Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged policy formulation

Rss Feed Group items tagged

D'coda Dcoda

Research and Markets: Nuclear Regulatory Frameworks - Fuel Processing and Waste Disposa... - 0 views

  • Research and Markets (http://www.researchandmarkets.com/research/b6d3ce/nuclear_regulatory) has announced the addition of the "Nuclear Regulatory Frameworks - Fuel Processing and Waste Disposal Policies Critical for Industry Growth" report to their offering. Nuclear Regulatory Frameworks - Fuel Processing and Waste Disposal Policies Critical for Industry Growth, that provides an insight into the nuclear regulatory frameworks of the major nuclear power countries of the world. The study, which is an offering from the company's Energy Research Group, provides information about the major nuclear agencies and associations across the world, major nuclear treaties and protocols and comparison between different countries on the basis of selected parameters which define the presence of nuclear power in a country. The research also provides the nuclear policy, regulatory frameworks, key nuclear policies and regulations and also the major nuclear affiliations for major nuclear power generating countries in each of the five geographic regions. The report is built using the data and information sourced from proprietary databases, primary and secondary research and in-house analysis by a team of industry experts.
  • Carbon Emission Reduction Protocol to Play an Important Role in Nuclear Policies Formulation
  • Improved Nuclear Waste Disposal Policy Instrumental in Revitalizing the Nuclear Industry
  • ...4 more annotations...
  • Most of the countries either use large repository or reprocess the fuel as a mean to dispose the nuclear waste. The following table shows the list of different countries and their ways for disposing the radioactive waste. Nuclear Non- Proliferation Makes Way for Peaceful and Non-Power Applications
  • The nuclear energy is used in transport application, in medicines and in industries as radioisotopes, in space exploration programs, in nuclear desalination, in nuclear heat process and in other research programs.
  • Scope Overview of the global nuclear power industry Analysis of the historical trends of nuclear capacity and generation until 2009. Description of the various nuclear agencies and associations, globally and by region. Description of the various nuclear treaties and protocols. Analysis of the nuclear energy policy of the major countries in all geographic regions Analysis of the regulatory frameworks in major countries of different geographic regions including North America, South and Central America, Europe, Middle East and Africa and Asia Pacific.
  • Reasons to Buy
  •  
    This is the competition? This report on nuclear industry, at a price. First one I've seen so far.
D'coda Dcoda

