Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged salt

Rss Feed Group items tagged

D'coda Dcoda

Yomiuri: Mayor near Fukushima dies - Had recently been hospitalized two weeks with ente... - 0 views

  • Google Translation – Salt former mayor ga Nasu sudden death, Yomiuri, Dec. 5, 2011 (Emphasis Added): Nasu, Tochigi Prefecture Salt Plains Mayor Li Chuan Ren 4 ga day and night, chest artery Tumor The city hospital for acute rupture. He was 67. Funeral to be determined. [...] At around 20:06 yesterday afternoon, out suffering suddenly while on the line of the staff had taken during a meal at home, was taken to hospital by ambulance, 59 minutes at 7 as has been confirmed dead other. In December 2006, when hospitalized for rectal cancer surgery, surgery on the thoracoabdominal aortic aneurysm was found were not. In October, was hospitalized for two weeks bacterial enteritis. [...]
  • IPPNW, Berlin: “A study carried out by the World Health Organisation (WHO) of liquidators in the Russian Federation, found a statistically significant increase in blood and endocrinal diseases, as well as a significant increase in gastro-enteritis, infections and parasite-related disease. According to Russian information, many invalided liquidators suffer from inflammatory gastroenteritis.” Wikipedia: “In medicine, enteritis, from Greek words enteron (Small Intestine) and suffix -itis (Inflammation), refers to inflammation of the small intestine. It is most commonly caused by the ingestion of substances contaminated with pathogenic microorganisms.[1] Symptoms include abdominal pain, cramping, diarrhea, dehydration and fever.[1] Inflammation of related organs of the gastrointestinal system are [...] gastroenteritis”
D'coda Dcoda

EnergySoultions Contracts with Studsvik for Nuclear Waste Processing [10Feb11] - 0 views

  • EnergySolutions Inc. is making a deal with a Sweden-based competitor, Studsvik, to dispose of solid nuclear waste in Utah. The Deseret News of Salt Lake City reported Tuesday that EnergySolutions signed a contract in December with Studsvik Inc. That's a U.S. subsidiary of Sweden's Studsvik Holding.
  • The plan is to use the company's THOR (Thermal volume/Weight Reduction Technology) to process nuclear power plant waste into solid form rather than a mix of powdery, radioactive resins.
  • Studsvik's patented technology features a pyrolysis / steam reforming system to volume and mass reduce organic waste streams to a non-reactive waste form for efficient Disposal or On-site Storage. Bead Resins, Powdered Filter Medias, Sludges, Activated Charcoal, Non-Metal Filter Cartridges, and Dry Active Wastes (DAW) all have been successfully processed. This entire process is referred to as Thermal Organic Reduction or THOR.
  • ...2 more annotations...
  • After processing at Studsvik's facility in Erwin, Tenn., the waste will be disposed of at EnergySolutions' plant in Tooele County, about 80 miles west of Salt Lake City.
  • Officials say the final product doesn't exceed the low-level class A radioactivity limits that the EnergySolutions Utah facility is licensed to accept
D'coda Dcoda

Three Plutonium Brothers of Japan: "They Are So Safe You Can Drink It" (Updated with Tr... - 0 views

