Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged increase

Rss Feed Group items tagged

D'coda Dcoda

Fukushima radiation alarms doctors [18Aug11] - 0 views

  • Scientists and doctors are calling for a new national policy in Japan that mandates the testing of food, soil, water, and the air for radioactivity still being emitted from Fukushima's heavily damaged Daiichi nuclear power plant."How much radioactive materials have been released from the plant?" asked Dr Tatsuhiko Kodama, a professor at the Research Centre for Advanced Science and Technology and Director of the University of Tokyo's Radioisotope Centre, in a July 27 speech to the Committee of Health, Labour and Welfare at Japan's House of Representatives. "The government and TEPCO have not reported the total amount of the released radioactivity yet," said Kodama, who believes things are far worse than even the recent detection of extremely high radiation levels at the plant. There is widespread concern in Japan about a general lack of government monitoring for radiation, which has caused people to begin their own independent monitoring, which are also finding disturbingly high levels of radiation. Kodama's centre, using 27 facilities to measure radiation across the country, has been closely monitoring the situation at Fukushima - and their findings are alarming.According to Dr Kodama, the total amount of radiation released over a period of more than five months from the ongoing Fukushima nuclear disaster is the equivalent to more than 29 "Hiroshima-type atomic bombs" and the amount of uranium released "is equivalent to 20" Hiroshima bombs.
  • Kodama, along with other scientists, is concerned about the ongoing crisis resulting from the Fukushima situation, as well as what he believes to be inadequate government reaction, and believes the government needs to begin a large-scale response in order to begin decontaminating affected areas.Distrust of the Japanese government's response to the nuclear disaster is now common among people living in the effected prefectures, and people are concerned about their health.Recent readings taken at the plant are alarming.When on August 2nd readings of 10,000 millisieverts (10 sieverts) of radioactivity per hour were detected at the plant, Japan's science ministry said that level of dose is fatal to humans, and is enough radiation to kill a person within one to two weeks after the exposure. 10,000 millisieverts (mSv) is the equivalent of approximately 100,000 chest x-rays.
  • t is an amount 250 per cent higher than levels recorded at the plant in March after it was heavily damaged by the earthquake and ensuing tsunami. The operator of Japan's crippled Fukushima Daiichi nuclear power plant, Tokyo Electric Power Company (TEPCO), that took the reading, used equipment to measure radiation from a distance, and was unable to ascertain the exact level because the device's maximum reading is only 10,000 mSv. TEPCO also detected 1,000 millisieverts (mSv) per hour in debris outside the plant, as well as finding 4,000 mSv per hour inside one of the reactor buildings.
  • ...35 more annotations...
  • he Fukushima disaster has been rated as a "level seven" on the International Nuclear and Radiological Event Scale (INES). This level, the highest, is the same as the Chernobyl nuclear disaster in 1986, and is defined by the scale as: "[A] major release of radioactive material with widespread health and environmental effects requiring implementation of planned and extended countermeasures."The Fukushima and Chernobyl disasters are the only nuclear accidents to have been rated level seven on the scale, which is intended to be logarithmic, similar to the scale used to describe the comparative magnitude of earthquakes. Each increasing level represents an accident approximately ten times more severe than the previous level.
  • Doctors in Japan are already treating patients suffering health effects they attribute to radiation from the ongoing nuclear disaster."We have begun to see increased nosebleeds, stubborn cases of diarrhoea, and flu-like symptoms in children," Dr Yuko Yanagisawa, a physician at Funabashi Futawa Hospital in Chiba Prefecture, told Al Jazeera.
  • She attributes the symptoms to radiation exposure, and added: "We are encountering new situations we cannot explain with the body of knowledge we have relied upon up until now.""The situation at the Daiichi Nuclear facility in Fukushima has not yet been fully stabilised, and we can't yet see an end in sight," Yanagisawa said. "Because the nuclear material has not yet been encapsulated, radiation continues to stream into the environment."
  • Al Jazeera's Aela Callan, reporting from Japan's Ibaraki prefecture, said of the recently detected high radiation readings: "It is now looking more likely that this area has been this radioactive since the earthquake and tsunami, but no one realised until now."Workers at Fukushima are only allowed to be exposed to 250 mSv of ionising radiation per year.
  • radioactive cesium exceeding the government limit was detected in processed tea made in Tochigi City, about 160km from the troubled Fukushima Daiichi nuclear plant, according to the Tochigi Prefectural Government, who said radioactive cesium was detected in tea processed from leaves harvested in the city in early July. The level is more than 3 times the provisional government limit.
  • anagisawa's hospital is located approximately 200km from Fukushima, so the health problems she is seeing that she attributes to radiation exposure causes her to be concerned by what she believes to be a grossly inadequate response from the government.From her perspective, the only thing the government has done is to, on April 25, raise the acceptable radiation exposure limit for children from 1 mSv/year to 20 mSv/year.
  • This has caused controversy, from the medical point of view," Yanagisawa told Al Jazeera. "This is certainly an issue that involves both personal internal exposures as well as low-dose exposures."Junichi Sato, Greenpeace Japan Executive Director, said: "It is utterly outrageous to raise the exposure levels for children to twenty times the maximum limit for adults."
  • The Japanese government cannot simply increase safety limits for the sake of political convenience or to give the impression of normality."Authoritative current estimates of the health effects of low-dose ionizing radiation are published in the Biological Effects of Ionising Radiation VII (BEIR VII) report from the US National Academy of Sciences.
  • he report reflects the substantial weight of scientific evidence proving there is no exposure to ionizing radiation that is risk-free. The BEIR VII estimates that each 1 mSv of radiation is associated with an increased risk of all forms of cancer other than leukemia of about 1-in-10,000; an increased risk of leukemia of about 1-in-100,000; and a 1-in-17,500 increased risk of cancer death.
  • r Helen Caldicott, the founding president of Physicians for Social Responsibility, a group that was awarded the Nobel Peace Prize in 1985, is equally concerned about the health effects from Japan's nuclear disaster."Radioactive elements get into the testicles and ovaries, and these cause genetic disease like diabetes, cystic fibrosis, and mental retardation," she told Al Jazeera. "There are 2,600 of these diseases that get into our genes and are passed from generation to generation, forever."
  • So far, the only cases of acute radiation exposure have involved TEPCO workers at the stricken plant. Lower doses of radiation, particularly for children, are what many in the medical community are most concerned about, according to Dr Yanagisawa.
  • Humans are not yet capable of accurately measuring the low dose exposure or internal exposure," she explained, "Arguing 'it is safe because it is not yet scientifically proven [to be unsafe]' would be wrong. That fact is that we are not yet collecting enough information to prove the situations scientifically. If that is the case, we can never say it is safe just by increasing the annual 1mSv level twenty fold."
  • Her concern is that the new exposure standards by the Japanese government do not take into account differences between adults and children, since children's sensitivity to radiation exposure is several times higher than that of adults.
  • Al Jazeera contacted Prime Minister Naoto Kan's office for comment on the situation. Speaking on behalf of the Deputy Cabinet Secretary for Public Relations for the Prime Minister's office, Noriyuki Shikata said that the Japanese government "refers to the ICRP [International Commission on Radiological Protection] recommendation in 2007, which says the reference levels of radiological protection in emergency exposure situations is 20-100 mSv per year. The Government of Japan has set planned evacuation zones and specific spots recommended for evacuation where the radiation levels reach 20 mSv/year, in order to avoid excessive radiation exposure."
  • he prime minister's office explained that approximately 23bn yen ($300mn) is planned for decontamination efforts, and the government plans to have a decontamination policy "by around the end of August", with a secondary budget of about 97bn yen ($1.26bn) for health management and monitoring operations in the affected areas. When questioned about the issue of "acute radiation exposure", Shikata pointed to the Japanese government having received a report from TEPCO about six of their workers having been exposed to more than 250 mSv, but did not mention any reports of civilian exposures.
  • Prime Minister Kan's office told Al Jazeera that, for their ongoing response to the Fukushima crisis, "the government of Japan has conducted all the possible countermeasures such as introduction of automatic dose management by ID codes for all workers and 24 hour allocation of doctors. The government of Japan will continue to tackle the issue of further improving the health management including medium and long term measures". Shikata did not comment about Kodama's findings.
  • Kodama, who is also a doctor of internal medicine, has been working on decontamination of radioactive materials at radiation facilities in hospitals of the University of Tokyo for the past several decades. "We had rain in Tokyo on March 21 and radiation increased to .2 micosieverts/hour and, since then, the level has been continuously high," said Kodama, who added that his reporting of radiation findings to the government has not been met an adequate reaction. "At that time, the chief cabinet secretary, Mr Edano, told the Japanese people that there would be no immediate harm to their health."
  • Kodama is an expert in internal exposure to radiation, and is concerned that the government has not implemented a strong response geared towards measuring radioactivity in food. "Although three months have passed since the accident already, why have even such simple things have not been done yet?" he said. "I get very angry and fly into a rage."
  • Radiation has a high risk to embryos in pregnant women, juveniles, and highly proliferative cells of people of growing ages. Even for adults, highly proliferative cells, such as hairs, blood, and intestinal epithelium cells, are sensitive to radiation."
  • Early on in the disaster, Dr Makoto Kondo of the department of radiology of Keio University's School of Medicine warned of "a large difference in radiation effects on adults compared to children".Kondo explained the chances of children developing cancer from radiation exposure was many times higher than adults.
  • Children's bodies are underdeveloped and easily affected by radiation, which could cause cancer or slow body development. It can also affect their brain development," he said.Yanagisawa assumes that the Japanese government's evacuation standards, as well as their raising the permissible exposure limit to 20mSv "can cause hazards to children's health," and therefore "children are at a greater risk".
  • Nishio Masamichi, director of Japan's Hakkaido Cancer Centre and a radiation treatment specialist, published an article on July 27 titled: "The Problem of Radiation Exposure Countermeasures for the Fukushima Nuclear Accident: Concerns for the Present Situation". In the report, Masamichi said that such a dramatic increase in permitted radiation exposure was akin to "taking the lives of the people lightly". He believes that 20mSv is too high, especially for children who are far more susceptible to radiation.
  • n early July, officials with the Japanese Nuclear Safety Commission announced that approximately 45 per cent of children in the Fukushima region had experienced thyroid exposure to radiation, according to a survey carried out in late March. The commission has not carried out any surveys since then.
  • Now the Japanese government is underestimating the effects of low dosage and/or internal exposures and not raising the evacuation level even to the same level adopted in Chernobyl," Yanagisawa said. "People's lives are at stake, especially the lives of children, and it is obvious that the government is not placing top priority on the people's lives in their measures."Caldicott feels the lack of a stronger response to safeguard the health of people in areas where radiation is found is "reprehensible".
  • Millions of people need to be evacuated from those high radiation zones, especially the children."
  • Dr Yanagisawa is concerned about what she calls "late onset disorders" from radiation exposure resulting from the Fukushima disaster, as well as increasing cases of infertility and miscarriages."Incidence of cancer will undoubtedly increase," she said. "In the case of children, thyroid cancer and leukemia can start to appear after several years. In the case of adults, the incidence of various types of cancer will increase over the course of several decades."Yanagisawa said it is "without doubt" that cancer rates among the Fukushima nuclear workers will increase, as will cases of lethargy, atherosclerosis, and other chronic diseases among the general population in the effected areas.
  • Radioactive food and water
  • An August 1 press release from Japan's MHLW said no radioactive materials have been detected in the tap water of Fukushima prefecture, according to a survey conducted by the Japanese government's Nuclear Emergency Response Headquarters. The government defines no detection as "no results exceeding the 'Index values for infants (radioactive iodine)'," and says "in case the level of radioactive iodine in tap water exceeds 100 Bq/kg, to refrain from giving infants formula milk dissolved by tap water, having them intake tap water … "
  • Yet, on June 27, results were published from a study that found 15 residents of Fukushima prefecture had tested positive for radiation in their urine. Dr Nanao Kamada, professor emeritus of radiation biology at Hiroshima University, has been to Fukushima prefecture twice in order to take internal radiation exposure readings and facilitated the study.
  • The risk of internal radiation is more dangerous than external radiation," Dr Kamada told Al Jazeera. "And internal radiation exposure does exist for Fukushima residents."According to the MHLW, distribution of several food products in Fukushima Prefecture remain restricted. This includes raw milk, vegetables including spinach, kakina, and all other leafy vegetables, including cabbage, shiitake mushrooms, bamboo shoots, and beef.
  • he distribution of tealeaves remains restricted in several prefectures, including all of Ibaraki, and parts of Tochigi, Gunma, Chiba, Kanagawa Prefectures.Iwate prefecture suspended all beef exports because of caesium contamination on August 1, making it the fourth prefecture to do so.
  • yunichi Tokuyama, an expert with the Iwate Prefecture Agricultural and Fisheries Department, told Al Jazeera he did not know how to deal with the crisis. He was surprised because he did not expect radioactive hot spots in his prefecture, 300km from the Fukushima nuclear plant."The biggest cause of this contamination is the rice straw being fed to the cows, which was highly radioactive," Tokuyama told Al Jazeera.
  • Kamada feels the Japanese government is acting too slowly in response to the Fukushima disaster, and that the government needs to check radiation exposure levels "in each town and village" in Fukushima prefecture."They have to make a general map of radiation doses," he said. "Then they have to be concerned about human health levels, and radiation exposures to humans. They have to make the exposure dose map of Fukushima prefecture. Fukushima is not enough. Probably there are hot spots outside of Fukushima. So they also need to check ground exposure levels."
  • Radiation that continues to be released has global consequences.More than 11,000 tonnes of radioactive water has been released into the ocean from the stricken plant.
  • Those radioactive elements bio-concentrate in the algae, then the crustaceans eat that, which are eaten by small then big fish," Caldicott said. "That's why big fish have high concentrations of radioactivity and humans are at the top of the food chain, so we get the most radiation, ultimately."
D'coda Dcoda

