Skip to main content

Home/ Physics of the Future/ Group items tagged development

Rss Feed Group items tagged

William C

Nanotechnology Delivers Microcoatings | EMDT - European Medical Device Technology - 0 views

  • In the field of medical device development there are a number of factors generally recognised as being important for success. Among these are the biocompatibility, sterility, reliability and adaptability of materials to their surroundings. Without a suitable approach to these issues, the majority of medical devices will not be as successful as they could be. Biocompatibility of materials, in particular, is a critical factor in the development and application of permanent and temporary implants and other devices such as catheters and tubes that are to be used in and around the body. Coating technology is the obvious and ideal solution for separating the bulk properties of a material or device from direct interaction with its surroundings. The independent modification of surface and bulk properties widens the range of features that can be incorporated into products. Bulk properties are responsible for characteristics such as mechanical strength. A suitable coating will enhance the interaction of the device with its surroundings. For example, it will provide drug-elusion (stents), anti-fouling and antibacterial properties, and a hydrophobic self-cleaning surface, referred to as lotus coating.1 The lotus effect in material science is the observed self-cleaning property found with lotus plants. A coating with this effect will make surfaces self-cleaning and will decrease the need for active cleaning of the subsequent surface; it may even enhance the sterility of surfaces. Recently there have been some interesting developments in materials and coatings based on organic and inorganic components, which are responsible for current state-of-the-art devices. Examples include coatings for stents that provide multiple therapeutic effects in thinner layers and coatings with better adhesion to device surfaces. The future holds the promise of even greater functionality for medical coatings.
  •  
    "In the field of medical device development there are a number of factors generally recognised as being important for success. Among these are the biocompatibility, sterility, reliability and adaptability of materials to their surroundings. Without a suitable approach to these issues, the majority of medical devices will not be as successful as they could be. Biocompatibility of materials, in particular, is a critical factor in the development and application of permanent and temporary implants and other devices such as catheters and tubes that are to be used in and around the body. Coating technology is the obvious and ideal solution for separating the bulk properties of a material or device from direct interaction with its surroundings. The independent modification of surface and bulk properties widens the range of features that can be incorporated into products. Bulk properties are responsible for characteristics such as mechanical strength. A suitable coating will enhance the interaction of the device with its surroundings. For example, it will provide drug-elusion (stents), anti-fouling and antibacterial properties, and a hydrophobic self-cleaning surface, referred to as lotus coating.1 The lotus effect in material science is the observed self-cleaning property found with lotus plants. A coating with this effect will make surfaces self-cleaning and will decrease the need for active cleaning of the subsequent surface; it may even enhance the sterility of surfaces. Recently there have been some interesting developments in materials and coatings based on organic and inorganic components, which are responsible for current state-of-the-art devices. Examples include coatings for stents that provide multiple therapeutic effects in thinner layers and coatings with better adhesion to device surfaces. The future holds the promise of even greater functionality for medical coatings."
William B

Medical uses expand for human tissue from 3-D printers | The Portland Press Herald / Ma... - 0 views

  •  
    "SAN FRANCISCO - 3-D printing, used to construct everything from art to toys to spare parts for the space station, may one day produce human organs at a hospital near you. click image to enlarge A 3-D printed prosthetic nose and ear are displayed at an industry show in London in November. The technology may eventually help reduce organ shortages. Bloomberg News photo by Chris Ratcliffe Select images available for purchase in the Maine Today Photo Store The 20-year-old technology uses liquid materials that become hard as they print out three-dimensional objects in layers, based on a digital model. Current medical uses are in dentistry, for hard-material crowns, caps and bridges, as well as prosthetics. Last year, a 3-D printer was used to create a structure from moldable polymer that replaced more than 75 percent of a patient's skull. Now, Organovo Holdings Inc. is using 3-D printers to create living tissue that may one day look and act like a human liver, able to cleanse the body of toxins. Drugmakers and cosmetic companies already plan to use 3-D printed human tissue to test new products. Eventually, the technology may help reduce organ shortages and cut transplant rejections as patients receive new organs constructed from their own cells. "3-D printing is like a new tool set," said Organovo Chief Executive Officer Keith Murphy. "You can make a living tissue you can grow outside the body. That's the core of our technology. How can you be smart about doing that?" Organovo already is preparing to sell strips of liver tissue to drugmakers this year to be used to test toxicity of potential treatments, Murphy said in a telephone interview. The San Diego-based company's five- and 10-year goals are first to use a patient's own cells to print tissue strips that can be used to patch failing organs, and finally to be able to create entire new organs. The first 3-D printer was produced in 1992. Since then, a variety of materials have been used as the t
William C