  • The original Japanese video was compiled by "sievert311":http://www.youtube.com/watch?v=Ppon_vEJLCQ&feature=channel_video_title "sievert311" also has a Dr. Shunichi "100 millisievert is safe" Yamashita's video in three languages (English, Spanish, French). Check it out.
  • Tokyo Brown Tabby's latest captioning is over the collection of video clips of three Japanese nuclear researchers, claiming safety for plutonium on the national TV. The first two appeared on TV after the March 11 accident to assure the public that there was nothing to worry about on plutonium, because it was so safe.
  • Three Plutonium Brothers are: (1)Tadashi Narabayashi Professor in Engineering at Hokkaido University (in TV Asahi "Sunday Scramble" on Apr. 3, 2011)
  • ...13 more annotations...
  • Transcript of the video.
  • (3)Hirotada Ohashi Professor in System Innovation University of Tokyo (at a panel discussion in Saga Pref. on Dec. 25, 2005, regarding using MOX fuel at Genkai Nuke Plant)
  • (2)Keiichi Nakagawa Associate Professor in Radiology The University of Tokyo Hospital (in Nippon TV "news every" on Mar. 29, 2011)
  • Well, half of adult males will die if they ingest 200 grams of salt. With only 200 gram. However, oral lethal dose of plutonium-239 is 32g. So, if you compare the toxicity, plutonium, when ingested, is not very different from salt. If you inhale it into your lungs, the lethal dose will be about 10 milligram. This is about the same as potassium cyanide. That sounds scary but the point is plutonium is no different from potassium cyanide. Some toxins like botulism bacillus that causes food poisoning is much more dangerous. Dioxin is even more dangerous. So, unless you turn plutonium into powder and swallow it into your lungs.... MC: "No one would do that."
  • Besides, plutonium can be stopped by a single sheet of paper. Plutonium is made into nuclear fuels in facilities with good protective measures, so you don't need to worry.
  • For example, plutonium will not be absorbed from the skin. Sometimes you ingest it through food, but in that case, most of it will go out in urine or stools. The problem occurs when you inhale it. Inhaling plutonium is said to increase the risk of lung cancer. MC: "How will that affect our daily lives?" Nothing. MC: "Nothing?"
  • Nothing. To begin with, this material is very heavy. So, unlike iodine, it won't disperse in the air. Workers at the plant MAY be affected. So, I'd caution them to be careful. But I don't think the public should worry. For example, 50 years ago when I was born, the amount of plutonium was 1000 times higher than now. MC: "Oh, why?" Because of nuclear testing. So, even if the amount has now increased somewhat, in fact it's still much less than before. However, if it is released into the ocean through exhaust water, that's a problem. Once outside, plutonium hardly decreases.
  • MC: "It takes 24,000 years before it dicreases to half, doen't it?" That's right. So, in that sense, plutonium is problematic. But then again, there will be no effect on the public. I think you can rest easy. MC: "Let me summarize. Plutonium won't be absorbed from the skin. If it's ingested through food, it will go out of the body in urine. If it's inhaled, it may increase the risk of lung cancer. But since it's very heavy, we don't need to worry."
  • I'd like to point out two things. What happens in a [nuclear] accident depends entirely on your assumptions. If you assume everything would break and all the materials inside the reactor would be completely released into the environment, then we would get all kinds of result. But it's like discussing "what if a giant meteorite hit?" You are talking about the probability of an unlikely event. You may think it's a big problem if an accident occurs at the reactor, but the nuclear experts do not think Containment Vessels will break. But the anti-nuclear people will say, "How do you know that?" Hydrogen explosions will not occur and I agree, but their argument is "how do you know that?"
  • So, right now in the safety review, we're assuming every technically possible situation. For example, such and such parts would break, plutonium would be released like this, then it would be stopped here...something like that. We set the hurdle high and still assume even the higher-level radiation would be released and make calculations. This may be very difficult for you to understand this process, but we do. To figure out how far contamination might spread, we analyze based on our assumption of what could occur. However, the public interpret it as something that will occur. Or the anti-nuclear people take it in a wrong way and think we make such an assumption because it will happen. We can't have an argument with such people.
  • Another thing is the toxicity of plutonium. The toxicity of plutonium is very much exaggerated. Experts dealing with health damage by plutonium call this situation "social toxicity." In reality, there's nothing frightening about plutonium. If, in an extreme case, terrorists may take plutonium and throw it into a reservoir, which supplies the tap water. Then, will tens of thousands of people die? No, they won't. Not a single one will likely die. Plutonium is insoluble in water and will be expelled quickly from the body even if it's ingested with water.
  • So, what Dr. Koide is saying is if we take plutonium particles one by one, cut open your lungs and bury the plutonium particles deep in the lungs, then that many people will die. A pure fantasy that would never happen. He's basically saying we can't drive a car, we can't ride a train, because we don't know what will happen. MC: "Thank you very much."
  • See, we've been duped. Plutonium is not dangerous! We'd better ask these three to drink it up to prove it's not dangerous. Then we will feel safe, won't we? Please doctors, would you do it for us?
D'coda Dcoda

Researching Safer Nuclear Energy [09Aug11] - 0 views

  • On Tuesday, the Energy Department, handing out research grants in all kinds of energy fields that are low in carbon dioxide emissions, is announcing that it will give $39 million to university programs around the country to try to solve various nuclear problems.
  • “Storage casks will be stored mostly in coastal or lakeside regions where a salt air environment exists,’’ a summary of the grant says. Cracking related to corrosion could occur in 30 years or less, and the Nuclear Regulatory Commission is studying whether the casks can be used for 100 years as some hope.
  • Two researchers at Clemson University, for example, will get $1 million to study the behavior of particles of nuclear waste when buried in clay in metal canisters that have rusted. One open question, according to the researchers, is how a high temperature, which would be generated by the waste itself, affects the interactions. These are important to understanding how the waste would spread over time. The goal is to “reduce uncertainty” about the life expectancy of atomic particles.
  • ...5 more annotations...
  • With the cancellation of the Yucca Mountain nuclear waste repository in Nevada, many nuclear operators are loading older fuel into sealed metal casks filled with inert gas. The Massachusetts Institute of Technology will get a grant to study how such “dry casks” perform in salt environments.
  • The money will go to a variety of projects at 31 universities in 20 states. Several focus on nuclear waste.
  • Another important concern in the nuclear power field is the aging of reactors. Researchers at Pennsylvania State University will get $456,000 to plan a system that will use ultrasonic waves to look for cracks and other defects in hot metal parts. The idea is to find “microscale” defects that lead to big cracks.
  • Some of the work is aimed at helping to improve new reactors. For example, a researcher at the University of Houston, with collaborators at two other universities, will study a “base isolation system” that would protect reactors against earthquakes.
  • In an earthquake, the ground moves back and forth at a certain frequency, similar to the way a gong struck by a mallet vibrates at a given frequency. But plants could be built atop materials with “frequency band gaps,” that do not vibrate at the frequency that is characteristic of earthquakes, the Energy Department suggests.
D'coda Dcoda

First Large Scale 24/7 Solar Power Plant to be Constructed in U.S [29Sep11] - 0 views

  • The Obama administration provided a loan guarantee of $737 million to SolarReserve on Thursday to construct the first large-scale solar power plant that stores energy and provides electricity 24 hours a day, 7 days a week. The solar power project will be constructed in Nevada. (Note that BrightSource Energy is at a similar stage in the development of a larger solar thermal power plant in the Mojave Desert, receiving a DOE loan guarantee of $1.37 billion in February 2010 and $168 million from Google this April.)
  • The SolarReserve power plant utilizes what is called thermal energy storage to store heat collected from the sun, which is then utilized by the power plant to boil water and produce steam. The steam then turns a steam turbine which generates electricity. This is a how a solar thermal power plant generally works, but keep in mind that there are different types of solar thermal power plants, some of which are not steam.
  • This type collects heat and stores it in molten salt which is then circulated to the boiler. The boiler… boils water into steam which then rushes through a steam turbine.17,500 heliostats* focus or concentrate sunlight onto the collector at the top of a 640-foot tall tower until it reaches a temperature of 1,050 degrees Fahrenheit.
  • ...1 more annotation...
  • The power plant’s electricity generation capacity (basically, how much it can generate) is 110-MW, which makes it one of the larger-scale solar power plants out there today.You might have guessed by now that this type of power plant is able to provide electricity at night, and all week, because it stores heat in the form of salt that is released in the evening so that the plant can continue to generate electricity when it is dark, cloudy, or stormy.
D'coda Dcoda