Energy Forecast: Fracking in China, Nuclear Uncertain, CO2 Up [09Nov11] - 0 views

  • This year’s World Energy Outlook report has been published by the International Energy Agency, and says wealthy and industrializing countries are stuck on policies that threaten to lock in “an insecure, inefficient and high-carbon energy system.”You can read worldwide coverage of the report here. Fiona Harvey of the Guardian has a piece on the report that focuses on the inexorable trajectories for carbon dioxide, driven by soaring energy demand in Asia.A variety of graphs and slides can be reviewed here:
  • According to the report, Russia will long remain the world’s leading producer of natural gas, but exploitation of shale deposits in the United States, and increasingly in China, will greatly boost production in those countries (which will be in second and third place for gas production in 2035).Last month, in an interview with James Kanter of The Times and International Herald Tribune, the new head of the energy agency, Maria van der Hoeven, discussed one point made in the report today — that concerns raised by the damage to the Fukushima Daiichi power plant could continue to dampen expansion of nuclear power and add to the challenge of avoiding a big accumulation of carbon dioxide, saying: “Such a reduction would certainly make it more difficult for the world to meet the goal of stabilizing the rise in temperature to 2 degrees Centigrade.”
  • Short-term pressures on oil markets are easing with the economic slowdown and the expected return of Libyan supply. But the average oil price remains high, approaching $120/barrel (in year-2010 dollars) in 2035. Reliance grows on a small number of producers: the increase in output from Middle East and North Africa (MENA) is over 90% of the required growth in world oil output to 2035. If, between 2011 and 2015, investment in the MENA region runs one-third lower than the $100 billion per year required, consumers could face a near-term rise in the oil price to $150/barrel.Oil demand rises from 87 million barrels per day (mb/d) in 2010 to 99 mb/d in 2035, with all the net growth coming from the transport sector in emerging economies. The passenger vehicle fleet doubles to almost 1.7 billion in 2035. Alternative technologies, such as hybrid and electric vehicles that use oil more efficiently or not at all, continue to advance but they take time to penetrate markets.
  • ...5 more annotations...
  • In the WEO’s central New Policies Scenario, which assumes that recent government commitments are implemented in a cautious manner, primary energy demand increases by one-third between 2010 and 2035, with 90% of the growth in non-OECD economies. China consolidates its position as the world’s largest energy consumer: it consumes nearly 70% more energy than the United States by 2035, even though, by then, per capita demand in China is still less than half the level in the United States. The share of fossil fuels in global primary energy consumption falls from around 81% today to 75% in 2035. Renewables increase from 13% of the mix today to 18% in 2035; the growth in renewables is underpinned by subsidies that rise from $64 billion in 2010 to $250 billion in 2035, support that in some cases cannot be taken for granted in this age of fiscal austerity. By contrast, subsidies for fossil fuels amounted to $409 billion in 2010.
  • Here’s the summary of the main points, released today by the agency: “Growth, prosperity and rising population will inevitably push up energy needs over the coming decades. But we cannot continue to rely on insecure and environmentally unsustainable uses of energy,” said IEA Executive Director Maria van der Hoeven. “Governments need to introduce stronger measures to drive investment in efficient and low-carbon technologies. The Fukushima nuclear accident, the turmoil in parts of the Middle East and North Africa and a sharp rebound in energy demand in 2010 which pushed CO2 emissions to a record high, highlight the urgency and the scale of the challenge.”
  • The use of coal – which met almost half of the increase in global energy demand over the last decade – rises 65% by 2035. Prospects for coal are especially sensitive to energy policies – notably in China, which today accounts for almost half of global demand. More efficient power plants and carbon capture and storage (CCS) technology could boost prospects for coal, but the latter still faces significant regulatory, policy and technical barriers that make its deployment uncertain.Fukushima Daiichi has raised questions about the future role of nuclear power. In the New Policies Scenario, nuclear output rises by over 70% by 2035, only slightly less than projected last year, as most countries with nuclear programmes have reaffirmed their commitment to them. But given the increased uncertainty, that could change. A special Low Nuclear Case examines what would happen if the anticipated contribution of nuclear to future energy supply were to be halved. While providing a boost to renewables, such a slowdown would increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change.
  • The future for natural gas is more certain: its share in the energy mix rises and gas use almost catches up with coal consumption, underscoring key findings from a recent WEO Special Report which examined whether the world is entering a “Golden Age of Gas”. One country set to benefit from increased demand for gas is Russia, which is the subject of a special in-depth study in WEO-2011. Key challenges for Russia are to finance a new generation of higher-cost oil and gas fields and to improve its energy efficiency. While Russia remains an important supplier to its traditional markets in Europe, a shift in its fossil fuel exports towards China and the Asia-Pacific gathers momentum. If Russia improved its energy efficiency to the levels of comparable OECD countries, it could reduce its primary energy use by almost one-third, an amount similar to the consumption of the United Kingdom. Potential savings of natural gas alone, at 180 bcm, are close to Russia’s net exports in 2010.
  • In the New Policies Scenario, cumulative CO2 emissions over the next 25 years amount to three-quarters of the total from the past 110 years, leading to a long-term average temperature rise of 3.5°C. China’s per-capita emissions match the OECD average in 2035. Were the new policies not implemented, we are on an even more dangerous track, to an increase of 6°C.“As each year passes without clear signals to drive investment in clean energy, the “lock-in” of high-carbon infrastructure is making it harder and more expensive to meet our energy security and climate goals,” said Fatih Birol, IEA Chief Economist. The WEO presents a 450 Scenario, which traces an energy path consistent with meeting the globally agreed goal of limiting the temperature rise to 2°C. Four-fifths of the total energy-related CO2 emissions permitted to 2035 in the 450 Scenario are already locked-in by existing capital stock, including power stations, buildings and factories. Without further action by 2017, the energy-related infrastructure then in place would generate all the CO2 emissions allowed in the 450 Scenario up to 2035. Delaying action is a false economy: for every $1 of investment in cleaner technology that is avoided in the power sector before 2020, an additional $4.30 would need to be spent after 2020 to compensate for the increased emissions.
D'coda Dcoda