Nanotechnology and Medicine / Nanotechnology Medical Applications - 0 views

  •  
    This page gave a good amount on how nanotechnology can change the future of medicine, from taking pills to cancer. It also talks about nerve regeneration and how that is in the near future with nanotechnology.
  •  
    "Nanotechnology is already being used in products in its passive form, such as cosmetics and sunscreens,"
  •  
    "Nanotechnology medical developments over the coming years will have a wide variety of uses and could potentially save a great number of lives. Nanotechnology is already moving from being used in passive structures to active structures, through more targeted drug therapies or "smart drugs." These new drug therapies have already been shown to cause fewer side effects and be more effective than traditional therapies. In the future, nanotechnology will also aid in the formation of molecular systems that may be strikingly similar to living systems. These molecular structures could be the basis for the regeneration or replacement of body parts that are currently lost to infection, accident, or disease. These predictions for the future have great significance not only in encouraging nanotechnology research and development but also in determining a means of oversight. The number of products approaching the FDA approval and review process is likely to grow as time moves forward and as new nanotechnology medical applications are developed."
Savana R

Science and technology for wealth and hea... [Glob Public Health. 2007] - PubMed - NCBI - 0 views

  •  
    "It is now widely accepted that the developing world needs to invest in science and technology or risk falling behind as the technology gap between the North and South widens. However, these investments must be balanced by continued investment in basic population-wide services, such as healthcare and water supply and sanitation. Achieving this balance is a matter of ongoing debate in policy circles, and leaders and policy-makers in developing countries often have to make difficult decisions that pit investment in new technologies and capacity-building in science and technology against basic population-wide services such as healthcare and water supply and sanitation." This is about how technology and science is used for wealth.
  •  
    Getting some resources off of a government website was a good find and should provide some viable information to use. It will also help us connect with how science and technology is related to wealth.
Taylor B

Researchers Work on Smart Drug Development Using Nanotechnology - 0 views

  •  
    ""We are developing smart drugs that determine which are the cancer cells and which aren't, then selectively kill only the cancer cells."'
Woody H

Google Glass - Wikipedia, the free encyclopedia - 0 views

  •  
    "Google Glass is a wearable computer with an optical head-mounted display (OHMD) that is being developed by Google in the Project Glass research and development project,[8] with a mission of producing a mass-market ubiquitous computer.[1] Google Glass displays information in a smartphone-like hands-free format,[9] that can communicate with the Internet via natural language voice commands.[10][11]"
Micah K

What is Nanotechnology? - 0 views

  •  
    the term nanotechnology was coined back in the 80s by K. Eric Drexler. I'm sure at the time it wasn't much more than a science fiction dream, but now it is a very real technology. "When K. Eric Drexler (right) popularized the word 'nanotechnology' in the 1980's, he was talking about building machines on the scale of molecules, a few nanometers wide-motors, robot arms, and even whole computers, far smaller than a cell. Drexler spent the next ten years describing and analyzing these incredible devices, and responding to accusations of science fiction. Meanwhile, mundane technology was developing the ability to build simple structures on a molecular scale. As nanotechnology became an accepted concept, the meaning of the word shifted to encompass the simpler kinds of nanometer-scale technology. The U.S. National Nanotechnology Initiative was created to fund this kind of nanotech: their definition includes anything smaller than 100 nanometers with novel properties."
  •  
    "A basic definition: Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced. In its original sense, 'nanotechnology' refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products." This is the definition of what nanotechnology is-building something from almost nothing.
Hunter Hayes

Google driverless car - 1 views

  •  
    i don't believe this will work in the long run "The Google driverless car is a project by Google that involves developing technology for autonomous cars. The software powering Google's cars is called Google Chauffeur.[2] Lettering on the side of each car identifies it as a "self-driving car." The project is currently being led by Google engineer Sebastian Thrun, director of the Stanford Artificial Intelligence Laboratory and co-inventor of Google Street View. Thrun's team at Stanford created the robotic vehicle Stanley which won the 2005 DARPA Grand Challenge and its US$2 million prize from the United States Department of Defense.[3] The team developing the system consisted of 15 engineers working for Google, including Chris Urmson, Mike Montemerlo, and Anthony Levandowski who had worked on the DARPA Grand and Urban Challenges.[4]"
  •  
    The Google driverless car is a project by Google that involves developing technology for autonomous cars
William B