Short-Termism and Energy Revolutions [30Sep11] - 0 views

  • The calls these days for a technological “energy revolution” are widespread. But how do you spark breakthroughs when the natural bias of businesses, investors and governments is toward the here and now? In governance, politics creates a bias toward the short term. This is why bridges sometimes fall down for lack of maintenance. That’s also why it’s so hard to sustain public investment in the research and intellectual infrastructure required to make progress on the frontiers of chemistry, biology and physics, even though it is this kind of work that could produce leaps in how we harvest, harness, store and move energy. (This is why I asked, “Are Chemists and Engineers on the Green Jobs List?” back in 2008.)
  • To get the idea, you only have to look at the sputtering state of President Obama’s mostly unfunded innovation hubs, or look once again at the energy sliver in the graph showing America’s half-century history of public investment in basic scientific research. (There’s not much difference in research patterns in most other industrialized countries.) You can also look at the first Quadrennial Technology Review produced by the Department of Energy (summarized by Climate Progress earlier this week). The review was conducted after the President’s Council of Advisers on Science and Technology wisely recommended regular reviews of this sort as part of its prescription for accelerating change in energy technologies.
  • This excerpt from the new review articulates the tension pretty transparently for a government report: There is a tension between supporting work that industry doesn’t— which biases the department’s portfolio toward the long term—and the urgency of the nation’s energy challenges. The appropriate balance requires the department to focus on accelerating innovation relevant to today’s energy technologies, since such evolutionary advances are more likely to have near- to mid-term impact on the nation’s challenges. We found that too much effort in the department is devoted to research on technologies that are multiple generations away from practical use at the expense of analyses, modeling and simulation, or other highly relevant fundamental engineering research activities that could influence the private sector in the nearer term.
  • ...16 more annotations...
  • In finding that balance, I’m not sure it’s possible to overcome the political pressures tugging agencies and officials to stress refinement and deployment of known and maturing technologies (even though that’s where industry and private investors are most focused).
  • On the left, the pressure is for resources to deploy today’s “green” technology. On the right, as illustrated in a Heritage Foundation report on ways to cut President Obama’s budget for the Energy Department, the philosophy seems to be to discourage all government spending on basic inquiry related to energy.
  • According to Heritage, science “in service of a critical national interest that is not being met by the private sector” is fine if that interest is national defense, but not fine if it’s finding secure and sustainable (environmentally and economically) sources of energy.
  • I solicited reactions to the Energy Department review from a variety of technology and innovation analysts. The first to weigh in are Daniel M. Kammen, an energy technology researcher at the University of California, Berkeley, who is on leave working for the World Bank, and Robert D Atkinson, the founder and president of the Information Technology and Innovation Foundation. Here’s Kammen: The idea of a regular review and status report on both energy innovation and deployment spending is a good one. Some of the findings in the QTR review are useful, although little is new. Overall, though, this is a useful exercise, and one that should be a requirement from any major programmatic effort.
  • he real need in the R&D sector is continuity and matching an increasing portfolio of strategic research with market expansion. My former student and colleague Greg Nemet have written consistently on this: - U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion - Reversing the Incredible Shrinking Energy R&D Budget
  • Perhaps the biggest worry in this report, however, is the missing logic and value of a ’shift to near term priorities in energy efficiency and in electric vehicles.’ This may be a useful deployment of some resources, but a range of questions are simply never addressed. Among the questions that need firmer answers are:
  • There are some very curious omissions from the report, such as more detail on the need to both generate and report on jobs created in this sector — a political ‘must’ these days (see, e.g., the “green jobs” review by the Renewable and Appropriate Energy Laboratory at Berkeley) — and straightforward comparisons in the way of ‘report cards’ on how the US is stacking up relative to other key players (e.g. China, Germany…).
  • given the state-by-state laboratories we already have of differing approaches to energy efficiency, the logic of spending in this area remains to be proven (as much as we all rightly love and value and benefit from energy efficiency).
  • Near-term electric vehicle deployment. A similar story could be told here. As the director of the University of California at Berkeley’s Transportation Sustainability Research Center (http://tsrc.berkeley.edu) I am huge believer in electric vehicles [EVs]. However, the review does not make clear what advances in this area are already supported through [the Advanced Research Projects Agency for Energy], and what areas of near-term research are also not best driven though regulation, such as low-carbon fuel standards, R&D tax credits, ‘feebates’ that transfer funds from those individuals who purchase inefficient vehicles to those who purchase efficient ones. Similar to the story in energy efficiency, we do have already an important set of state-by-state experiments that have been in place for some time, and these warrant an assessment of how much innovation they have driven, and which ones do and do not have an application in scale-up at the federal level.
  • Finally, the electric vehicle landscape is already very rich in terms of plans for deployment by automakers. What are the barriers five-plus years out that the companies see research-versus-deployment and market-expansion support as the most effective way to drive change in the industry? Where will this focus put the U.S. industry relative to China?
  • Following record levels funding made available to the energy industry through the [stimulus package of spending], what are the clearly identified market failures that exist in this area that added funding will solve? Funding is always welcome, but energy efficiency in particular, can be strongly driven by regulation and standards, and because good energy efficiency innovations have such rapid payback times, would regulatory approaches, or state-federal partnerships in regulation and incentives not accomplish a great deal of what can be done in this area? Congressman Holt raises a number of key questions on related issues, while pointing to some very hopeful experiences, notably in the Apollo program, in his 16 September editorial in Science.
  • Here’s Robert Atkinson: If DOE is shifting toward a more short-term focus, this is quite disturbing.  It would mean that DOE has given up on addressing the challenge of climate change and instead is just focused on the near term goal of reducing oil imports and modestly reducing the expansion the coal fired power plants. If DOE thinks it is still focused on climate change, do they think they are fighting “American warming”?
  • If so, cutting the growth of our emissions make sense.  But its global warming and solving this means supporting the development of scalable, cheap low or no-carbon energy so that every country, rich and poor, will have an economic incentive to transitioning to cheap energy.  Increasing building efficiency, modernizing the electric grid, alternative hydrocarbon fuels, and increasing vehicle efficiency do virtually nothing to meet this goal. They are “American warming” solutions.
  • This is also troubling because (as you point out) who else is going to invest in the long-term, more fundamental, high risk, breakthrough research than the U.S. government.  It certainly won’t be VCs. And it won’t be the Chinese who are principally interested in cutting their energy imports and exporting current generation clean energy, not developing technology to save the planet.  Of course all the folks out there who have been pushing the mistaken view that we have all the clean technologies we need, will hail this as the right direction.  But it’s doing what the rest of the market has been doing in recent years – shifting from high risk, long-term research to short-term, low risk.  If the federal government is doing this it is troubling to say the least.
  • or those seeking more, here are the slides used by Steven Koonin, the physicist and former BP scientist who now is under secretary for science at the department, in presenting the review earlier this week:
  • Rolling Out the Quadrennial Technology Review Report
Dan R.D.