German Nuclear Decommissioning and Renewables Build-Out [23Oct11] - 0 views

  • Germany will be redirecting its economy towards renewable energy, because of the political decision to decommission its nuclear plants, triggered by the Fukushima event in Japan and subsequent public opposition to nuclear energy. Germany's decision would make achieving its 2020 CO2 emission reduction targets more difficult.   To achieve the CO2 emissions reduction targets and replace nuclear energy, renewable energy would need to scale up from 17% in 2010 to 57% of total electricity generation of 603 TWh in 2020, according to a study by The Breakthrough Institute. As electricity generation was 603 TWh in 2010, increased energy efficiency measures will be required to flat-line electricity production during the next 9 years.   Germany has 23 nuclear reactors (21.4 GW), 8 are permanently shut down (8.2 GW) and 15 (13.2 GW) will be shut down by 2022. Germany will be adding a net of 5 GW of coal plants, 5 GW of new CCGT plants and 1.4 GW of new biomass plants in future years. The CCGT plants will reduce the shortage of quick-ramping generation capacity for accommodating variable wind and solar energy to the grid.
  • Germany is planning a $14 billion build-out of transmission systems for onshore and future offshore wind energy in northern Germany and for augmented transmission with France for CO2-free hydro and nuclear energy imports to avoid any shortages.    Germany had fallen behind on transmission system construction in the north because of public opposition and is using the nuclear plant shutdown as leverage to reduce public opposition. Not only do people have to look at a multitude of 450-ft tall wind turbines, but also at thousands of 80 to 135 ft high steel structures and wires of the transmission facilities.   The $14 billion is just a minor down payment on the major grid reorganization required due to the decommissioning of the nuclear plants and the widely-dispersed build-outs of renewables. The exisitng grid is mostly large-central-plant based. 
  • This article includes the estimated capital costs of shutting down Germany's nuclear plants, reorganizing the grids of Germany and its neighbors, and building out renewables to replace the nuclear energy.    Germany’s Renewable Energy Act (EEG) in 2000, guarantees investors above-market fees for solar power for 20 years from the point of installation. In 2010, German investments in  renewables was about $41.2 billion, of which about $36.1 billion in 7,400 MW of solar systems ($4,878/kW). In 2010, German incentives for all renewables was about $17.9 billion, of which about half was for solar systems.   The average subsidy in 2010 was about ($9 billion x 1 euro/1.4 $)/12 TWh = 53.6 eurocents/kWh; no wonder solar energy is so popular in Germany. These subsidies are rolled into electric rates as fees or taxes, and will ultimately make Germany less competitive in world markets.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://mobile.bloomberg.com/news/2011-05-31/merkel-faces-achilles-heel-in-grids-to-unplug-german-nuclear.html http://www.theecologist.org/News/news_analysis/829664/revealed_how_your_country_compares_on_renewable_investment.html http://en.wikipedia.org/wiki/Solar_power_in_Germany  
  • ...12 more annotations...
  • SUMMARY OF ESTIMATED CAPITAL AND OTHER COSTS   The estimated capital costs and other costs for decommissioning the nuclear plants, restoring the sites, building out renewables, wind and solar energy balancing plants, and reorganizing electric grids over 9 years are summarized below.    The capital cost and subsidy cost for the increased energy efficiency measures was not estimated, but will likely need to be well over $180 billion over 9 years, or $20 billion/yr, or $20 b/($3286 b in 2010) x 100% = 0.6% of GDP, or $250 per person per yr.     Decommission nuclear plants, restore sites: 23 @ $1 billion/plant = $23 billion Wind turbines, offshore: 53,300 MW @ $4,000,000/MW = $213.2 billion   Wind turbines, onshore: 27,900 MW @ $2,000,000/MW = $55.8 billion Wind feed-in tariff extra costs rolled into electric rates over 9 years: $200 billion  Solar systems: 82,000 MW @ $4,500,000/MW = $369 billion Solar feed-in tariff extra costs rolled into electric rates over 9 years = $250 billion. Wind and solar energy balancing plants: 25,000 MW of CCGTs @ $1,250,000/MW = $31.3 billion Reorganizing European elecric grids tied to German grids: $150 billion
  • RENEWABLE ENERGY AND ENERGY EFFICIENCY TARGETS   In September 2010 the German government announced the following targets:   Renewable electricity - 35% by 2020 and 80% by 2050 Renewable energy - 18% by 2020, 30% by 2030, and 60% by 2050 Energy efficiency - Reducing the national electricity consumption 50% below 2008 levels by 2050.  http://en.wikipedia.org/wiki/Renewable_energy_in_Germany   Germany has a target to reduce its nation-wide CO2 emissions from all sources by 40% below 1990 levels by 2020 and 80-85% below 1990 levels by 2050. That goal could be achieved, if 100% of electricity is generated by renewables, according to Mr. Flasbarth. Germany is aiming to convince the rest of Europe to follow its lead.
  • A 2009 study by EUtech, engineering consultants, concluded Germany will not achieve its nation-wide CO2 emissions target; the actual reduction will be less than 30%. The head of Germany's Federal Environment Agency (UBA), Jochen Flasbarth, is calling for the government to improve CO2 reduction programs to achieve targets. http://www.spiegel.de/international/germany/0,1518,644677,00.html   GERMAN RENEWABLE ENERGY TO-DATE   Germany announced it had 17% of its electrical energy from renewables in 2010; it was 6.3% in 2000. The sources were 6.2% wind, 5.5% biomass, 3.2% hydro and 2.0% solar. Electricity consumption in 2010 was 603 TWh (production) - 60 TWh (assumed losses) = 543 TWh http://www.volker-quaschning.de/datserv/ren-Strom-D/index_e.php  
  • Wind: At the end of 2010, about 27,200 MW of onshore and offshore wind turbines was installed in Germany at a capital cost of about $50 billion. Wind energy produced was 37.5 TWh, or 6.2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into electricity costs of rate payers was about $50 billion during the past 11 years.   Most wind turbines are in northern Germany. When wind speeds are higher wind curtailment of 15 to 20 percent takes place because of insufficient transmission capacity and quick-ramping gas turbine plants. The onshore wind costs the Germany economy about 12 eurocent/kWh and the offshore wind about 24 eurocent/kWh. The owners of the wind turbines are compensated for lost production.   The alternative to curtailment is to “sell” the energy at European spot prices of about 5 eurocent/kWh to Norway and Sweden which have significant hydro capacity for balancing the variable wind energy; Denmark has been doing it for about 20 years.   As Germany is very marginal for onshore wind energy (nation-wide onshore wind CF 0.167) and nearly all of the best onshore wind sites have been used up, or are off-limits due to noise/visual/environmental impacts, most of the additional wind energy will have to come from OFFSHORE facilities which produce wind energy at about 2 to 3 times the cost of onshore wind energy. http://theenergycollective.com/willem-post/61774/wind-energy-expensive
  • Biomass: At the end of 2010, about 5,200 MW of biomass was installed at a capital cost of about $18 billion. Biomass energy produced was 33.5 TWh, or 5.5% of production. Plans are to add 1,400 MW of biomass plants in future years which, when fully implemented, would produce about 8.6 TWh/yr.   Solar: At the end of 2010, about 17,320 MW of PV solar was installed in Germany at a capital cost of about $100 billion. PV solar energy produced was 12 TWh, or 2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into the electricity costs of rate payers was about $80 billion during the past 11 years.   Most solar panels are in southern Germany (nation-wide solar CF 0.095). When skies are clear, the solar production peaks at about 7 to 10 GW. Because of insufficient capacity of transmission and quick-ramping gas turbine plants, and because curtailment is not possible, part of the solar energy, produced at a cost to the German economy of about 30 to 50 eurocent/kWh is “sold” at European spot prices of about 5 eurocent/kWh to France which has significant hydro capacity for balancing the variable solar energy. http://theenergycollective.com/willem-post/46142/impact-pv-solar-feed-tariffs-germany  
  • Hydro: At the end of 2010, about 4,700 MW of hydro was installed. Hydro energy produced was 19.5 TWh, or 3.2% of production. Hydro growth has been stagnant during the past 20 years. See below website.   As it took about $150 billion of direct investment, plus about $130 billion excess energy cost during the past 11 years to achieve 8.2% of total production from solar and wind energy, and assuming hydro will continue to have little growth, as was the case during the past 20 years (almost all hydro sites have been used up), then nearly all of the renewables growth by 2020 will be mostly from wind, with the remainder from solar and biomass. http://www.renewableenergyworld.com/rea/news/article/2011/03/new-record-for-german-renewable-energy-in-2010??cmpid=WNL-Wednesday-March30-2011   Wind and Solar Energy Depend on Gas: Wind and solar energy is variable and intermittent. This requires quick-ramping gas turbine plants to operate at part-load and quickly ramp up with wind energy ebbs and quickly ramp down with wind energy surges; this happens about 100 to 200 times a day resulting in increased wear and tear. Such operation is very inefficient for gas turbines causing them to use extra fuel/kWh and emit extra CO2/kWh that mostly offset the claimed fuel and CO2 reductions due to wind energy. http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent  
  • Wind energy is often sold to the public as making a nation energy independent, but Germany will be buying gas mostly from Russia supplied via the newly constructed pipeline under the Baltic Sea from St. Petersburg to Germany, bypassing Poland.   GERMANY WITHOUT NUCLEAR ENERGY   A study performed by The Breakthrough Institute concluded to achieve the 40% CO2 emissions reduction target and the decommissioning of 21,400 MW of nuclear power plants by 2022, Germany’s electrical energy mix would have to change from 60% fossil, 23% nuclear and 17% renewables in 2010 to 43% fossil and 57% renewables by 2020. This will require a build-out of renewables, reorganization of Europe’s electric grids (Europe’s concurrence will be needed) and acceleration of energy efficiency measures.   According to The Breakthrough Institite, Germany would have to reduce its total electricity consumption by about 22% of current 2020 projections AND achieve its target for 35% electricity generated from renewables by 2020. This would require increased energy efficiency measures to effect an average annual decrease of the electricity consumption/GDP ratio of 3.92% per year, significantly greater than the 1.47% per year decrease assumed by the IEA's BAU forecasts which is based on projected German GDP growth and current German efficiency policies.
  • The Breakthrough Institute projections are based on electricity consumption of 544  and 532 TWh  in 2008 and 2020, respectively; the corresponding production is 604 TWh in 2008 and 592 TWh in 2020.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://www.iea.org/textbase/nppdf/free/2007/germany2007.pdf   Build-out of Wind Energy: If it is assumed the current wind to solar energy ratio is maintained at 3 to 1, the wind energy build-out will be 80% offshore and 20% onshore, and the electricity production will be 592 TWh, then the estimated capital cost of the offshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.8 offshore/(8,760 hr/yr x average CF 0.35) = 0.0533 TW offshore wind turbines @ $4 trillion/TW = $213 billion and of the onshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.2 onshore/(8,760 hr/yr x average CF 0.167) = 0.279 TW of wind turbines @ $2 trillion/TW = $56 billion, for a total of $272 billion. The feed in tariff subsidy for 9 years, if maintained similar to existing subsidies to attract adequate capital, will be about $150 billion offshore + $50 billion onshore, for a total of $200 billion.    
  • Note: The onshore build-out will at least double Germany’s existing onshore wind turbine capacity, plus required transmission systems; i.e., significant niose, environmental and visual impacts over large areas.   Recent studies, based on measured, real-time, 1/4-hour grid operations data sets of the Irish, Colorado and Texas grids, show wind energy does little to reduce CO2 emissions. Such data sets became available during the past 2 to 3 years. Prior studies, based on assumptions, estimates, modeling scenarios, and statistics, etc., significantly overstate CO2 reductions.  http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent   Build-out of PV Solar Energy: The estimated capital cost of the PV solar capacity will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 1/4]/(8,760 hr/yr x average CF 0.095) = 0.082 TW @ $4.5 trillion/TW = $369 billion. The feed in tariff subsidy, if maintained similar to existing subsidies to attract adequate capital, will be about $250 billion.   Reorganizating Electric Grids: For GW reasons, a self-balancing grid system is needed to minimize CO2 emissions from gas-fired CCGT balancing plants. One way to implement it is to enhance the interconnections of the national grids with European-wide HVDC overlay systems (owning+O&M costs, including transmission losses), and with European-wide selective curtailment of wind energy, and with European-wide demand management and with pumped hydro storage capacity. These measures will reduce, but not eliminate, the need for balancing energy, at greater wind energy penetrations during high-windspeed weather conditions, as frequently occur in Iberia (Spain/Portugal).  
  • European-wide agreement is needed, the capital cost will be in excess of $150 billion and the adverse impacts on quality of life (noise, visuals, psychological), property values and the environment will be significant over large areas.    Other Capital Costs: The capacity of the quick-ramping CCGT balancing plants was estimated at 25,000 MW; their capital cost is about 25,000 MW x $1,250,000/MW = $31.3 billion. The capital costs of decommissioning and restoring the sites of the 23 nuclear plants will be about $23 billion.   Increased Energy Efficiency: Increased energy efficiency would be more attractive than major build-outs of renewables, because it provides the quickest and biggest "bang for the buck", AND it is invisible, AND it does not make noise, AND it has minimal environmental impact, AND it usually reduces at least 3 times the CO2 per invested dollar, AND it usually creates at least 3 times the jobs per invested dollar, AND it usually creates at least 3 times the energy reduction per invested dollar, AND it does all this without public resistance and controversy.   Rebound, i.e., people going back to old habits of wasting energy, is a concept fostered by the PR of proponents of conspicuous consumption who make money on such consumption. People with little money love their cars getting 35-40 mpg, love getting small electric and heating bills. The rebound is mostly among people who do not care about such bills.
  • A MORE RATIONAL APPROACH   Global warming is a given for many decades, because the fast-growing large economies of the non-OECD nations will have energy consumption growth far outpacing the energy consumption growth of the slow-growing economies of the OECD nations, no matter what these OECD nations do regarding reducing CO2 emissions of their economies.   It is best to PREPARE for the inevitable additional GW by requiring people to move away from flood-prone areas (unless these areas are effectively protected, as in the Netherlands), requiring new  houses and other buildings to be constructed to a standard such as the Passivhaus standard* (such buildings stay cool in summer and warm in winter and use 80 to 90 percent less energy than standard buildings), and requiring the use of new cars that get at least 50 mpg, and rearranging the world's societies for minimal energy consumption; making them walking/bicycling-friendly would be a good start.   If a nation, such as the US, does not do this, the (owning + O&M) costs of its economy will become so excessive (rising resource prices, increased damage and disruptions from weather events) that its goods and services will become less competitive and an increasing percentage of its population will not be able to afford a decent living standard in such a society.   For example: In the US, the median annual household income (inflation-adjusted) was $49,445, a decline of 7% since 2000. As the world’s population increases to about 10 billion by 2050, a triage-style rationing of resources will become more prevalent. http://www.usatoday.com/news/nation/story/2011-09-13/census-household-income/50383882/1
  • * A 2-year-old addition to my house is built to near-Passivhaus standards; its heating system consists of a thermostatically-controlled 1 kW electric heater, set at 500 W, that cycles on/off on the coldest days for less than 100 hours/yr. The addition looks inside and out entirely like standard construction. http://theenergycollective.com/willem-post/46652/reducing-energy-use-houses
  •  
    Excellent, lengthy article , lots of data
D'coda Dcoda