Medical physics in 2020: will we ... [Australas Phys Eng Sci Med. 2008] - PubMed - NCBI - 1 views

  • From the time when Roentgen and other physicists made the discoveries which led to the development of radiology, radiotherapy and nuclear medicine, medical physicists have played a pivotal role in the development of new technologies that have revolutionized the way medicine is practiced today. Medical physicists have been transforming scientific advances in the research laboratories to improving the quality of life for patients; indeed innovations such as computed tomography, positron emission tomography and linear accelerators which collectively have improved the medical outcomes for millions of people. In order for radiation-delivery techniques to improve in targeting accuracy, optimal dose distribution and clinical outcome, convergence of imaging and therapy is the key. It is timely for these two specialties to work closer again. This can be achieved by means of cross-disciplinary research, common conferences and workshops, and collaboration in education and training for all. The current emphasis is on enhancing the specific skill development and competency of a medical physicist at the expense of their future roles and opportunities. This emphasis is largely driven by financial and political pressures for optimizing limited resources in health care.
  •  
    physicists are trying to improve the quality of life for patients 
Tristen H

The History of AI - 0 views

  •  
    The history of AI as written by Think Quest
  •  
    "Evidence of Artificial Intelligence folklore can be traced back to ancient Egypt, but with the development of the electronic computer in 1941, the technology finally became available to create machine intelligence. "
William C

Nanorobotics - Wikipedia, the free encyclopedia - 0 views

  •  
    nanotechnology is a branch off of nanotechnology. they are small machines that can be used for anything. "Nanorobotics is the emerging technology field creating machines or robots whose components are at or close to the scale of a nanometer (10−9 meters).[1][2][3] More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components.[4][5] The names nanobots, nanoids, nanites, nanomachines or nanomites have also been used to describe these devices currently under research and development"
Kellie C

Moore's law - Wikipedia, the free encyclopedia - 0 views

  •  
    "Moore's law is the observation that, over the history of computing hardware, the number of transistors on integrated circuits doubles approximately every two years. The law is named after Intel co-founder Gordon E. Moore, who described the trend in his 1965 paper.[1][2][3] His prediction has proven to be accurate, in part because the law is now used in the semiconductor industry to guide long-term planning and to set targets for research and development.[4]"
Lexie D

Molecular medicine - Wikipedia, the free encyclopedia - 0 views

  •  
    definition of molecular medicine. Third stage of medicine. "Molecular medicine is a broad field, where physical, chemical, biological and medical techniques are used to describe molecular structures and mechanisms, identify fundamental molecular and genetic errors of disease, and to develop molecular interventions to correct them. The molecular medicine perspective emphasizes cellular and molecular phenomena and interventions rather than the previous conceptual and observational focus on patients and their organs.[1]"
Lexie D

Germ Theory - 0 views

  •  
    second stage of medicine "Germ theory states that many diseases are caused by the presence and actions of specific micro-organisms within the body. The theory was developed and gained gradual acceptance in Europe and the United States from the middle 1800s. It eventually superseded existing miasma and contagion theories of disease and in so doing radically changed the practice of medicine. It remains a guiding theory that underlies contemporary biomedicine."
Nicholas C

ASIMO - Wikipedia, the free encyclopedia - 0 views

  •  
    ASIMO The robot "Honda began developing humanoid robots in the 1980s, including several prototypes that preceded ASIMO. It was the company's goal to create a walking robot which could not only adapt and interact in human situations, but also improve the quality of life. The E0 was the first bipedal (two-legged) model produced as part of the Honda E series, which was an early experimental line of humanoid robots created between 1986 and 1993. This was followed by the Honda P series of robots produced from 1993 through 1997, which included the first self-regulating, humanoid walking robot with wireless movements.[6][7]"
Micah K

quantum theory - definition of quantum theory by the Free Online Dictionary, Thesaurus ... - 0 views

