit. The hydrogen ions, electrons, and oxygen combine at the cathode to form water, the only byproduct of the process"
1 - 20 of 165 Next › Last »
Showing 20 items per page