NextEra revises dates to boost Fla. nuclear output[25Oct11] - 0 views

  • Florida Power & Light, a unit of NextEra Energy Inc , plans to complete work to increase the output at its 839-megawatt St. Lucie 1 nuclear reactor during an extended refueling outage set to begin next month, according to a state regulatory filing.The work is part of FP&L's larger effort, known as a nuclear "uprate," to add 450 MW in capacity at four existing reactors at the Turkey Point and St. Lucie stations by 2013.FP&L, the state's largest electric utility, recently adjusted some of the outage dates to minimize an overlap between the planned nuclear outages and non-nuclear outages, utility officials said.Adding the 450 MW is now estimated to cost $2.48 billion, the company said, compared with FP&L's initial 2007 estimate of $1.5 billion for an increase of 400 MW.
  • The increased output will supply 209,000 customers, save $4.8 billion in fuel costs over the project's lifetime and cut carbon dioxide emissions in the state, said NextEra spokesman Michael Waldron.On Monday, the Florida Public Service Commission approved FP&L's request to recover about $196 million from customers next year for the uprate costs, as well as costs to develop two new reactors at Turkey Point expected to begin service in 2022-2023."The vast majority of our request -- about 90 percent -- is dedicated to the uprate project," Waldron said.In the filing, FP&L said it plans to shut St. Lucie 1 on Nov. 26 to perform work to increase its output by 122 MW. The outage is expected to last 110 days, or until mid-to-late February.
  • On Feb. 6, 2012, FP&L plans to shut the 693-MW Turkey Point 3 reactor for 120 days to boost that unit's output by 109 MW, the utility said in the filing.St. Lucie 2, also rated at 893 MW, is set to shut June 27, 2012, for 95 days for uprate work. The unit was shut for an extended period earlier this year for work that increased output by 29 MW due to a more efficient low-pressure rotor, the filing said.The extra 29 MW is helping to save $1 million per month in fuel costs, Waldron said.Next fall, the 693-MW Turkey Point 4 reactor is scheduled to shut Oct. 1 for 120 days for work to increase output by 109 MW, FP&L told state regulators.
  • ...1 more annotation...
  • To increase the output of reactors, operators install new pipes, valves and pumps, along with heat exchangers, new electric transformers, turbines and generators.The U.S. Nuclear Regulatory Commission is currently reviewing FP&L's uprate applications, which were filed in 2010 and early 2011.
D'coda Dcoda

How did Fukushima-Dai-ichi core meltdown change the probability of nuclear accidents? [... - 1 views

  •  
    How to predict the probability of a nuclear accident using past observations? What increase in probability the Fukushima Dai-ichi event does entail? [...] We find an increase in the risk of a core meltdown accident for the next year in the world by a factor of ten owing to the new major accident that took place in Japan in 2011. [...] Two months after the fukushima Dai ichi meltdown, a French newspaper published an article coauthored by a French engineer and an economist1. They both argued that the risk of a nuclear accident in Europe in the next thirty years is not unlikely but on the contrary, it is a certainty. They claimed that in France the risk is near to 50% and more than 100% in Europe. [...] The Fukushima Dai-ichi results in a huge increase in the probability of an accident. [...]
D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

Heavy Rain Increases Contaminated water at Fukushima Plant [21Jul11] - 0 views

  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday. Rain has been gathering in the buildings housing the reactors because the roofs were severely damaged by hydrogen explosions that occurred after the initial March 11th disaster. Tokyo Electric Power Company or TEPCO, the plant's operator, says that at 7 AM local time on Thursday, the level of contaminated water pooled at the basement of the building of the No. 1 reactor was 44 centimeters up from the previous day. Officials at the utility say that there is no immediate danger of the contaminated water spilling out. But it is likely that the level of water will continue to rise for the time being. TEPCO says they are monitoring the situation.
  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday. Rain has been gathering in the buildings housing the reactors because the roofs were severely damaged by hydrogen explosions that occurred after the initial March 11th disaster. Tokyo Electric Power Company or TEPCO, the plant's operator, says that at 7 AM local time on Thursday, the level of contaminated water pooled at the basement of the building of the No. 1 reactor was 44 centimeters up from the previous day. Officials at the utility say that there is no immediate danger of the contaminated water spilling out. But it is likely that the level of water will continue to rise for the time being. TEPCO says they are monitoring the situation.
  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday.
  • ...1 more annotation...
  • Heavy rain brought by a tropical storm has increased the level of radioactive contaminated water at the basements of the crippled Fukushima Daiichi nuclear power plant. Typhoon Ma-on moved east off the southern coast of Japan's main island of Honshu. 115 millimeters of precipitation was recorded in Namie Town, north of the plant, between Tuesday and Thursday.
  •  
    this article won't highlight
D'coda Dcoda