Ambrose Evans-Pritchard: "Chinese Are Going for the Safe, Thorium Reactors, and They Ar... - 0 views

  • The Telegraph's commentator also thinks, along with many nuke proponents that inhabit the world, that "there has never been a verifiable death" in the West from the nuclear power. (I suppose he doesn't include Russia as part of the West.)Right.In his own words, from The Telegraph 3/20/2011 right before he headed off to the Mayan Highlands:
  • Safe nuclear does exist, and China is leading the way with thoriumA few weeks before the tsunami struck Fukushima’s uranium reactors and shattered public faith in nuclear power, China revealed that it was launching a rival technology to build a safer, cleaner, and ultimately cheaper network of reactors based on thorium.
  • This passed unnoticed –except by a small of band of thorium enthusiasts – but it may mark the passage of strategic leadership in energy policy from an inert and status-quo West to a rising technological power willing to break the mould.
  • ...11 more annotations...
  • If China’s dash for thorium power succeeds, it will vastly alter the global energy landscape and may avert a calamitous conflict over resources as Asia’s industrial revolutions clash head-on with the West’s entrenched consumption
  • China’s Academy of Sciences said it had chosen a “thorium-based molten salt reactor system”. The liquid fuel idea was pioneered by US physicists at Oak Ridge National Lab in the 1960s, but the US has long since dropped the ball. Further evidence of Barack `Obama’s “Sputnik moment”,
  • Chinese scientists claim that hazardous waste will be a thousand times less than with uranium. The system is inherently less prone to disaster.
  • “The reactor has an amazing safety feature,” said Kirk Sorensen, a former NASA engineer at Teledyne Brown and a thorium expert
  • “If it begins to overheat, a little plug melts and the salts drain into a pan. There is no need for computers, or the sort of electrical pumps that were crippled by the tsunami. The reactor saves itself,” he said.
  • “They operate at atmospheric pressure so you don’t have the sort of hydrogen explosions we’ve seen in Japan. One of these reactors would have come through the tsunami just fine. There would have been no radiation release.”
  • why aren't the nuke reactors in the world thorium-based, by now? Evans-Pritchard says it's because thorium cannot be made into weapons: US physicists in the late 1940s explored thorium fuel for power. It has a higher neutron yield than uranium, a better fission rating, longer fuel cycles, and does not require the extra cost of isotope separation.The plans were shelved because thorium does not produce plutonium for bombs.
  • Evans-Pritchard further says western-lifestyle needs nuclear power, and no one has died from nuclear power: I write before knowing the outcome of the Fukushima drama, but as yet none of 15,000 deaths are linked to nuclear failure. Indeed, there has never been a verified death from nuclear power in the West in half a century. Perspective is in order.
  • The International Atomic Energy Agency said the world currently has 442 nuclear reactors. They generate 372 gigawatts of power, providing 14pc of global electricity. Nuclear output must double over twenty years just to keep pace with the rise of the China and India.
  • As the Fukushima I Nuke Plant accident has made abundantly clear to many people (clearly Evans-Pritchard is not one of them), it is the human errors that make up the accident - from the design of the reactor and the plant, fitting the pipes that don't fit, hiding the condition of the degrading parts and equipments and structures and the regulatory agency who helps the operator to hide them, to name only a few.
  • It doesn't quite matter how safe thorium is, when the most dangerous and unpredictable component of all is the humans
Dan R.D.

No Meltdowns or Bombs with Thorium Electrical Power Generation [09Jul11] - 0 views

  • After Fukushima, the Chinese governement have decided to finance the development of the much safer Thorium Fuelled Molten Salt Reactor - this way of producing energy is far safer than Pressure Water Reactor - it does not need pressure and there is no meltdown possibility at all. Further Thorium reactors cannot be used to make nuclear bombs.
  • Thorium is as common as lead, and should have been chosen after the war.At the end of the 2nd World War war plutonium was needed to make nuclear bombs, and this was the main reason for taking the PWR route, because Thorium reactors cannot. Edward Teller - the designer of the atomic bomb - on his death bed - said that a Thorium Fuelled Molten Salt Reactor was a safer design and that the basic Thorium fuel more available than Uranium. He was working on a paper for this type of reactor at his death (see below).
  • It would cost about 1 billion to design a Thorium reactor (Twitter is valued at 7 billion).
D'coda Dcoda

