Skip to main content

Home/ Peppers_Biology/ Group items tagged types of proteins

Rss Feed Group items tagged

Lottie Peppers

Protein Function | Learn Science at Scitable - 1 views

  •  
    The collection of proteins within a cell determines its health and function. Proteins are responsible for nearly every task of cellular life, including cell shape and inner organization, product manufacture and waste cleanup, and routine maintenance. Proteins also receive signals from outside the cell and mobilize intracellular response. They are the workhorse macromolecules of the cell and are as diverse as the functions they serve.
Lottie Peppers

The Biochemistry of Curly and Straight Hair - National Center for Case Study Teaching i... - 2 views

  •  
    This interrupted case study examines basic concepts of chemical bonding by telling the story of "Madison," a young girl eager to learn how her hair can transition from natural curls to straight, smooth tresses. The case can be used to teach or review the major categories of bonds (ionic, covalent and hydrogen), major macromolecules of life, and hydrolytic and dehydration reactions. It also explores how chemical relaxers and heat through blow drying and flat-ironing can change the nature of straight, wavy and curly hair through the disruption of protein shape. Students will thus learn what it means when a protein has become denatured and how various variables such as pH, heat and salts can lead to the unraveling of the three-dimensional shape of proteins. This case is suitable for an AP high school course, or for an introductory biology or chemistry course for majors or non-majors. This activity can also be used as a review of basic biology and chemistry for students in an upper-level biochemistry course.
Lottie Peppers

A phylogenomic data-driven exploration of viral origins and evolution | Science Advances - 1 views

  •  
    The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Lottie Peppers

Borrowing Immunity Through Interbreeding | The Scientist Magazine® - 0 views

  •  
    Quintana-Murci and his colleagues also took advantage of a previously published map of areas of the human genome where Neanderthal genes are present, showing that innate immune genes are generally more likely to have been borrowed from Neanderthals than genes coding other types of proteins. Specifically, they noted that 126 innate immune genes in present-day Europeans, Asians, or both groups were among the top 5 percent of genes in the genome of each population most likely to have originated in Neanderthals. The cluster of toll-like receptor genes, encoding TLR 1, TLR 6, and TLR 10, both showed signs of having been borrowed from Neanderthals and having picked up adaptive mutations at various points in history. Meanwhile, a group led by Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, used both the same previously published Neanderthal introgression map that Quintana-Murci used and a second introgression map. The researchers searched for borrowed regions of the genome that were especially long and common in present-day humans, eventually zeroing in TLR6, TLR10, and TLR1. These receptors, which detect conserved microbial proteins such as flagellin, are all encoded along the same segment of DNA on chromosome four.
Lottie Peppers

From Cow Juice to a Billion Dollar Drug, With Some Breakthroughs in Between - National ... - 0 views

  •  
    Before the discovery of insulin in 1921, being diagnosed with Type 1 diabetes was a death sentence. Despite the successful management of diabetes with purified animal insulin, potentially severe side effects were abundant, and alternative ways to produce insulin were needed. This case study guides students through the history of using insulin to treat diabetes, focusing on the development of recombinant DNA technology and the world's first bioengineered drug, recombinant human insulin, which is now used worldwide to treat diabetes. Through the course of this case, students consider the central dogma of molecular biology, the development of recombinant DNA technology, drug design, the importance of recombinant proteins to our society, and the ethical analysis and debates that occur as a result of some scientific discoveries. This case was developed as an introduction to an upper-division biotechnology course focusing on recombinant protein design and production, but could also be used in molecular biology, biochemistry, or introductory biology courses to highlight recombinant DNA and biotechnology.
Lottie Peppers

Hitting the Right Target? Lab Studies Suggest Epigenetic Drug May Fight Childhood Brain... - 1 views

  •  
    Panobinostat is a new type of drug that works by blocking an enzyme responsible for modifying DNA at the epigenetic level. Epigenetics refers to chemical marks on DNA itself or on the protein "spools" called histones that package DNA. These marks influence the activity of genes without changing the underlying sequence, essentially acting as volume knobs for genes. Earlier genomic studies showed that about 80 percent of DIPG tumors carry a mutation that alters a histone protein, resulting in changes to the way DNA is packaged and tagged with those chemical marks. This faulty epigenetic regulation results in activation of growth-promoting genes that should have been turned off, and shutdown of others that should have acted as brakes to cell multiplication. Cancer is the result. Panobinostat appears to work by restoring proper functioning of the cells' chemical tagging system.
Lottie Peppers

When a Gene Turned Off Is a Matter of Life or Death - National Center for Case Study Te... - 0 views

  •  
    When Jordan is diagnosed with brain cancer (glioblastoma multiform), his college plans are unexpectedly put on hold. This scenario is presented in order to teach students about gene regulation, as the efficacy of the drug Jordan receives for post-surgical treatment is dependent upon the activity level of a gene encoding a protein involved in DNA repair. This "flipped" case study requires students to prepare in advance outside of class by watching several short videos that have been selected to teach the basics of how cancer forms as well as the role of epigenetics in gene silencing. Inside of class, the case is delivered using progressive disclosure format in which students gradually receive additional information to answer a series of directed questions. To determine a treatment plan for Jordan, students analyze data from a research study involving patients treated for his specific type of cancer. The case is designed for advanced high school biology classes as well as lower-level undergraduate general biology courses for non-majors and majors.
Lottie Peppers

Video: Digestion of Types of Food | Educational Video | WatchKnowLearn Educational Vide... - 0 views

  •  
    Animation shows how proteins, fats, and carbohydrates are digested by the digestive system with the use of different enzymes. Grades 7-12. 2:45 min.
1 - 8 of 8
Showing 20 items per page