The Latte Fallacy: German Switch to Renewables Likely to Be Expensive [28Jul11] - 0 views

  • Chancellor Angela Merkel's government insists that electricity bills will only grow modestly as a result of the nuclear energy phase-out. Experts, however, disagree, with many pointing to Berlin's massive subsidies for solar power as the culprit.
  • A pioneering spirit has taken hold in Germany, thanks to the government's radical reworking of the country's energy policies. Hardly a week goes by without the foundation being laid someplace in the country for a new solar farm, yet another biogas plant or an even bigger wind turbine. Fesseldorf, the town in northern Bavaria which just hosted Seehofer, will soon be home to one of the largest photovoltaic plants in the state.
  • The German government's plan calls for increasing the share of renewables in the country's energy mix to 35 percent by 2020. It is an ambitious goal in every respect. Not only will the current renewable energy share have to be doubled within a few years, the grid expanded and new power storage facilities installed. But Chancellor Angela Merkel's government is also somehow expecting the entire energy revolution to cost virtually nothing.
  • ...13 more annotations...
  • "According to our calculations, the cost of a kilowatt hour of electricity will go up by only one cent," says Economics Minister Philipp Rösler, head of Merkel's junior coalition partner, the Free Democrats (FDP). For an average household, this would correspond to the price of only one latte a month, says Environment Minister Norbert Röttgen, of Merkel's Christian Democrats. Germany is rapidly switching to green energy and at almost no additional cost to consumers. What conservative politician would have thought such a thing possible just a few months ago?
  • In reality, though, the official calculations have little connection to reality. According to an assessment by the Rhenish-Westphalian Institute for Economic Research (RWI), the politicians' estimate of the costs of expanding renewable sources of energy is far too low, while the environmental benefits have been systematically overstated.
  • RWI experts estimate that the cost of electricity could increase by as much as five times the government's estimate of one cent per kilowatt hour. In an internal prognosis, the semi-governmental German Energy Agency anticipates an increase of four to five cents. According to the Federation of German Consumer Organizations, the additional cost could easily amount to "five cents or more per kilowatt hour."
  • An internal estimate making the rounds at the Economics Ministry also exceeds the official announcements. It concludes that an average three-person household will pay an additional 0.5 to 1.5 cents per kilowatt hour, and up to five cents more in the mid-term. This would come to an additional cost of €175 ($250) a year. "Not exactly the price of a latte," says Manuel Frondel of the RWI.
  • The problem is the federal government's outlandish subsidies policy. Electricity customers are already paying more than €13 billion this year to subsidize renewable energy. The largest subsidies go to solar plants, which contribute relatively little to overall power generation, as well as offshore wind farms in the north, which are far away from the countries largest electricity consumers in Germany's deep south.
  • German citizens will be able to see the consequences of solar subsidization on their next electricity bill. Since the beginning of the year, consumers have been assessed a renewable energy surcharge of 3.5 cents per kilowatt hour of electricity, up from about 2 cents last year. And the cost is only going up. Since the first nuclear power plant was shut down, the price of electricity on the European Energy Exchange in Leipzig has increased by about 12 percent. Germany has gone from being a net exporter to a net importer of electricity.
  • For economic and environmental reasons, therefore, it would be best to drastically reduce solar subsidies and spend the money elsewhere, such as for a subsidy system that is not tied to any given technology. For example, wind turbines built on land are significantly more effective than solar power. They receive about the same amount of subsidy money, and yet they are already feeding about five times as much electricity into the grid. In the case of hydroelectric power plants, the relationship between subsidies and electricity generation is six times better. Biomass provides a return on subsidies that is three times as high as solar.
  • "We are dumping billions into the least effective technology," says Fritz Vahrenholt, the former environment minister for the city-state of Hamburg and now the head of utility RWE's renewable electricity subsidy Innogy.
  • "From the standpoint of the climate, every solar plant is a bad investment," says Joachim Weimann, an environmental economist at the University of Magdeburg. He has calculated that it costs about €500 to save a ton of CO2 emissions with solar power. In the case of wind energy, it costs only €150. In combination with building upgrades, the cost plummets to only €15 per ton of CO2 emissions savings.
  • Photovoltaics, in particular, is now seen as an enormous waste of money. The technology receives almost half all renewable energy subsidies, even though it makes up less than one 10th of total green electricity production. And it is unreliable -- one never knows if and when the sun will be shining
  • According to the European Network of Transmission System Operators for Electricity (ENTSOE) in Brussels, Germany now imports several million kilowatt hours of electricity from abroad every day.
  • In displays on ENTSOE computers in Brussels, countries that produce slightly more electricity than they consume are identified in yellow on the monitors, while countries dependent on imports are blue. Germany used to be one of the yellow countries, but now that seven nuclear reactors have been shut down, blue is the dominant color. The electricity that was once generated by those German nuclear power plants now comes primarily from the Czech Republic and France -- and is, of course, more expensive. The demand for electricity is expected to increase in the coming years, particularly with growing numbers of electric cars being connected to the grid as they charge their batteries.
  • Solar panels only achieve their maximum capacity in the laboratory and at optimal exposure to the sun (1,000 watts per square meter), an ideal angle of incidence (48.2 degrees) and a standardized module temperature (25 degrees Celsius, or 77 degrees Fahrenheit). Such values are rare outside the laboratory. All photovoltaic systems are inactive at night, and they also generate little electricity on winter days
D'coda Dcoda

French Report: Radioactivity 10 times normal in Avignon - Cause of "anomalous increase"... - 0 views

  • Marcoule: an increase in radioactivity was observed in the Gard, Vaucluse and Herault, Passerellesud (France) by Par Drozerah, September 15, 2011:
  • A level of radioactivity 10 times the daily measurement of Avignon and 4 times higher than the Mont Ventoux” According to an article published September 13, 2011 on the website of the anti-nuclear coordination Southeast, an “anomalous increase” of radioactivity on the detection of X-rays, Gamma and Beta particles have been measured within a radius of 120 km downstream of Marcoule. On September 12, 2011 anti-nuclear members of the Collective have made the Vaucluse independent measurements of radioactivity in different parts of Vaucluse, Gard and Herault [...] No “credible explanation” from the makers of the nuclear accident at Marcoule and the weight of the French nuclear lobby, the collective anti-nuclear states that the cause of this increase in radioactivity could be directly linked to the bombing in the Gard. [...] See report from Cordination Anti-nucléaire Sud-est: Incident nucléaire à Marcoule : au moins 1 mort, des blessés et des radiations
D'coda Dcoda

U.S. Government Confirms Link Between Earthquakes and Hydraulic Fracturing at Oil Price - 0 views

  • On 5 November an earthquake measuring 5.6 rattled Oklahoma and was felt as far away as Illinois. Until two years ago Oklahoma typically had about 50 earthquakes a year, but in 2010, 1,047 quakes shook the state. Why? In Lincoln County, where most of this past weekend's seismic incidents were centered, there are 181 injection wells, according to Matt Skinner, an official from the Oklahoma Corporation Commission, the agency which oversees oil and gas production in the state. Cause and effect? The practice of injecting water into deep rock formations causes earthquakes, both the U.S. Army and the U.S. Geological Survey have concluded.
  • The U.S. natural gas industry pumps a mixture of water and assorted chemicals deep underground to shatter sediment layers containing natural gas, a process called hydraulic fracturing, known more informally as “fracking.” While environmental groups have primarily focused on fracking’s capacity to pollute underground water, a more ominous byproduct emerges from U.S. government studies – that forcing fluids under high pressure deep underground produces increased regional seismic activity. As the U.S. natural gas industry mounts an unprecedented and expensive advertising campaign to convince the public that such practices are environmentally benign, U.S. government agencies have determined otherwise. According to the U.S. Army’s Rocky Mountain Arsenal website, the RMA drilled a deep well for disposing of the site’s liquid waste after the U.S. Environmental Protection Agency “concluded that this procedure is effective and protective of the environment.”  According to the RMA, “The Rocky Mountain Arsenal deep injection well was constructed in 1961, and was drilled to a depth of 12,045 feet” and 165 million gallons of Basin F liquid waste, consisting of “very salty water that includes some metals, chlorides, wastewater and toxic organics” was injected into the well during 1962-1966.
  • Why was the process halted? “The Army discontinued use of the well in February 1966 because of the possibility that the fluid injection was “triggering earthquakes in the area,” according to the RMA. In 1990, the “Earthquake Hazard Associated with Deep Well Injection--A Report to the U.S. Environmental Protection Agency” study of RMA events by Craig Nicholson, and R.I. Wesson stated simply, “Injection had been discontinued at the site in the previous year once the link between the fluid injection and the earlier series of earthquakes was established.” Twenty-five years later, “possibility” and ‘established” changed in the Environmental Protection Agency’s July 2001 87 page study, “Technical Program Overview: Underground Injection Control Regulations EPA 816-r-02-025,” which reported, “In 1967, the U.S. Army Corps of Engineers and the U.S. Geological Survey (USGS) determined that a deep, hazardous waste disposal well at the Rocky Mountain Arsenal was causing significant seismic events in the vicinity of Denver, Colorado.” There is a significant divergence between “possibility,” “established” and “was causing,” and the most recent report was a decade ago. Much hydraulic fracturing to liberate shale oil gas in the Marcellus shale has occurred since.
  • ...3 more annotations...
  • According to the USGS website, under the undated heading, “Can we cause earthquakes? Is there any way to prevent earthquakes?” the agency notes, “Earthquakes induced by human activity have been documented in a few locations in the United States, Japan, and Canada. The cause was injection of fluids into deep wells for waste disposal and secondary recovery of oil, and the use of reservoirs for water supplies. Most of these earthquakes were minor. The largest and most widely known resulted from fluid injection at the Rocky Mountain Arsenal near Denver, Colorado. In 1967, an earthquake of magnitude 5.5 followed a series of smaller earthquakes. Injection had been discontinued at the site in the previous year once the link between the fluid injection and the earlier series of earthquakes was established.” Note the phrase, “Once the link between the fluid injection and the earlier series of earthquakes was established.” So both the U.S Army and the U.S. Geological Survey over fifty years of research confirm on a federal level that that “fluid injection” introduces subterranean instability and is a contributory factor in inducing increased seismic activity.” How about “causing significant seismic events?”
  • Fast forward to the present. Overseas, last month Britain’s Cuadrilla Resources announced that it has discovered huge underground deposits of natural gas in Lancashire, up to 200 trillion cubic feet of gas in all. On 2 November a report commissioned by Cuadrilla Resources acknowledged that hydraulic fracturing was responsible for two tremors which hit Lancashire and possibly as many as fifty separate earth tremors overall. The British Geological Survey also linked smaller quakes in the Blackpool area to fracking. BGS Dr. Brian Baptie said, “It seems quite likely that they are related,” noting, “We had a couple of instruments close to the site and they show that both events occurred near the site and at a shallow depth.” But, back to Oklahoma. Austin Holland’s August 2011 report, “Examination of Possibly Induced Seismicity from Hydraulic Fracturing in the Eola Field, Garvin County, Oklahoma” Oklahoma Geological Survey OF1-2011, studied 43 earthquakes that occurred on 18 January, ranging in intensity from 1.0 to 2.8 Md (milliDarcies.) While the report’s conclusions are understandably cautious, it does state, “Our analysis showed that shortly after hydraulic fracturing began small earthquakes started occurring, and more than 50 were identified, of which 43 were large enough to be located.”
  • Sensitized to the issue, the oil and natural gas industry has been quick to dismiss the charges and deluge the public with a plethora of televisions advertisements about how natural gas from shale deposits is not only America’s future, but provides jobs and energy companies are responsible custodians of the environment. It seems likely that Washington will eventually be forced to address the issue, as the U.S. Army and the USGS have noted a causal link between the forced injection of liquids underground and increased seismic activity. While the Oklahoma quake caused a deal of property damage, had lives been lost, the policy would most certainly have come under increased scrutiny from the legal community. While polluting a local community’s water supply is a local tragedy barely heard inside the Beltway, an earthquake ranging from Oklahoma to Illinois, Kansas, Arkansas, Tennessee and Texas is an issue that might yet shake voters out of their torpor, and national elections are slightly less than a year away.
D'coda Dcoda