: Is Thorium the Energy Panacea We Have Been Waiting For? [29Nov11] - 0 views

shared by D'coda Dcoda on 12 Dec 11 - No Cached
  • conversations have been popping up about thorium in recent years and how it can be a game-changer in the energy industry. Thorium has incredible potential as an ultra-safe, clean, and cheap nuclear energy source which can power the world for millennia.
  • Thorium is found naturally in rocks in the form of thorium-232, and has a half-life of about 14 billion years. Estimates by the International Atomic Energy Agency (IAEA) show it is about three times more common in the Earth's crust than uranium. It can be obtained through various methods, most commonly through the extraction from monazite sands. Known reserves of thorium are not well-known due to lack of exploratory research. The US Geological Service estimates that the USA, Australia, and India hold the largest reserves. India is believed to have the lion's share of thorium deposits. In the United States, Idaho contains a large vein deposit. The world has an estimated total of 4.4 million tons
  • A newly created organization known as the Weinberg Foundation has taken up the cause of promoting thorium energy. The foundation was named after Dr. Alvin Weinberg, a nuclear energy researcher in the 1960s who laid out the vision of safe and abundant thorium power. He pioneered the Molten Salt Reactor using thorium in its liquid fuel form at the US Oak Ridge National Laboratory. This reactor had an inherently safer design and dramatically reduced the amount of atomic waste in comparison to typical nuclear reactors. Unfortunately, the thorium reactor program was not fully pursued due to political and military reasons.
  • ...3 more annotations...
  • Thorium reactors offer absolutely zero possibility of a meltdown because it cannot sustain a nuclear chain reaction without priming; fission would stop by default.- Thorium reactions do not create weapons-grade by-products.- Waste from a thorium reactive stays radioactive for only a few hundred years rather than tens of thousands of years.- Pure thorium from the ground does not require enrichment, as opposed to uranium.
  • there are projects underway in the United States, China, India, and elsewhere. Germany and India already have existing commercial power stations powered by thorium. India has a goal of meeting 30 percent of its energy needs from thorium by the year 2050. In the US, a reactor project is ongoing in Odessa Texas and should be operational by 2015.
  • For more information: http://www.the-weinberg-foundation.org/index.php
D'coda Dcoda

EPA Rigged RADNET Japan Nuclear Radiation Monitoring Equipment [19May11] - 0 views

  • The EPA re-calibrated (rigged) Japan nuclear radiation monitoring equipment causing them to report lower levels of radioactive fallout after the Fukushima nuclear meltdown than what was detected before the disaster. I recently programmed an application to pull all of the EPA radiation monitoring graphs for all major US cities and complied them into an easy to use web interface. Of course we took the data being reported with a grain of salt under the suspicion that the Feds were fiddling with the results. Now, an investigative report looking into why the much of the EPA radiation monitoring equipment was offline when the Fukushima nuclear meltdown occurred reveals that EPA has in fact rigged radiation monitoring equipment to report lower values of radiation.
  • RadNet – the EPA’s front-line, radiological detection network is severely flawed and suffers from maintenance and reliability issues. The lack of consistent data and the number of units offline (a techie term for broken) at the time they were most needed shows that the EPA was not prepared for this emergency. Besides that fact the broken system left us all unprotected; the confusion, apprehension and fear witnessed as people try to wade through the incomplete and inaccurate data online is evidenced by an exchange on the UC Berkely website over this RadNet graph:
  • The graph shows that this monitoring station was one of the units actually running on  3/11 . The readings were significantly higher prior to 3/11 and drop to a much lower level  afterwards. This is an indication that the units were running in an uncalibrated condition and were adjusted only after the events at Fukushima. Who is responsible for assuring that the system is up and running?  The EPA contracted this responsibility to a private company, Environmental Dimensions, Inc.
  • ...2 more annotations...
  • Environmental Dimensions, Inc (EDI) has provided maintenance for EPA’s RadNet monitoring systems under a sole source contract which can be viewed at the end of this article. The base amount of the contract is $238,000.00. This does not include materials and travel, which is billed back to the government as needed. The contract was awarded to what is stated as a “Woman-owned 8(a) Small Disadvantaged Business“.  The disadvantaged woman in this case is EDI company president Patricia S. Bradshaw, former Deputy Under Secretary of Defense appointed by George Bush.
  • In reality, the US has seen an increase in radiation levels as evidenced by several nuclear fallout simulations, along with spikes in radiation in the drinking water, rainwater, milk, and food. In fact, the graph above is not the only graph that is suspect either. Here are some more of the EPA RADNET radiation graphs that show drops in radiation levels, after the Fukushima meltdown, which should have shown increases. Keep in mind, some clearly show spikes after the event but there is still a significant drop in the baseline levels of radiation. Other graphs show an unexplained drop-offs in radiation levels some time after the quake.
D'coda Dcoda

Medical Journal Article: 14,000 U.S. Deaths Tied to Fukushima Reactor Disaster Fallout ... - 0 views