Impasse Over Yucca Mountain [01Jul11] - 0 views

  • Following is an excerpt from the Government Accountability Office's description of the chronology of efforts in this direction:
  • Nuclear energy, which supplied about 20 percent of the nation’s electric power in 2010, offers a domestic source of energy with low emissions but also presents difficulties — including what to do with nuclear fuel after it has been used and removed from commercial power reactors. This material, known as spent nuclear fuel, is highly radioactive and considered one of the most hazardous substances on earth. The current national inventory of nearly 65,000 metric tons of commercial spent nuclear fuel is stored at 75 sites in 33 states and increases by about 2,000 metric tons each year.
  • In June 2008, DOE submitted a license application to the Nuclear Regulatory Commission (NRC) seeking authorization to construct a high-level waste repository at Yucca Mountain. NRC has regulatory authority to authorize construction of the repository. DOE planned to open the repository in 2017, but later delayed the date to 2020.
  • ...10 more annotations...
  • In March 2009, however, the Secretary of Energy announced plans to terminate the Yucca Mountain repository program and instead study other options for nuclear waste management.
  • Rep. Jay Inslee (D-Wash.), noting that his state had 9,700 canisters of spent nuclear fuel ready to ship toYucca Mountain, characterized the present situation as “a failed state.” [See 1:27 to 1:34 on the video for the interchanges.]
  • Congress is demanding answers about the administration’s decision to halt development of the only permanent U.S. site for spent nuclear fuel.
  • At a June hearing before the House Energy and Commerce Committee, Assistant Energy Secretary for Nuclear Energy Peter Lyons said that the administration believed that the Yucca Mountain repository lacked social public acceptance, and that Secretary Chu was meeting with Energy Department lawyers to formulate the grounds to terminate the program[see video].
  • At about the same time, the administration also directed DOE to establish a Blue Ribbon Commission of recognized experts to study nuclear waste management alternatives (but not disposal sites). The commission is scheduled to issue a report by January 2012.
  • Rep. John Dingell (D-Mich.) asked about the investment to date in Yucca Mountain. Consumers (ratepayers) have paid $9.5 billion of the nearly $15 billion spent thus far, with taxpayers paying the rest.
  • The federal government has already paid out about $1 billion in lawsuits for reneging on promises made under the Nuclear Waste Policy Act to cart off nuclear waste.
  • Yucca Mountain is scheduled to open for storage in 2020. These costs will total $15.4 billion by 2020 and increase by an estimated $500 million for each year delay after that.
  • The Washington Post called the situation “toxic politics,” in a recent editorial.
  • Physics Today notes the dysfunctional controversy as reminiscent of another expensive hole in the ground — in Texas — for the superconducting super collider, canceled in 1993.
1 - 3 of 3
Showing 20 items per page