Wind farms can actually INCREASE climate change by raising temperatures, warn academics... - 0 views

  • Temperatures can fall by up to 4C downwind of farms
  • Tory MPs write to PM demanding dramatic subsidy cuts
  • The team from the University of Illinois found that daytime temperatures around wind farms can fall by as much as 4C, while at night temperatures can increase
  • ...3 more annotations...
  • The study found that currently the effect is restricted to areas near to the turbines, but the increase in larger farms could create weather changes on a regional scale.The study was led by Somnath Roy, assistant professor of atmospheric sciences at the university, with the San Gorgonio wind farm in California the focal point of his research.
  • He found that the day ground temperature behind turbines was up to 4C lower than in front. He suggested that the turbines' blades scoop warm from the ground and push the cooler air downwards. This is then reversed at night.
  • Roy, whose findings were published in the Sunday Times, added that he believes the turbines causing turbulence and reducing winds speed are the cause.He also added that the churning of air from low to high can create vortices that could extend the phenomenon for large distances downwind.
D'coda Dcoda

Harm from Fukushima Radiation: A Matter Of Perspective [09Jul11] - 0 views

  • A leading biophysicist has cast a critical light on the government’s reassurances that Americans were never at risk from Fukushima fallout, saying “we really don’t know for sure.”
  • When radioactive fallout from Japan’s nuclear disaster began appearing in the United States this spring, the Obama Administration’s open-data policy obligated the government to inform the public, in some detail, what was landing here.
  • Covering the story, I watched the government pursue what appeared to be two strategies to minimize public alarm:
  • ...14 more annotations...
  • It framed the data with reassurances like this oft-repeated sentence from the EPA: “The level detected is far below a level of public health concern.” The question, of course, is whose concern.
  • The EPA seemed to be timing its data releases to avoid media coverage. It released its most alarming data set late on a Friday—data that showed radioactive fallout in the drinking water of more than a dozen U.S. cities.
  • Friday and Saturday data releases were most frequent when radiation levels were highest. And despite the ravages newspapers have suffered from internet competition, newspaper editors still have not learned to assign reporters to watch the government on weekends. As a result, bloggers broke the fallout news, while newspapers relegated themselves to local followups, most of which did little more than quote public health officials who were pursuing strategy #1.
  • For example, when radioactive cesium-137 was found in milk in Hilo, Hawaii, Lynn Nakasone, administrator of the Health Department’s Environmental Health Services Division, told the Honolulu Star-Advertiser: ”There’s no question the milk is safe.”
  • Nakasone had little alternative but to say that. She wasn’t about to dump thousands of gallons of milk that represented the livelihood of local dairymen, and she wasn’t authorized to dump the milk as long as the radiation detected remained below FDA’s Derived Intervention Level, a metric I’ll discuss more below.
  • That kind of statement failed to reassure the public in part because of the issue of informed consent—Americans never consented to swallowing any radiation from Fukushima—and in part because the statement is obviously false.
  • There is a question whether the milk was safe.
  • medical experts agree that any increased exposure to radiation increases risk of cancer, and so, no increase in radiation is unquestionably safe.
  • Whether you choose to see the Fukushima fallout as safe depends on the perspective you adopt, as David J. Brenner, a professor of radiation biophysics and the director of the Center for Radiological Research at Columbia University Medical Center, elucidated recently in The Bulletin of The Atomic Scientists:
  • Should this worry us? We know that the extra individual cancer risks from this long-term exposure will be very small indeed. Most of us have about a 40 percent chance of getting cancer at some point in our lives, and the radiation dose from the extra radioactive cesium in the food supply will not significantly increase our individual cancer risks.
  • But there’s another way we can and should think about the risk: not from the perspective of individuals, but from the perspective of the entire population. A tiny extra risk to a few people is one thing. But here we have a potential tiny extra risk to millions or even billions of people. Think of buying a lottery ticket — just like the millions of other people who buy a ticket, your chances of winning are miniscule. Yet among these millions of lottery players, a few people will certainly win; we just can’t predict who they will be. Likewise, will there be some extra cancers among the very large numbers of people exposed to extremely small radiation risks? It’s likely, but we really don’t know for sure.
  • the EPA’s standard for radionuclides in drinking water is so much more conservative than the FDA’s standard for radionuclides in food. The two agencies anticipate different endurances of exposure—long-term in the EPA’s view, short-term in FDA’s. But faced with the commercial implications of its actions, FDA tolerates a higher level of mortality than EPA does.
  • FDA has a technical quibble with that last sentence. FDA spokesman Siobhan Delancey says: Risk coefficients (one in a million, two in ten thousand) are statistically based population estimates of risk. As such they cannot be used to predict individual risk and there is likely to be variation around those numbers. Thus we cannot say precisely that “one in a million people will die of cancer from drinking water at the EPA MCL” or that “two in ten thousand people will die of cancer from consuming food at the level of an FDA DIL.” These are estimates only and apply to populations as a whole.
  • The government, while assuring us of safety, comforts itself in the abstraction of the population-wide view, but from Dr. Brenner’s perspective, the population-wide view is a lottery and someone’s number may come up. Let that person decide whether we should be alarmed.
D'coda Dcoda

‪Suicide Plague: Japan swept by Fukushima depression [26Jul11] - 0 views

shared by D'coda Dcoda on 03 Aug 11 - No Cached
  •  
    Japan already has one of the highest suicide rates, suicide rates have increased in the months since the fukushima disaster...increased not in the centers of the disaster but in the outlying areas. The nuclear sociologist speaking in the video says they have so many good reasons for suicide...refers to farmers who can no longer farm their land, committing suicide
D'coda Dcoda