  • Impact Seen As Roughly Comparable to Radiation-Related Deaths After Chernobyl; Infants Are Hardest Hit, With Continuing Research Showing Even Higher Possible Death Count
  • An estimated 14,000 excess deaths in the United States are linked to the radioactive fallout from the disaster at the Fukushima nuclear reactors in Japan, according to a major new article in the December 2011 edition of the International Journal of Health Services. This is the first peer-reviewed study published in a medical journal documenting the health hazards of Fukushima.Authors Joseph Mangano and Janette Sherman note that their estimate of 14,000 excess U.S. deaths in the 14 weeks after the Fukushima meltdowns is comparable to the 16,500 excess deaths in the 17 weeks after the Chernobyl meltdown in 1986.
  • The rise in reported deaths after Fukushima was largest among U.S. infants under age one. The 2010-2011 increase for infant deaths in the spring was 1.8 percent, compared to a decrease of 8.37 percent in the preceding 14 weeks.The IJHS article will be published Tuesday and will be available online as of 11 a.m. EST at http://www.radiation.org . Just six days after the disastrous meltdowns struck four reactors at Fukushima on March 11, scientists detected the plume of toxic fallout had arrived over American shores. Subsequent measurements by the U.S. Environmental Protection Agency (EPA) found levels of radiation in air, water, and milk hundreds of times above normal across the U.S. The highest detected levels of Iodine-131 in precipitation in the U.S. were as follows (normal is about 2 picocuries I-131 per liter of water): Boise, ID (390); Kansas City (200); Salt Lake City (190); Jacksonville, FL (150); Olympia, WA (125); and Boston, MA (92)
  • ...2 more annotations...
  • Epidemiologist Joseph Mangano, MPH MBA, said: "This study of Fukushima health hazards is the first to be published in a scientific journal. It raises concerns, and strongly suggests that health studies continue, to understand the true impact of Fukushima in Japan and around the world
  • Internist and toxicologist Janette Sherman, MD, said: "Based on our continuing research, the actual death count here may be as high as 18,000, with influenza and pneumonia, which were up five-fold in the period in question as a cause of death. Deaths are seen across all ages, but we continue to find that infants are hardest hit because their tissues are rapidly multiplying, they have undeveloped immune systems, and the doses of radioisotopes are proportionally greater than for adults."Dr. Sherman is an adjunct professor, Western Michigan University, and contributing editor of "Chernobyl - Consequences of the Catastrophe for People and the Environment" published by the NY Academy of Sciences in 2009, and author of "Chemical Exposure and Disease and Life's Delicate Balance - Causes and Prevention of Breast Cancer."The Centers for Disease Control and Prevention (CDC) issues weekly reports on numbers of deaths for 122 U.S. cities with a population over 100,000, or about 25-30 percent of the U.S. In the 14 weeks after Fukushima fallout arrived in the U.S. (March 20 to June 25), deaths reported to the CDC rose 4.46 percent from the same period in 2010, compared to just 2.34 percent in the 14 weeks prior. Estimated excess deaths during this period for the entire U.S. are about 14,000.
D'coda Dcoda

Whistle-blower talks, container vessel is melting like honeycomb [03Jan11] - 0 views

  • A whistle-blower of Tepco leaked the actual situation of Fukushima plant. He left his comments on a Japanese forum. Here are the messages.
  • Boring survey around reactor 2 is coming to the climax. As a result, the announcement of the government and Tepco has to be denied. If it’s soft material, they can do horizontal boring with such a weak equipment (like the top picture ) but when it comes to the concrete of the reactor building it’s impossible. They need to do boring with a foreign heavy equipment at an angle. They do boring to reach to under the container vessel. (like the bottom 2 pictures)
  • When they do boring where they don’t need to take a sample they drill roughly with this green rotary diamond bit but the dust is lethal because it’s too radioactive. When they need to take a sample, they change the diamond bit to hole saw type of bit. However, diamond is weak for the heat so when it’s hotter than 500℃ they use the standard type of the tungsten carbide instead.    The bottom 3 pictures are the samples taken.
  • ...3 more annotations...
  • Probably the iron part of the core is uranium pellet unreacted – not sure yet because it’s still before the analysis. It’s beyond the max reading of 500X100 CPM. These yellow concrete slags come out from under the building one after one. It means that the container vessel is melting like honeycomb at least – doesn’t it? Otherwise why would metal uranium comes out of there ?
  • Taking a part of the concrete slag sample. Put it into the lead case (Chiyoda technol) and take it to a lab. I don’t know if it’s because they gave sea water to cool down or because it’s brackish area, if natrium (sodium salt) of sea water made a chemical reaction with calcium carbonate in the concrete to become diuranate natrium (sodium diuranate) or not, it looks yellow as yellow cake
  • made up my mind to take out the slags from the shelter to take pictures of them. wore protective clothing. When it’s taken out, it was over 400 ℃ but now it’s cooled down to 100 ℃. Can you see this big metal crystal (extremely radioactive) and the oxidized concrete looking like yellow cake? Can you believe it is out of the container vessel. It’s over 500 mSv/h, my geiger counter went over the limit. was scared so put it back to the shelter soon as I took a couple of the pictures.
  •  
    Lots of good photos
D'coda Dcoda

Leakage from spent fuel pool of reactor 4 , spent fuel pool completely exposed [09Nov11] - 0 views

  • Tepco announced that water purifying system leaked liquid at spent fuel pool of reactor 4.
  • It happened on 11/8/2011. No announcement about the radiation level or leaked nuclide etc.. The system is to take off the salt from water. It happened in the high pressure pump part of the water purifying system. A journalist of Shukan Asahi, Mr.Imanishi was invited to go into the site by an actual Fukushima worker. The Tepco worker had sanity enough to think Tepco and the government should reveal the truth because it is the world wide / historical industrial disaster. He wanted the journalist to report what is actually going on in the plant. From his report, the spent fuel pool of reactor 4 is completely “exposed”.
D'coda Dcoda

TEPCO Is Not Providing English Translation of Its Report to NISA on Emergency Cooling S... - 0 views