  •  
    "1. (Atomic Physics) a theory concerning the behaviour of physical systems based on Planck's idea that they can only possess certain properties, such as energy and angular momentum, in discrete amounts (quanta). The theory later developed in several equivalent mathematical forms based on De Broglie's theory and on the Heisenberg uncertainty principle" The definition of what the quantum theory is- only physical systems can possess certain properties.
Woody H

Electronic paper - Wikipedia, the free encyclopedia - 0 views

  •  
    "Electronic paper, e-paper and electronic ink are display technologies which are designed to mimic the appearance of ordinary ink on paper.[1] Unlike conventional backlit flat panel displays which emit light, electronic paper displays reflect light like ordinary paper, theoretically making it more comfortable to read, and giving the surface a wider viewing angle compared to conventional displays. The contrast ratio in available displays as of 2008 might be described as similar to that of newspaper, though newly developed displays are slightly better.[2] An ideal e-paper display can be read in direct sunlight without the image appearing to fade. Many electronic paper technologies can hold static text and images indefinitely without using electricity. Flexible electronic paper uses plastic substrates and plastic electronics for the display backplane. There is ongoing competition among manufacturers to provide full-color ability. Applications of electronic visual displays include electronic pricing labels in retail shops, and digital signage,[3] time tables at bus stations,[4] electronic billboards,[5] mobile phone displays, and e-readers able to display digital versions of books and e-paper magazines."
Callie S

Space colonization - Wikipedia, the free encyclopedia - 0 views

  •  
    Kaku talks about space colonization in the future. "Space colonization (also called space settlement, or extraterrestrial colonization) is permanent human habitation outside of Earth. Many arguments have been made for space colonization. A common one is ensuring the survival of human civilization and Earth's biosphere from disasters such as asteroid impact or global nuclear war. Another is helping to provide unlimited space-based solar power and other resources to let all human beings on Earth enjoy developed-world lifestyles with far less environmental damage, and eventually providing a High Frontier where any number of people may settle and thrive. After its successful Apollo project moon landings, the US NASA sponsored the first formal engineering studies of a space colony concept: Princeton professor Gerard O'Neill and colleagues' proposals to build space colonies and Solar Power Satellites (SPS) from lunar materials.[1][2] These proposals are striking for their boldness, level of detail and technical rigor. The thickness of metal beams needed to contain the colony's atmosphere and withstand rotation for artificial gravity was engineered. Chemical reactions to smelt them out of Moon rocks were worked out (by a young K. Eric Drexler, who later became famous as the founder of Nanotechnology).[3] The Moon rocks would be launched to the desired orbital location cheaply using O'Neill's electromagnetic mass driver. Modifying standard 1970s industrial productivity figures as needed (work in space suits would be slower; moving heavy objects in weightlessness easier than in factories on Earth), they estimated that the 10,000-person workforce housed in the first Island One colony could produce one giant SPS-capable of supplying 5% of total American electricity demand-each year. Yet the project timeline didn't call for producing the first commercial SPS until Year 22, and the huge investment-totaling almost $200 billion in 1975 dollars-wouldn't be fully repaid unt
Micah K

Cancer nanotechnology: small, but heading for the big time : Article : Nature Reviews D... - 0 views

  •  
    "Nanotechnology is being applied to cancer in two broad areas: the development of nanovectors, such as nanoparticles, which can be loaded with drugs or imaging agents and then targeted to tumours, and high-throughput nanosensor devices for detecting the biological signatures of cancer. Combined, such technologies could lead to earlier diagnosis and better treatment for patients with cancer." Nanotechnology can also help see cancer in its earlier stages to help stop it from spreading.
Hunter Hayes

The Future of Medicine Is Now - 0 views

  •  
    "Surgeons at Boston Children's Hospital have developed a way to help children born with half a heart to essentially grow a whole one-by marshaling the body's natural capacity to heal and develop." This site shows some current prototypes of ideas that Kaku predicted in his book. It shows us that there are medical advancements, which we thought were not possible until much farther into the future, functioning almost flawlessly in our current society. This website will be a valuable resource in this project because it explains multiple advancements that have been made in the last few years and will be perfected in the near future. This article comes from a website that we know is reliable from previous research.
  •  
    In our era of instant gratification, the world of medicine seems like an outlier. The path from a promising discovery to an effective treatment often takes a decade or more.But from that process-of fits and starts, progress and setbacks and finally more progress-grow the insights and advances that change the course of medicine.
1 - 20 of 32 Next ›
Showing 20 items per page