Short-Termism and Energy Revolutions [30Sep11] - 0 views

  • The calls these days for a technological “energy revolution” are widespread. But how do you spark breakthroughs when the natural bias of businesses, investors and governments is toward the here and now? In governance, politics creates a bias toward the short term. This is why bridges sometimes fall down for lack of maintenance. That’s also why it’s so hard to sustain public investment in the research and intellectual infrastructure required to make progress on the frontiers of chemistry, biology and physics, even though it is this kind of work that could produce leaps in how we harvest, harness, store and move energy. (This is why I asked, “Are Chemists and Engineers on the Green Jobs List?” back in 2008.)
  • To get the idea, you only have to look at the sputtering state of President Obama’s mostly unfunded innovation hubs, or look once again at the energy sliver in the graph showing America’s half-century history of public investment in basic scientific research. (There’s not much difference in research patterns in most other industrialized countries.) You can also look at the first Quadrennial Technology Review produced by the Department of Energy (summarized by Climate Progress earlier this week). The review was conducted after the President’s Council of Advisers on Science and Technology wisely recommended regular reviews of this sort as part of its prescription for accelerating change in energy technologies.
  • This excerpt from the new review articulates the tension pretty transparently for a government report: There is a tension between supporting work that industry doesn’t— which biases the department’s portfolio toward the long term—and the urgency of the nation’s energy challenges. The appropriate balance requires the department to focus on accelerating innovation relevant to today’s energy technologies, since such evolutionary advances are more likely to have near- to mid-term impact on the nation’s challenges. We found that too much effort in the department is devoted to research on technologies that are multiple generations away from practical use at the expense of analyses, modeling and simulation, or other highly relevant fundamental engineering research activities that could influence the private sector in the nearer term.
  • ...16 more annotations...
  • In finding that balance, I’m not sure it’s possible to overcome the political pressures tugging agencies and officials to stress refinement and deployment of known and maturing technologies (even though that’s where industry and private investors are most focused).
  • On the left, the pressure is for resources to deploy today’s “green” technology. On the right, as illustrated in a Heritage Foundation report on ways to cut President Obama’s budget for the Energy Department, the philosophy seems to be to discourage all government spending on basic inquiry related to energy.
  • According to Heritage, science “in service of a critical national interest that is not being met by the private sector” is fine if that interest is national defense, but not fine if it’s finding secure and sustainable (environmentally and economically) sources of energy.
  • I solicited reactions to the Energy Department review from a variety of technology and innovation analysts. The first to weigh in are Daniel M. Kammen, an energy technology researcher at the University of California, Berkeley, who is on leave working for the World Bank, and Robert D Atkinson, the founder and president of the Information Technology and Innovation Foundation. Here’s Kammen: The idea of a regular review and status report on both energy innovation and deployment spending is a good one. Some of the findings in the QTR review are useful, although little is new. Overall, though, this is a useful exercise, and one that should be a requirement from any major programmatic effort.
  • he real need in the R&D sector is continuity and matching an increasing portfolio of strategic research with market expansion. My former student and colleague Greg Nemet have written consistently on this: - U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion - Reversing the Incredible Shrinking Energy R&D Budget
  • Perhaps the biggest worry in this report, however, is the missing logic and value of a ’shift to near term priorities in energy efficiency and in electric vehicles.’ This may be a useful deployment of some resources, but a range of questions are simply never addressed. Among the questions that need firmer answers are:
  • There are some very curious omissions from the report, such as more detail on the need to both generate and report on jobs created in this sector — a political ‘must’ these days (see, e.g., the “green jobs” review by the Renewable and Appropriate Energy Laboratory at Berkeley) — and straightforward comparisons in the way of ‘report cards’ on how the US is stacking up relative to other key players (e.g. China, Germany…).
  • given the state-by-state laboratories we already have of differing approaches to energy efficiency, the logic of spending in this area remains to be proven (as much as we all rightly love and value and benefit from energy efficiency).
  • Near-term electric vehicle deployment. A similar story could be told here. As the director of the University of California at Berkeley’s Transportation Sustainability Research Center (http://tsrc.berkeley.edu) I am huge believer in electric vehicles [EVs]. However, the review does not make clear what advances in this area are already supported through [the Advanced Research Projects Agency for Energy], and what areas of near-term research are also not best driven though regulation, such as low-carbon fuel standards, R&D tax credits, ‘feebates’ that transfer funds from those individuals who purchase inefficient vehicles to those who purchase efficient ones. Similar to the story in energy efficiency, we do have already an important set of state-by-state experiments that have been in place for some time, and these warrant an assessment of how much innovation they have driven, and which ones do and do not have an application in scale-up at the federal level.
  • Finally, the electric vehicle landscape is already very rich in terms of plans for deployment by automakers. What are the barriers five-plus years out that the companies see research-versus-deployment and market-expansion support as the most effective way to drive change in the industry? Where will this focus put the U.S. industry relative to China?
  • Following record levels funding made available to the energy industry through the [stimulus package of spending], what are the clearly identified market failures that exist in this area that added funding will solve? Funding is always welcome, but energy efficiency in particular, can be strongly driven by regulation and standards, and because good energy efficiency innovations have such rapid payback times, would regulatory approaches, or state-federal partnerships in regulation and incentives not accomplish a great deal of what can be done in this area? Congressman Holt raises a number of key questions on related issues, while pointing to some very hopeful experiences, notably in the Apollo program, in his 16 September editorial in Science.
  • Here’s Robert Atkinson: If DOE is shifting toward a more short-term focus, this is quite disturbing.  It would mean that DOE has given up on addressing the challenge of climate change and instead is just focused on the near term goal of reducing oil imports and modestly reducing the expansion the coal fired power plants. If DOE thinks it is still focused on climate change, do they think they are fighting “American warming”?
  • If so, cutting the growth of our emissions make sense.  But its global warming and solving this means supporting the development of scalable, cheap low or no-carbon energy so that every country, rich and poor, will have an economic incentive to transitioning to cheap energy.  Increasing building efficiency, modernizing the electric grid, alternative hydrocarbon fuels, and increasing vehicle efficiency do virtually nothing to meet this goal. They are “American warming” solutions.
  • This is also troubling because (as you point out) who else is going to invest in the long-term, more fundamental, high risk, breakthrough research than the U.S. government.  It certainly won’t be VCs. And it won’t be the Chinese who are principally interested in cutting their energy imports and exporting current generation clean energy, not developing technology to save the planet.  Of course all the folks out there who have been pushing the mistaken view that we have all the clean technologies we need, will hail this as the right direction.  But it’s doing what the rest of the market has been doing in recent years – shifting from high risk, long-term research to short-term, low risk.  If the federal government is doing this it is troubling to say the least.
  • or those seeking more, here are the slides used by Steven Koonin, the physicist and former BP scientist who now is under secretary for science at the department, in presenting the review earlier this week:
  • Rolling Out the Quadrennial Technology Review Report
D'coda Dcoda

The Death of Nuclear Power: The Five Global Energy Moves to Make Now [07Jun11] - 0 views

  • out
  • Nuclear power was gaining a lot of momentum prior to the terrible disaster at Japan's Fukushima powerplant in March.
  • But since then, atomic energy has come under increased scrutiny and once again drawn the ire of environmentalists who were just warming up to its carbon-free emissions.
  • ...16 more annotations...
  • The German government's decision to close all of its existing nuclear reactors by 2022 shows that this shift in sentiment is gaining traction. And it increases the likelihood that the nuclear-powerplant building boom that had seemed at hand will be set back. Without a doubt, this new reality will lead to global energy shortages and much-higher energy costs.But for us as investors, the real issue is this: Which sectors will step up to alleviate the shortfall resulting from the inevitable disappearance of nuclear power?
  • As the recent development in Germany so clearly illustrates, one key difficulty about major energy decisions is that far too many are political in nature.
  • Too often, rational scientific analysis and cost-benefit analyses are ignored as hard-line environmentalists push their own agendas. Many of the environmentalists' objections are valid - at least as far as they go. But more and more, those objections seem to include every source of energy that actually works.
  • Windmills are objectionable because they look ugly and kill birds. Geothermal energy is objectionable because it causes earthquakes. Even solar energy is objectionable because of the vast acreages of land required to house the solar panels
  • Replacing Nuclear Power Figuring out which energy sources will offset the decline in nuclear power output requires three calculations:
  • First, a calculation of the cost of an energy source - as it now exists - in its economically most practicable uses. However, much as we may like solar power, we are not about to get solar-powered automobiles; likewise, oil-fueled power stations are inefficient on many grounds.
  • Second, a calculation that demonstrates whether the cost of that energy source is likely to increase or decline. With oil and hydro-electric power, for instance, the cost is likely to increase: The richest oil wells have been tapped and the best rivers have been dammed. With solar, on the other hand, the cost could decline, given how quickly the technology is advancing.
  • And third, an estimate that includes our best guess as to whether hard-line environmentalists will win or lose in their attempt to prevent its use.
  • On nuclear energy, the environmentalists appear to have won - at least for the time being. Their victory probably extends to fusion power, if that ever becomes economical. Conversely, their battles against wind and solar power are futile, as there are no scary disaster scenarios involved.
  • I regard the German decision to abandon nuclear power as foolish, and it should make us very cautious when investing in large-scale German manufacturers, which may be made uncompetitive by excessive power costs. But as an investor, I think it opens up a number of profit opportunities.
  • Actions To Take: Environmental concerns have chased investment away from nuclear energy - at least for the time being. For that reason the nuclear build-out that was just starting to gain momentum now is likely to stumble. As investors, we must look for energy sources that will most likely replace lost nuclear power output. They include:
  • Shale Gas: Potential damage to the environment caused by "fracking," which is the process by which shale gas is extracted, has not impeded this industry's growth. Natural gas has grown increasingly popular, as it is relatively cheap and clean, and readily abundant in the United States. A recent study by the Massachusetts Institute of Technology (MIT) suggests that natural gas will provide 40% of U.S. energy needs in the future, up from 20% today. You might look at Chesapeake Energy Corp. (NYSE:CHK), the largest leaseholder in Pennsylvania's Marcellus Shale, which is trading at a reasonable 9.5 times projected 2012 earnings.
  • Shale gas. Tar sands. And solar energy. Let's look at each of the three - and identify the best ways to play them
  • Tar Sands: The Athabasca tar sands in Canada contain more oil than the Middle East. And at an oil price of $100 per barrel, it is highly profitable to extract. Of course, extraction makes a huge mess of the local environment, but environmentalists seem to have lost that battle - reasonably enough, in view of the "energy security" implications of dependence on the Middle East. A play I like here is Cenovus Energy Inc. (NYSE: CVE). It's a purer Athabasca play than Suncor Energy Inc. (NYSE: SU), but it's currently pricey at 16.5 times projected 2012 earnings. Suncor's cheaper at only 11 times projected 2012 earnings - so take your pick
  • Solar Energy: Of the many new energy sources that have received so much taxpayer money in the last five years, solar is the one with real potential. Unlike with wind farms, where there is almost no opportunity for massive technological improvement or cost reduction, there is great potential upside with solar power: The technology and economics of solar panels and their manufacture is improving steadily. Indeed, solar power seems likely to be competitive as a source of electricity without subsidy sometime around 2016-2020, if energy prices stay high.
  • There are a number of ways to play this. You can select a solar-panel manufacturer like the Chinese JA Solar Holdings Co. Ltd. (Nasdaq ADR: JASO), or a rectifier producer like Power-One Inc. (Nasdaq: PWER). JA Solar is trading at a startling forward Price/Earnings (P/E) ratio of less than 5.0, mostly likely because of the Chinese accounting scandals, whereas Power-One is also cheap at less than seven times forward earnings and is U.S.-domiciled. Again, take your pick, depending on which risks you are comfortable with.
D'coda Dcoda

If Indian Point Nuclear Closes, Plenty of Profits (for natural gas suppliers) [13Jul11] - 0 views