  • The Japanese government seems to be "instructing" TEPCO not to release certain information in English.TEPCO submitted the report to its regulatory agency Nuclear and Industrial Safety Agency (NISA) "on the measures to continue water injection into reactors of Units 1 to 3 at Fukushima Daiichi Nuclear Power Station" on August 3. It's in Japanese only, and it may or may not be translated into English.According to TEPCO:We have provided a Japanese press release version of the instruction document received from NISA. However, at this time we have reserved the right not to provide an English version due to potential misunderstandings that may arise from an inaccurate rendering of the original Japanese text. We may provide the English translation that NISA releases in our press releases. However, in principle we would advise you to visit the NISA website for timely and accurate information.(From TEPCO's English press release on August 3 explaining why they are releasing the information only in Japanese.)The 34-page Japanese report is here.
  • The report talks about the fuel inside the Reactor Pressure Vessels;It talks about the reactors as if they were sound;It states that zirconium will start to interact with water at a certain temperature (1,200 degrees Celsius).
  • Most likely, there is no fuel left inside the RPVs at Fukushima I Nuke Plant. Even if there is, it is not fuel any more but "corium" - fuel, control rods, instruments, whatever inside the RPV, melted together. TEPCO has already admitted that there are holes in the RPV, and holes in the Containment Vessels. There is no zirconium left because there is no cladding left.
  • ...3 more annotations...
  • nowhere in the report does the company say anything about melted fuel, broken reactors, water in the basements, or extremely high radiation at certain locations in the plant.But the report goes on to describe the elaborate backup pump system and power system as if what they are dealing with is normal (i.e. without cracks or holes at the bottom) reactors with intact fuel rods inside the RPVs with control rods safely deployed in a clean nuclear power plant, and all they need to worry is how they can continue the cooling; or as if the salt-encrusted molten mess of everything that was inside the RPV behaves just the same as normal fuel rods in a normal reactor.
  • Why was TEPCO asked by NISA to submit this report to begin with? So that the national government can begin the discussion with the local municipalities within the 20-kilometer radius evacuation zone for the return of the residents to their towns and villages. The discussion is to begin this month, and TEPCO's report will be used to reassure the residents that Fukushima I Nuke Plant is so stable now with the solid plans (to be approved by NISA, which no doubt will happen very soon) to cool the fuels in the reactors even in case of an emergency.
  • Remember the mayor of Naraha-machi, where Fukushima II Nuclear Power Plant is located? He wants TEPCO to restart the plant so that 5,000 jobs will return to the town. He also wanted to invite the government to build the final processing plant of spent nuclear fuels in his town. He would be the first one to highly approve of the report so that his town can continue to prosper with nuclear money.
D'coda Dcoda

Nuclear safety: A dangerous veil of secrecy [11Aug11] - 0 views

  • There are battles being fought on two fronts in the five months since a massive earthquake and tsunami damaged the Daiichi nuclear power plant in Fukushima, Japan. On one front, there is the fight to repair the plant, operated by the Tokyo Electric Power Company (TEPCO) and to contain the extent of contamination caused by the damage. On the other is the public’s fight to extract information from the Japanese government, TEPCO and nuclear experts worldwide.
  • The latter battle has yielded serious official humiliation, resulting high-profile resignations, scandals, and promises of reform in Japan’s energy industry whereas the latter has so far resulted in a storm of anger and mistrust. Even most academic nuclear experts, seen by many as the middle ground between the anti-nuclear activists and nuclear lobby itself, were reluctant to say what was happening: That in Fukushima, a community of farms, schools and fishing ports, was experiencing a full-tilt meltdown, and that, as Al Jazeera reported in June, that the accident had most likely caused more radioactive contamination than Chernobyl
  • As recently as early August, those seeking information on the real extent of the damage at the Daiichi plant and on the extent of radioactive contamination have mostly been reassured by the nuclear community that there’s no need to worry.
  • ...29 more annotations...
  • The money trail can be tough to follow - Westinghouse, Duke Energy and the Nuclear Energy Institute (a "policy organisation" for the nuclear industry with 350 companies, including TEPCO, on its roster) did not respond to requests for information on funding research and chairs at universities. But most of the funding for nuclear research does not come directly from the nuclear lobby, said M.V. Ramana, a researcher at Princeton University specialising in the nuclear industry and climate change. Most research is funded by governments, who get donations - from the lobby (via candidates, political parties or otherwise).
  • “There's a lot of secrecy that can surround nuclear power because some of the same processes can be involved in generating electricity that can also be involved in developing a weapon, so there's a kind of a veil of secrecy that gets dropped over this stuff, that can also obscure the truth” said Biello. "So, for example in Fukushima, it was pretty apparent that a total meltdown had occurred just based on what they were experiencing there ... but nobody in a position of authority was willing to say that."
  • This is worrying because while both anti-nuclear activists and the nuclear lobby both have openly stated biases, academics and researchers are seen as the middle ground - a place to get accurate, unbiased information. David Biello, the energy and climate editor at Scientific American Online, said that trying to get clear information on a scenario such as the Daiichi disaster is tough.
  • "'How is this going to affect the future of nuclear power?'That’s the first thought that came into their heads," said Ramana, adding, "They basically want to ensure that people will keep constructing nuclear power plants." For instance, a May report by MIT’s Center For Advanced Nuclear Energy Systems (where TEPCO funds a chair) points out that while the Daiichi disaster has resulted in "calls for cancellation of nuclear construction projects and reassessments of plant license extensions" which might "lead to a global slow-down of the nuclear enterprise," that  "the lessons to be drawn from the Fukushima accident are different."
  • "In the United States, a lot of the money doesn’t come directly from the nuclear industry, but actually comes from the Department of Energy (DOE). And the DOE has a very close relationship with the industry, and they sort of try to advance the industry’s interest," said Ramana. Indeed, nuclear engineering falls under the "Major Areas of Research" with the DOE, which also has nuclear weapons under its rubric. The DOE's 2012 fiscal year budge request to the US Congress for nuclear energy programmes was $755m.
  • "So those people who get funding from that….it’s not like they (researchers) want to lie, but there’s a certain amount of, shall we say, ideological commitment to nuclear power, as well as a certain amount of self-censorship."  It comes down to worrying how their next application for funding might be viewed, he said. Kathleen Sullivan, an anti-nuclear specialist and disarmament education consultant with the United Nations Office of Disarmament Affairs, said it's not surprising that research critical of the nuclear energy and weapons isn't coming out of universities and departments that participate in nuclear research and development.
  • "It (the influence) of the nuclear lobby could vary from institution to institution," said Sullivan. "If you look at the history of nuclear weapons manufacturing in the United States, you can see that a lot of research was influenced perverted, construed in a certain direction."
  • Sullivan points to the DOE-managed Lawrence Berkeley National Laboratory at the University of California in Berkley (where some of the research for the first atomic bomb was done) as an example of how intertwined academia and government-funded nuclear science are.
  • "For nuclear physics to proceed, the only people interested in funding it are pro-nuclear folks, whether that be industry or government," said Biello. "So if you're involved in that area you've already got a bias in favour of that technology … if you study hammers, suddenly hammers seem to be the solution to everything."
  • And should they find results unfavourable to the industry, Ramana said they would "dress it up in various ways by saying 'Oh, there’s a very slim chance of this, and here are some safety measure we recommend,' and then the industry will say, 'Yeah,yeah, we’re incorporating all of that.'" Ramana, for the record, said that while he's against nuclear weapons, he doesn't have a moral position on nuclear power except to say that as a cost-benefit issue, the costs outweigh the benefits, and that "in that sense, expanding nuclear power isn't a good idea." 
  • The Center for Responsive Politics - a non-partisan, non-profit elections watchdog group – noted that even as many lobbying groups slowed their spending the first quarter of the year, the Nuclear industry "appears to be ratcheting up its lobbying" increasing its multi-million dollar spending.
  • Among the report's closing thoughts are concerns that "Decision-making in the  immediate aftermath of a major crisis is often influenced by emotion," and whether"an accident like Fukushima, which is so far beyond design basis, really warrant a major overhaul of current nuclear safety regulations and practises?" "If so," wonder the authors, "When is safe safe enough? Where do we draw the line?"
  • The Japanese public, it seems, would like some answers to those very questions, albeit from a different perspective.  Kazuo Hizumi, a Tokyo-based human rights lawyer, is among those pushing for openness. He is also an editor at News for the People in Japan, a news site advocating for transparency from the government and from TEPCO. With contradicting information and lack of clear coverage on safety and contamination issues, many have taken to measuring radiation levels with their own Geiger counters.
  • "The public fully trusted the Japanese Government," said Hizumi. But the absence of "true information" has massively diminished that trust, as, he said, has the public's faith that TEPCO would be open about the potential dangers of a nuclear accident.
  • A report released in July by Human Rights Now highlights the need for immediately accessible information on health and safety in areas where people have been affected by the disaster, including Fukushima, especially on the issues of contaminated food and evacuation plans.
  • A 'nuclear priesthood' Biello describes the nuclear industry is a relatively small, exclusive club.
  • The interplay between academia and also the military and industry is very tight. It's a small community...they have their little club and they can go about their business without anyone looking over their shoulder. " This might explain how, as the Associated Press reported in June, that the U.S. Nuclear Regulatory Commission was "working closely with the nuclear power industry to keep the nationalise ageing reactors operating within standards or simply failing to enforce them."
  • However, with this exclusivity comes a culture of secrecy – "a nuclear priesthood," said Biello, which makes it very difficult to parse out a straightforward answer in the very technical and highly politicised field.  "You have the proponents, who believe that it is the technological salvation for our problems, whether that's energy, poverty, climate change or whatever else. And then you have opponents who think that it's literally the worst thing that ever happened and should be immediately shut back up in a box and buried somewhere," said Biello, who includes "professors of nuclear engineering and Greenpeace activists" as passionate opponents on the nuclear subject.
  • In fact, one is hard pressed to find a media report quoting a nuclear scientist at any major university sounding the alarms on the risks of contamination in Fukushima. Doing so has largely been the work of anti-nuclear activists (who have an admitted bias against the technology) and independent scientists employed by think tanks, few of whom responded to requests for interviews.
  • So, one's best bet, said Biello, is to try and "triangulate the truth" - to take "a dose" from anti-nuclear activists, another from pro-nuclear lobbyists and throw that in with a little bit of engineering and that'll get you closer to the truth. "Take what everybody is saying with a grain of salt."
  • Since World War II, the process of secrecy – the readiness to invoke "national security" - has been a pillar of the nuclear establishment…that establishment, acting on the false assumption that "secrets" can be hidden from the curious and knowledgeable, has successfully insisted that there are answers which cannot be given and even questions which cannot be asked. The net effect is to stifle debate about the fundamental of nuclear policy. Concerned citizens dare not ask certain questions, and many begin to feel that these matters which only a few initiated experts are entitled to discuss.  If the above sounds like a post-Fukushima statement, it is not. It was written by Howard Morland for the November 1979 issue of The Progressive magazine focusing on the hydrogen bomb as well as the risks of nuclear energy.
  • The US government - citing national security concerns - took the magazine to court in order to prevent the issue from being published, but ultimately relented during the appeals process when it became clear that the information The Progressive wanted to publish was already public knowledge and that pursuing the ban might put the court in the position of deeming the Atomic Energy Act as counter to First Amendment rights (freedom of speech) and therefore unconstitutional in its use of prior restraint to censor the press.
  • But, of course, that's in the US, although a similar mechanism is at work in Japan, where a recently created task force aims to "cleanse" the media of reportage that casts an unfavourable light on the nuclear industry (they refer to this information as "inaccurate" or a result of "mischief." The government has even go so far as to accept bids from companies that specialise in scouring the Internet to monitor the Internet for reports, Tweets and blogs that are critical of its handling of the Daiichi disaster, which has presented a unique challenge to the lobby there.
  • "They do not know how to do it," he said of some of the community groups and individuals who have taken to measure contamination levels in the air, soil and food
  •  Japan's government has a history of slow response to TEPCO's cover-ups. In 1989, that Kei Sugaoka, a nuclear energy at General Electric who inspected and repaired plants in Japan and elsewhere, said he spotted cracks in steam dryers and a "misplacement" or 180 degrees in one dryer unit. He noticed that the position of the dryer was later omitted from the inspection record's data sheet. Sugaoka told a Japanese networkthat TEPCO had instructed him to "erase" the flaws, but he ultimately wrote a whistleblowing letter to METI, which resulted in the temporary 17 TEPCO reactors, including ones at the plant in Fukushima.
  • the Japanese nuclear lobby has been quite active in shaping how people see nuclear energy. The country's Ministry of Education, together with the Natural Resources Ministry (of of two agencies under Japan's Ministry of Economy, Trade and Industry - METI - overseeing nuclear policies) even provides schools with a nuclear energy information curriculum. These worksheets - or education supplements - are used to inform children about the benefits of nuclear energy over fossil fuels.
  • There’s reason to believe that at least in one respect, Fukushima can’t and won’t be another Chernobyl, at least due to the fact that the former has occurred in the age of the Internet whereas the latter took place in the considerably quaint 80s, when a car phone the size of a brick was considered the height of communications technology to most. "It (a successful cover up) is definitely a danger in terms of Fukushima, and we'll see what happens. All you have to do is look at the first couple of weeks after Chernobyl to see the kind of cover up," said Biello. "I mean the Soviet Union didn't even admit that anything was happening for a while, even though everybody was noticing these radiation spikes and all these other problems. The Soviet Union was not admitting that they were experiencing this catastrophic nuclear failure... in Japan, there's a consistent desire, or kind of a habit, of downplaying these accidents, when they happen. It's not as bad as it may seem, we haven't had a full meltdown."
  • Fast forward to 2011, when video clips of each puff of smoke out of the Daiichi plant make it around the world in seconds, news updates are available around the clock, activists post radiation readings on maps in multiple languages and Google Translate picks up the slack in translating every last Tweet on the subject coming out of Japan.
  • it will be a heck of a lot harder to keep a lid on things than it was 25 years ago. 
D'coda Dcoda