  •  
    (Diigo won't highlight this correctly, putting it in description!) "Matt Wald of the New York Times has finally figured out why there is such a strong push from well connected political types to close the Indian Point Nuclear Power Station. Unfortunately, he and his editor have chosen to put that answer at the very bottom of his recent article titled If Indian Point Closes, Plenty of Challenges . When the demand for natural gas increases, the balance between supply and demand shifts in favor of the sellers, so price inexorably increases. Here is the closing paragraph of that article. It should raise alarm bells for anyone who is a power purchaser instead of a power seller. That description applies to the vast majority of us; part of the challenge is that it only costs each of us a little while concentrating the spoils in the hands of a few victors. Closing the Indian Point reactors would, however, hardly be gloom and doom for everyone. Any company that runs a generator in downstate New York ends up selling its output at a higher price, and would share in the $1.4 billion a year that Con Edison says its customers will pay if the nuclear plant closes."
D'coda Dcoda

atomic power review: Fukushima Daiichi update: October 28, 2011[28Oct11] - 0 views

  • TEPCO has announced that as of today, the final additions to the enclosure structure at No. 1 reactor building have been made (air circulation and filtration equipment) and that the inspection of the structure and systems by NISA is completed satisfactorily. The structure itself has been completed for a while, but this might be considered as the official commissioning of the entire structure and ventilation system.-TEPCO has also announced that it will drastically increase the amount of water being injected to No. 1 reactor in order to cut down on evaporation inside the structure. It appears that the high humidity environment is hampering the ability to work inside, so TEPCO will increase the feed rate through the feed line (normal feedwater injection line) upward from 4 cubic meters per hour to 7.5 cubic meters per hour over four days. When the conditions of the plant are ascertained at that point TEPCO will further increase water flow. This will also reduce drastically any gaseous emissions to the enclosure from the damaged reactor.
  • TEPCO has discovered a nearly or else completely sheared axle shaft casing on the overhead crane at the common spent fuel building at Fukushima Daiichi. The cause is yet unknown, and no hazard is posed at this time. -TEPCO is almost ready to place the gas handling system (improvised arrangement) at No. 2 reactor plant (to handle gases in the primary containment) into operation. This system will filter out radioactive airborne contaminants. Similar systems will be employed eventually at all three reactors.
  • Finally, airborne releases from Fukushima Daiichi continue to decline .. contrary to many reports on anti-nuclear sites .. as shown by these two panels from a report issued by the Japanese Prime Minister's office.
  • ...1 more annotation...
  • Surely the increased water injection reflects the desire to avoid turning the inside of the enclosure into a radioactive steam bath.However, afaik, the residual heat of the reactor 1 core is now down to about a megawatt. Assuming 1 calorie equals roughly 4 watt seconds, that is about 900 million calories/hr, dumped into 8 tons, about 8 million grams, of cooling water, well over 100 calories/gram. So the 8 tons/hr water injection appears insufficient to absorb the heat load without boiling. Presumably TEPCO estimates the residual heat to be less than 1 megawatt, but it still seems a marginal cooling flow rate. The continued poor performance of the water processing system, running at around 40% in the latest JAIF summary, may be constraining TEPCOs ability to cool more aggressively.
D'coda Dcoda

GE Hitachi Nuclear Energy's CEO Caroline Reda to Promote Nuclear Energy as Part of US-I... - 0 views

  • GE Hitachi Nuclear Energy (GEH) president and CEO Caroline Reda is the top U.S. nuclear industry executive participating in a trade mission to India February 6-11. Reda will join U.S. Commerce Secretary Gary Locke, who is leading the mission, and senior officials from the Export-Import Bank (EX-IM), the Trade Development Agency (TDA), and executives from almost two dozen other U.S. companies
  • This trade mission seeks to further President Barack Obama’s goal of doubling U.S. exports by 2015, supporting economic growth and creating several million new jobs. In 2010, U.S. exports to India increased to $19.3 billion, a nearly 18 percent increase from 2009’s level of $16.4 billion.
  • The group will be visiting several cities in India, among them New Delhi and Mumbai, in order to explore export opportunities in a broad range of advanced industrial sectors including civil nuclear power generation, trade, defense and security, civil aviation, information and communications technologies.
  • ...3 more annotations...
  • Reda is participating in her first mission to India since becoming GEH’s CEO in July 2010
  • “Exports are leading the U.S. economic recovery, spurring future economic growth and creating jobs in America,” Locke said when the administration first announced its plans for the trade mission in late 2010. “Increasing trade between the U.S. and India will help drive innovation and create jobs in both countries. As trading partners, U.S. companies can help India meet the ambitious economic and social goals laid out by its government, while the Indian market holds enormous potential for U.S. exporters.”
  • Joining Reda for GE is Timothy Richards, GE Energy’s managing director for energy policy and a veteran of several previous missions to India. Those previous missions focused on civilian nuclear cooperation as a means to help modernize India’s industrial infrastructure and support future economic growth.
D'coda Dcoda

Three Plutonium Brothers of Japan: "They Are So Safe You Can Drink It" (Updated with Tr... - 0 views

  • The original Japanese video was compiled by "sievert311":http://www.youtube.com/watch?v=Ppon_vEJLCQ&feature=channel_video_title "sievert311" also has a Dr. Shunichi "100 millisievert is safe" Yamashita's video in three languages (English, Spanish, French). Check it out.
  • Tokyo Brown Tabby's latest captioning is over the collection of video clips of three Japanese nuclear researchers, claiming safety for plutonium on the national TV. The first two appeared on TV after the March 11 accident to assure the public that there was nothing to worry about on plutonium, because it was so safe.
  • Three Plutonium Brothers are: (1)Tadashi Narabayashi Professor in Engineering at Hokkaido University (in TV Asahi "Sunday Scramble" on Apr. 3, 2011)
  • ...13 more annotations...
  • Transcript of the video.
  • (3)Hirotada Ohashi Professor in System Innovation University of Tokyo (at a panel discussion in Saga Pref. on Dec. 25, 2005, regarding using MOX fuel at Genkai Nuke Plant)
  • (2)Keiichi Nakagawa Associate Professor in Radiology The University of Tokyo Hospital (in Nippon TV "news every" on Mar. 29, 2011)
  • Well, half of adult males will die if they ingest 200 grams of salt. With only 200 gram. However, oral lethal dose of plutonium-239 is 32g. So, if you compare the toxicity, plutonium, when ingested, is not very different from salt. If you inhale it into your lungs, the lethal dose will be about 10 milligram. This is about the same as potassium cyanide. That sounds scary but the point is plutonium is no different from potassium cyanide. Some toxins like botulism bacillus that causes food poisoning is much more dangerous. Dioxin is even more dangerous. So, unless you turn plutonium into powder and swallow it into your lungs.... MC: "No one would do that."
  • Besides, plutonium can be stopped by a single sheet of paper. Plutonium is made into nuclear fuels in facilities with good protective measures, so you don't need to worry.
  • For example, plutonium will not be absorbed from the skin. Sometimes you ingest it through food, but in that case, most of it will go out in urine or stools. The problem occurs when you inhale it. Inhaling plutonium is said to increase the risk of lung cancer. MC: "How will that affect our daily lives?" Nothing. MC: "Nothing?"
  • Nothing. To begin with, this material is very heavy. So, unlike iodine, it won't disperse in the air. Workers at the plant MAY be affected. So, I'd caution them to be careful. But I don't think the public should worry. For example, 50 years ago when I was born, the amount of plutonium was 1000 times higher than now. MC: "Oh, why?" Because of nuclear testing. So, even if the amount has now increased somewhat, in fact it's still much less than before. However, if it is released into the ocean through exhaust water, that's a problem. Once outside, plutonium hardly decreases.
  • MC: "It takes 24,000 years before it dicreases to half, doen't it?" That's right. So, in that sense, plutonium is problematic. But then again, there will be no effect on the public. I think you can rest easy. MC: "Let me summarize. Plutonium won't be absorbed from the skin. If it's ingested through food, it will go out of the body in urine. If it's inhaled, it may increase the risk of lung cancer. But since it's very heavy, we don't need to worry."
  • I'd like to point out two things. What happens in a [nuclear] accident depends entirely on your assumptions. If you assume everything would break and all the materials inside the reactor would be completely released into the environment, then we would get all kinds of result. But it's like discussing "what if a giant meteorite hit?" You are talking about the probability of an unlikely event. You may think it's a big problem if an accident occurs at the reactor, but the nuclear experts do not think Containment Vessels will break. But the anti-nuclear people will say, "How do you know that?" Hydrogen explosions will not occur and I agree, but their argument is "how do you know that?"
  • So, right now in the safety review, we're assuming every technically possible situation. For example, such and such parts would break, plutonium would be released like this, then it would be stopped here...something like that. We set the hurdle high and still assume even the higher-level radiation would be released and make calculations. This may be very difficult for you to understand this process, but we do. To figure out how far contamination might spread, we analyze based on our assumption of what could occur. However, the public interpret it as something that will occur. Or the anti-nuclear people take it in a wrong way and think we make such an assumption because it will happen. We can't have an argument with such people.
  • Another thing is the toxicity of plutonium. The toxicity of plutonium is very much exaggerated. Experts dealing with health damage by plutonium call this situation "social toxicity." In reality, there's nothing frightening about plutonium. If, in an extreme case, terrorists may take plutonium and throw it into a reservoir, which supplies the tap water. Then, will tens of thousands of people die? No, they won't. Not a single one will likely die. Plutonium is insoluble in water and will be expelled quickly from the body even if it's ingested with water.
  • So, what Dr. Koide is saying is if we take plutonium particles one by one, cut open your lungs and bury the plutonium particles deep in the lungs, then that many people will die. A pure fantasy that would never happen. He's basically saying we can't drive a car, we can't ride a train, because we don't know what will happen. MC: "Thank you very much."
  • See, we've been duped. Plutonium is not dangerous! We'd better ask these three to drink it up to prove it's not dangerous. Then we will feel safe, won't we? Please doctors, would you do it for us?
1 - 20 of 241 Next › Last »
Showing 20 items per page