The Thorium Reactor, A Nuclear Energy Alternative [19Sep11] - 0 views

  • After Fukushima a great deal of awareness on the dangers of nuclear energy has ignited a series of reactions in society, mainly a generalized rejection to nuclear energy and a call to develop cleaner and safer sources of energy. When thinking about nuclear energy mainly 2 sources come to peoples minds, solar and wind power condemning any sort of nuclear power.  Nuclear power has been associated with Weapons of Mass Destruction, radiation sickness and disease.  However, this is not due to the nuclear power itself but due to the nuclear fuel used to generate this nuclear power.
  • The above are just some of the most common byproducts, (better known as nuclear waste) of a nuclear fuel cycle, all of these substances are extremely poisonous, causing a variety of diseases, cancers and genetic mutations to the victim.  The worst part is that most of them remain in the environment of decades or even thousands of years, so if accidentally released to the environment they become a problem that future generations have to deal with.  Therefore, in nuclear energy the problem is in the fuel not in the engine. Lets start with the Thorium Reactors.  Thorium is a naturally occurring radioactive chemical element, found in abundance throughout the world.  It is estimated that every cubic meter of earth’s crust contains about 12 grams of this mineral, enough quantity to power 1 person’s electricity consumption for 12-25 years.  Energy is produced from thorium in a process known as the Thorium Fuel Cycle, were a nuclear fuel cycle is derived from the natural abundant isotope of thorium.
  • In today’s world the main fuel for nuclear power is a naturally occurring radioactive mineral, Uranium.  This mineral is one of the most dense metals in the periodic table which allows it to reach a chain reaction that can yield huge amounts of energy that can be exploited for an extended period of time.  Unfortunately the nuclear fuel cycle of Uranium produced extremely dangerous byproducts, commonly known as nuclear waste.  These are produced in liquid, solid and gaseous form in a wide variety of deadly substances, such as: Iodine 131 Strontium 90 Cesium 137 Euricium 155 Krypton 85 Cadmium 113 Tin 121 Samarium 151 Technetium-99
  • ...2 more annotations...
  • Thorium can be used as fuel in a nuclear reactor, and it is a fertile material, which allows it to be used to produce nuclear fuel in a breeder reactor.  These are some of the benefits of Thorium reactors compared to Uranium. Weapons-grade fissionable material is harder to retrieve safely and clandestinely from a thorium reactor; Thorium produces 10 to 10,000 times less long-lived radioactive waste; Thorium comes out of the ground as a 100% pure, usable isotope, which does not require enrichment, whereas natural uranium contains only 0.7% fissionable U-235; Thorium cannot sustain a nuclear chain reaction without priming,[22] so fission stops by default. The following conference by Kirk Sorensen explains a Liquid-Fuoride Thorium Reactor a next generation nuclear reactor.
  • References Thorium – Wikipedia, the free encyclopedia http://bit.ly/qYwoAv Thorium fuel cycle – Wikipedia, the free encyclopedia http://bit.ly/piNoKb Molten salt reactor – Wikipedia, the free encyclopedia http://bit.ly/qlyAxe Thorium Costs http://bit.ly/oQRgXK Thorium – The Better Nuclear Fuel? http://bit.ly/r8xc92
1 - 20 of 27 Next ›
Showing 20 items per page